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Applying a gravitational field truncated at the 4th degree and order, the 1:1 ground-track resonance is investigated. To 

address the main properties of this 1:1 resonance, a 1-degree of freedom (1-DOF) system is studied firstly. Its equilibrium 

points (EPs), stability and resonance width are obtained. Different from previous studies, the inclusion of non-spherical 

terms higher than degree and order 2 introduces new phenomena. For a further study about the 1:1 resonance, a 2-DOF 

system is introduced, which includes the 1-DOF system and a second resonance playing a perturbation role. With the aid of 

Poincaré sections, the generation of chaos in the phase space is studied in detail by addressing the overlap process of these 

two resonances with arbitrary combinations of eccentricity (𝑒) and inclination (𝑖). The situations of complete chaos are 

estimated in the 𝑒 − 𝑖 plane. By applying the maximum Lyapunov Characteristic Exponent (LCE), chaos is characterized 

quantitatively and similar conclusions can be achieved. This study is applied to asteroid 1996 HW1. 

 

Keyword : Asteroid, Resonance, Stability, Chaos 

 

1.  Introduction 

 

  The commensurability (usually a ratio of simple integers) 

between the rotation of the primary body and the orbital 

motion of the surrounding spacecraft or particle is called 

ground-track resonance. A large amount of research has been 

carried out about geosynchronous orbits. For example, a 

2-DOF Hamiltonian system was modeled1) near the critical 

inclination perturbed by the inhomogeneous geopotential. 

Global dynamics were studied in terms of Poincaré maps in 

the plane of inclination and argument of pericenter. Chaotic 

motions were expected close to the separatrix of the resonance 

of the mean motion. 

However, for ground-track resonances in a highly irregular 

gravitational field (mainly small solar system bodies), studies 

are limited. Scheeres2) studied the stability of the 1:1 mean 

motion resonance with a rotating asteroid using a triaxial 

ellipsoid model, and applied it to Vesta, Eros and Ida. Later 

on, he studied the effect of the resonance between the rotation 

rate of asteroid Castalia and the true anomaly rate of an 

orbiting particle at periapsis with a 2nd degree and order 

gravitational field3). This kind of resonance was proven to be 

responsible for significant changes of orbital energy and 

eccentricity, and provides a mechanism for an ejected particle 

to transfer into a hyperbolic orbit or vice versa. By 

considering the 2nd degree and order gravitational field, Hu 

and Scheeres4) showed that orbital resonance plays a 

significant role in determining the stability of orbits. Further, 

by modelling the resonant dynamics in a uniformly rotating 

2nd degree and order gravitational field as a 1-DOF pendulum 

Hamiltonian5), widths of the resonance were obtained in 

analytical expressions and also tested against numerical 

simulations for five resonances. They were found to be 

independent of the rotation rate and mass of the central body 

but strongly dependent on 𝑒 and 𝑖 . The retrograde orbits 

have a smaller resonance region than the prograde ones. In a 

slowly rotating gravitational field, the orbital stability was 

explained by the distance between the resonances but not by 

the strength of a specific one using the overlap criteria.  

The resonant structure can be explained with the truncated 

model for the equatorial and circular cases, respectively. 

Delsate6) built the 1-DOF Hamiltonian of the ground-track 

resonances of Dawn orbiting Vesta. The locations of the EPs 

and the resonance width were obtained for several main 

resonances (1:1, 1:2, 2:3 and 3:2). The results were checked 

against numerical tests. The 1:1 and 2:3 resonances were 

found to be the largest and strongest ones, respectively. The 

probability of capture in the 1:1 resonance and escape from it 

was found to rely on the resonant angle. Tzirti and Varvoglis7) 

extended Delsate's work by introducing C30 into the 1:1 

resonance, which resulted in 2-DOF dynamics. The C30 term 

was found to create tiny chaotic layers around the separatrix 

but without significant influence on the resonance width. With 

the ellipsoid shape model8), MEGNO (Mean Exponential 

Growth factor of Nearby Orbits) was applied as an indicator 

to detect stable resonant periodic orbits and also 1:1 and 2:1 

resonance structures under different combinations of the three 

semi-axes of the ellipsoid. A 1-DOF resonant model 

parametrized by 𝑒  and 𝑖  was obtained with a truncated 

ellipsoidal potential up to degree and order 2. 

For the previous studies, the limitations are either the 

gravitational field which is truncated at degree and order 2 or 

the orbit which is restricted to a circular or polar case. In this 

study, the harmonic coefficients up to degree and order 4 are 

taken into account for studying the 1:1 resonance at different 

combinations of 𝑒 and 𝑖, which results in a 2-DOF model. 

Therefore, this paper is arranged as follows. Firstly, a 1-DOF 

Hamiltonian is built to investigate the main properties of the 

1:1 resonance. The location of EPs and their stability are 

solved numerically for different combinations of 𝑒 and 𝑖 for 

1996 HW1. The resonance widths of the stable EPs are found 

numerically. Secondly, a 2-DOF Hamiltonian is introduced 
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with the inclusion of a second resonance, which is treated as a 

perturbation on the 1-DOF Hamiltonian. Chaos is generated 

due to the overlap of the two resonances. By applying 

Poincaré sections, the extent of the chaotic region in the phase 

space is examined against the distance between the primary 

and second resonances and their respective strengths. The 

roles that 𝑒 and 𝑖 play in the evolution of chaos in the phase 

space are studied systematically. Finally, the maximal LCE 

(mLCE) of the orbits in the chaotic seas are calculated for a 

quantitative study. 

 

2.  Dynamical Modelling 

2.1. Hamiltonian of the system 

  The gravity potential expressed in orbital elements 

(𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑀) is given by Kaula9) as 
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in which 𝜇  and 𝑅𝑒  are the gravitational constant and 

reference radius of the body, respectively. 𝑟 Is the distance 

between the point of interest and the center of mass of the 

body. 𝐹(𝑖)  and 𝐺(𝑒)  are functions of inclination and 

eccentricity, respectively. The complete list of them up to 

degree and order 4 can be found in Kaula9). In addition, 

𝑛, 𝑚, 𝑝, 𝑞 are all integers, and 𝜃 is the sidereal angle. 
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with Kaula’s phase angle Θ𝑛𝑚𝑝𝑞 written as 
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Given the Delaunay variables  
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the Hamiltonian of the system can be written as  

                  ΛT V                   (2)                                                   

in which 𝑇 = − 𝜇2 2𝐿2⁄  is the kinetic energy, 𝜃̇  is the 

rotation rate of the asteroid and Λ  is the momentum 

conjugated to 𝜃. Resonances occur when the time derivative 

Θ̇𝑛𝑚𝑝𝑞 ≈ 0. The 1:1 resonance is studied in detail in the 

following sections.  

 

2.2. 1:1 Resonance 

According to Ref. 9), to study the 1:1 resonance, the 

resonant angle is introduced and defined as 𝜎 = 𝜆 − 𝜃, with 

the mean longitude 𝜆 = 𝜔 + 𝑀 + Ω. This resonance occurs at 

𝜎̇ ≈ 0, which means that the revolution rate (mean motion) of 

the orbit is commensurate with the rotation rate of the asteroid. 

In addition, it should be noticed that the solution of this 1:1 

resonance includes the equilibrium points (EPs) that are 

commonly studied in a rotating (or body-fixed) frame, and 𝜎 

is the phase angle of the EPs in a rotating frame.  

The spherical harmonics up to degree and order 4 that 

contribute to this resonance are listed in Appendix A. To 

introduce the resonant angle 𝜎 in the Hamiltonian and also 

keep the new variables canonical, a symplectic transformation 

is applied 

Λ Λd L d d L d             

and a new set of canonical variables is obtained as 
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After averaging over the fast variable 𝜃′, the Hamiltonian 

for the 1:1 resonance truncated at the second order of 𝑒 can 

be written as 
3
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where ℋ𝑘  (𝑘 = 1,2) is the Hamiltonian at the 𝑘th order of 𝑒 

and ℋ0 is expressed as 
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(3) 
in which 𝑐 = cos(𝑖) , 𝑠 = sin(𝑖)  and 𝐿  is used hereafter 

instead of 𝐿′ for convenience. In terms of angular variables, 

it can be seen that ℋ0 is only dependent on the angle 𝜎. 

Since 𝜃′ is implicit in ℋ0, its conjugate Λ′ is a constant and 

can be dropped. Similarly, 𝐺 and 𝐻, which are related to 𝑒 

and 𝑖, are constant as 𝑔 and ℎ are absent in ℋ0. Therefore 

at a given combination of 𝑒 and 𝑖, ℋ0 is actually a 1-DOF 

system. However, ℋ1 and ℋ2 are functions of both 𝜎 and 

𝑔 and include angles 𝑗𝜎 + 𝑘𝑔 (𝑗 = 1,2,3, 𝑘 = ±1, ±2), and 

therefore are 2-DOF systems. Their expressions are given in 

Appendix A and they are both zero at 𝑒 = 0 or 𝑖 = 0.  

According to our simulations, it is found that ℋ1 ∈

𝒪(ϵ3/2), ℋ2 ∈ 𝒪(ϵ) , where ϵ  is the ordering parameter 

which ranges from 10−2 to 10−1. Since the origin of our 

selected body-fixed frame is located at the center mass of the 

asteroid and the axes are aligned with the principal moments 

of inertia of the asteroid, the C21, S21 and S22 terms are all zero, 

leading to the fact that the magnitude of ℋ1 is smaller than 

that of ℋ2. Therefore, ℋ0 with resonant angle 𝜎 can be 

viewed as being responsible for the primary resonance. ℋ1 

and ℋ2 are the cause of the second resonances, which are 
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expected to give rise to chaos. 

 

3 Primary Resonance 

3.1. EPs and Resonance Width 

Firstly, ℋ0 is studied in detail. Its equilibria can be found 

by numerically solving 

       0 00, 0L
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The linearized system is written as 
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The linear stability of an EP can be determined from the  

Fig. 1. The phase portrait of the Hamiltonian of 1996 HW1. Top 

row: ℋ0/2𝑛𝑑  for 𝑒 = 0 , 𝑖 = 0, 108.9°, 137.5°, 171.9° ; middle 

row: ℋ0  for 𝑒 = 0, 𝑖 = 0, 120.3°, 137.5°, 171.9°; bottom row: 

ℋ0 for 𝑖 = 0, 𝑒 = 0.1, 0.2, 0.3, 0.4. The blue and red lines are 

the separatrix of the unstable EPs. 

 

Jacobian matrix evaluated at the EP. The resonant frequency 

can be approximated at a stable EP (𝜎𝑠 , 𝐿𝑠) 

as √
𝜕2ℋ0

𝜕𝐿2 ∙
𝜕2ℋ0

𝜕𝜎2 |
𝜎𝑠,𝐿𝑠

 . Taking the Hamiltonian value 

corresponding to an unstable EP(𝜎𝑢, 𝐿𝑢), denoted as ℋ𝑢, its 

level curve in the phase map is actually the separatrix that 

divides the motion into libration and circulation regions10). 

Along this curve, 𝐿 passes through its maximum 𝐿𝑚𝑎𝑥 and 

also minimum 𝐿𝑚𝑖𝑛 at 𝜎 = 𝜎𝑠. The resonance width is then 

calculated as Δ𝐿 = 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛 and is therefore only valid 

for the stable EPs. 

 

3.2. Numerical Results 

  In this section, the EPs, their stability and the resonance 

width of asteroid 1996 HW1 are studied. This asteroid is 

selected since it is a good representative of highly bifurcated 

bodies. Its 4th degree and order spherical harmonics is given in 

Appendix B. It is noted here that all the angles except for 

inclination in this study are in radians. First, the dynamics due 

to the 2nd degree and order harmonics (C20 and C22) is studied, 

hereafter denoted as ℋ0/2𝑛𝑑. 

 

3.3 1996 HW1 

  For 1996 HW1, the phase portrait of ℋ0/2𝑛𝑑 and ℋ0 is 

given in Fig.1. There are four unstable EPs appearing in the 

equatorial plane (𝑖 = 0), which is consistent with our previous 

studies11) and the results in Magri12). They are also marked out 

as E1, E2, E3 and E4. For small 𝑖, there is no region for 

libration and therefore all the EPs are unstable. It can be seen 

that the instability of the four EPs is already determined by the 

dynamics of ℋ0/2𝑛𝑑 . The inclusion of other harmonics 

however causes a strong distortion of the phase space. Two of 

the unstable EPs become stable at 𝑖 ≈ 108.9° for ℋ0/2𝑛𝑑  

and at 𝑖 ≈ 120.3° for ℋ0, indicating the destabilizing effects 

of the highly irregular gravitational fields and the stability of 

the retrograde motion in this highly perturbed environment. 

Then the two EPs merge into one at 𝑖 ≈ 154.7° also due to 

strong effects of C31 and finally disappear for the same reason: 

the effects of terms 1 + 𝑐  and 𝑠2 . The phase portrait is 

slightly influenced by 𝑒 with the exception that an elongated 

orbit (with larger 𝑒) is less influenced by the high degree and 

order harmonics, as shown in the bottom plots.  

 

4.  Second Resonance 

For a qualitative study about the effect of the second degree 

of freedom on the 1:1 resonant dynamics, ℋ1  and ℋ2 

should be considered. However, the inclusion of all terms in 

ℋ1 and ℋ2 is far from trivial. For this study, the dominant 

term of ℋ2 is taken into account. The dominant term, which 

has the largest amplitude, is given by 
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  In the current study, only ℋ0 and the dominant term ℋ2𝑑 
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are taken into account and the resulting 2-DOF Hamiltonian is 

written as 

2 0 2dof d 
 

A new resonant angle 2𝜎 − 2𝑔  is introduced in the 

dynamics in addition to 𝑘𝜎 (𝑘 = 1,2,3,4). A formal way to 

deal with this system is to treat ℋ2𝑑 as a small perturbation 

to the integrable system ℋ2𝑑𝑜𝑓 = ℋ0
13). However, in our 

study, the perturbation of ℋ2𝑑 is not limited to small values, 

due to the large variations of 𝑒  and 𝑖 . According to 

Chirikov14) and Morbidelli10), the dynamics of ℋ2𝑑𝑜𝑓 can be 

studied by observing the overlap process of nearby resonances 

using Poincaré maps. To a first approximation, each resonance 

is considered separately, only its own resonant angle is taken 

into account and the other one is neglected. The first 

resonance ℋ𝑟𝑒𝑠𝑜𝑛1 is actually ℋ0, and the second resonance 

ℋ𝑟𝑒𝑠𝑜𝑛2 is defined as 
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(6)                       

which only includes one resonant angle 2𝜎 − 2𝑔. Its location 

needs to be solved first and then the Poincaré maps of the 

single-resonance dynamics are computed respectively on the 

same section in the vicinity of their location. If ℋ2𝑑 is small 

enough, the separatrix of ℋ𝑟𝑒𝑠𝑜𝑛2 is further away from that 

of ℋ𝑟𝑒𝑠𝑜𝑛1 and the two resonances are slightly influenced by 

each other. Tiny chaotic layers are probably generated around 

the separatrix. Otherwise, if ℋ2𝑑 is large, the separatrix of 

the two resonances intersect, their dynamical domains overlap, 

and each resonance is significantly affected by the other one. 

The chaotic layers extend to large-region chaos that dominates 

the phase space. Since ℋ𝑟𝑒𝑠𝑜𝑛1 is the dominant dynamics of 

our 1:1 resonant model, the focus is put on how ℋ𝑟𝑒𝑠𝑜𝑛1 is 

influenced by ℋ𝑟𝑒𝑠𝑜𝑛2, which can also be interpreted as how 

much the 1-DOF dynamics is affected by a perturbation. 

 

4.1 The Location and Width of 𝓗𝒓𝒆𝒔𝒐𝒏𝟐 

  The location and width of ℋ𝑟𝑒𝑠𝑜𝑛1 have been obtained in 

Section 3. Since we want to apply Poincaré sections to study 

the dynamics, the section of the map is first defined here as 

𝑔 = π/2, 𝑔̇ > 0  in the 𝐿 − 𝜎  plane. Since ℋ𝑟𝑒𝑠𝑜𝑛1  has 

1-DOF, its Poincaré map is the same with its phase portrait in 

the phase space. The location of ℋ𝑟𝑒𝑠𝑜𝑛2 in this section can 

be obtained by numerically solving 
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      (7) 

in which 𝜎0 = 𝑔0 = 𝜋/2 . ℋ𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑟𝑖𝑥  is the Hamiltonian 

value of the seperatrix of ℋ𝑟𝑒𝑠𝑜𝑛1 which is also the energy 

constant of the section. 𝐿∗ and 𝐺∗ represent the variables 

that need to be solved. As ℋ𝑟𝑒𝑠𝑜𝑛2 itself is a 2-DOF system, 

the pendulum model cannot be applied for approximating its 

resonance width. Therefore, based on the dynamical 

properties of the Poincaré map, a full numerical estimation is 

used. By integrating from the initial point  (𝜎0, 𝑔0, 𝐿∗, 𝐺∗) 

for moderate iterations, a curve is obtained which is either the 

upper or the lower part of the separatrix of ℋ𝑟𝑒𝑠𝑜𝑛2 on the 

section. If it is the upper part, 𝐿𝑚𝑎𝑥 is directly obtained by 

taking record of the maximum point of the curve. 𝐿𝑚𝑖𝑛 is the 

minimum of the lower border obtained by integrating from the 

point (𝜎0, 𝑔0, 𝐿∗ − 𝛿𝐿, 𝐺)  with 𝛿𝐿  depending on the 

dynamics studied and vice versa. The curves acquired are the 

separatrix of ℋ𝑟𝑒𝑠𝑜𝑛2 . Therefore, the width of ℋ𝑟𝑒𝑠𝑜𝑛2  is 

approximated by 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛, which is already good enough 

for the current study. 
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Given that the maxima and minima of ℋ𝑟𝑒𝑠𝑜𝑛1  and 

ℋ𝑟𝑒𝑠𝑜𝑛2  are denoted as 𝐿𝑚𝑎𝑥1, 𝐿𝑚𝑖𝑛1  and 𝐿𝑚𝑎𝑥2, 𝐿𝑚𝑖𝑛2 , 

respectively, the relative locations of the two resonances can 

be characterized by 𝐿𝑚𝑖𝑛1 − 𝐿𝑚𝑎𝑥2 and 𝐿𝑚𝑖𝑛1 − 𝐿𝑚𝑖𝑛2. The 

former one, which is the distance between the lower borders  

Fig. 2. First and third rows: the separatrices of resonances 

ℋ𝑟𝑒𝑠𝑜𝑛1 (red) and ℋ𝑟𝑒𝑠𝑜𝑛2 (blue) on the section 𝑔 = 𝜋 2⁄ , 𝑔̇ >

0; second and fourth rows: the phase space of the corresponding 

ℋ2𝑑𝑜𝑓; both for 𝑒 = 0.1, 𝑖 = 171.9°, 170.7°, 166.2°, 158.7°, 149° 

and 143.2°. 

 

of the two resonances, is positive if the two resonances are 

totally separated and becomes negative as the resonances start 

to overlap each other. The latter one is actually the 

measurement of the extent of overlap of the two resonances. 

Its non-positive value indicates that one resonance is 

completely within the other one. For different combinations of 

𝑒 and 𝑖, the 2-DOF Hamiltonian ℋ2𝑑𝑜𝑓 is studied for 1996 

HW1, Vesta and Betulia.  
 

4.2 The effect of 𝒊 

  Since 1996 HW1 only has a limited inclination range 

(126° ≲ 𝑖 < 180°) of libration motion of ℋ𝑟𝑒𝑠𝑜𝑛1 (shown in 

Fig.3), its second degree of freedom dynamics is studied first. 

In Fig.2, the upper plots give the separatrices of the two  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resonances in the Poincaré maps, which are the boundaries of 

their phase space. The bottom plots are the phase space of 

ℋ2𝑑𝑜𝑓 on the same section, both for 𝑖 changing from 171.9° 

to 143.2°  at the example 𝑒 = 0.1 . Fig.2 reflects the 

relationship of the distance between the two resonances 

ℋ𝑟𝑒𝑠𝑜𝑛1  and ℋ𝑟𝑒𝑠𝑜𝑛2  and the extent of chaotic region of 

ℋ2𝑑𝑜𝑓. 

For 𝑖 = 171.9°, even though the resonances do not overlap 

(but are close), tiny chaotic layers appear in the vicinity of the 

separatrix of ℋ2𝑑𝑜𝑓. When there is a small overlap at 𝑖 =

166.2°, the chaotic layer is extended but a large libration 

region still remains. With the increase of the overlap from 

𝑖 = 166.2°, a large part of the phase space is occupied by 

chaos. The regular region shrinks to a limited area at the 

center of the phase space and meanwhile five islands appear 

around it,  
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Fig. 3. The distance between ℋ𝑟𝑒𝑠𝑜𝑛1 and ℋ𝑟𝑒𝑠𝑜𝑛2 measured 

as 𝐿𝑚𝑖𝑛1 − 𝐿𝑚𝑎𝑥2 (left) and 𝐿𝑚𝑖𝑛1 − 𝐿𝑚𝑖𝑛2  (middle), and the 

width of  ℋ𝑟𝑒𝑠𝑜𝑛2 (right). 

 

which is due to the high-order resonances between ℋ𝑟𝑒𝑠𝑜𝑛1 

and ℋ𝑟𝑒𝑠𝑜𝑛2 . With the further decrease of 𝑖  to 158.7° , 

ℋ𝑟𝑒𝑠𝑜𝑛2 is almost completely inside ℋ𝑟𝑒𝑠𝑜𝑛1 and there are 

only three small KAM tori left, indicating the system is 

transiting to global chaos. In addition, the original stable EP 

becomes unstable as the center part is already chaotic. 

Although the dynamics is completely chaotic at 𝑖 = 149°, the 

chaos is still bounded by the separatrix of ℋ𝑟𝑒𝑠𝑜𝑛1. However, 

finally at 𝑖 = 143.2° the whole structure of  ℋ𝑟𝑒𝑠𝑜𝑛1  can 

not be kept and the continuity of the phase space is broken. It 

is noticed that this break is consistent with the break of the 

separatrix of ℋ𝑟𝑒𝑠𝑜𝑛2 at the same range of 𝜎, implying a  

 

Fig. 4. The phase space of ℋ2𝑑𝑜𝑓  at 𝑒 = 0.3  for 𝑖 =

171.9°, 170.7°, 166.2°, 158.7°, 149°, 143.2°. 

 

significant perturbation of  ℋ𝑟𝑒𝑠𝑜𝑛2 on the total dynamics. 

The break of ℋ𝑟𝑒𝑠𝑜𝑛2’s separatrix attributes to the fact that 

the time derivative of 𝑔 (𝑔̇) changes sign from positive to 

negative after 𝑖 crossing some specific value, and therefore it 

produces no crossings on the section which is defined as 𝑔̇ >

0. This phenomenon will be discussed in detail in the next 

section.  
In summary, 𝑖  has a great influence on the 2-DOF 

dynamics at constant 𝑒 . When 𝑖  decreases, ℋ𝑟𝑒𝑠𝑜𝑛2  is 

strengthened as it includes the term 𝑠2 (as seen in Eq.(6)) 

and its resonance width increases. However, its location does 

not deviate much. For ℋ𝑟𝑒𝑠𝑜𝑛1 , not only its width is 

increasing but also its location is moving downward. 

Ultimately, the two resonances totally overlap and have a 

strong interaction with each other. Nevertheless, the width of 

ℋ2𝑑𝑜𝑓 is determined by ℋ𝑟𝑒𝑠𝑜𝑛1, which is seen from both 𝐿 

values, although the inner structure of the phase space has 

been totally affected. 

 

4.3. The Effect of 𝒆 

To study the effect of 𝑒 on the dynamics, the contour map 

of the distance of the two resonances and also the width of the 

second resonance are given in the 𝑒 − 𝑖 plane in Fig.6. In the 

left plot, the yellow region indicates the situation of 

non-overlap and slight overlap. In the middle plot, the green 

and blue areas demonstrate the situation when ℋ𝑟𝑒𝑠𝑜𝑛2 

moves totally inside ℋ𝑟𝑒𝑠𝑜𝑛1 and the overlap between the 

two is complete. The right plot demonstrates that the width of 

ℋ𝑟𝑒𝑠𝑜𝑛2 is also enlarged when 𝑒 becomes large, which can 
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be proven to be caused by the term (9𝑒2 4⁄ + 7𝑒4 4)⁄  in 

ℋ𝑟𝑒𝑠𝑜𝑛2 . Therefore, the largest distance of ℋ𝑟𝑒𝑠𝑜𝑛1  and 

ℋ𝑟𝑒𝑠𝑜𝑛2 is witnessed at the down-right corner and ℋ𝑟𝑒𝑠𝑜𝑛2 

approaches its highest location at the upper-left corner in the 

left plot. In addition, as 𝑒  increases and 𝑖  decreases, 

ℋ𝑟𝑒𝑠𝑜𝑛2  becomes stronger (as indicated by the resonance 

width) and has a significant influence on the dynamics of 

ℋ𝑟𝑒𝑠𝑜𝑛1. 

  Therefore, given a specific 𝑒 and 𝑖, an estimate from this 

contour map can be made on when small chaotic layers appear 

and when large chaotic seas are expected. As an example, for 

𝑒 = 0.1, tiny chaotic layers are apparent at 𝑖 = 171.9° when 

the two resonances start to overlap; the last KAM tori 

disappear and the phase space is full with chaos around 𝑖 =

158.2°.  

For a more complete understanding, the phase space of 

ℋ2𝑑𝑜𝑓  at 𝑒 = 0.3  with different 𝑖  is given in Fig. 4. 

Compared to Fig.5, the upper plots of Fig.7 show that the 

large 𝑒  distorts the main island, which originally has a 

circular or ellipsoidal shape. The chaos is more abundant and 

the size of the main island reduces and a new phase structure 

is generated at the bottom of the plot, due to the stronger 

influence of ℋ𝑟𝑒𝑠𝑜𝑛2. In addition, the lower half of the chaos 

is thicker than the upper part, as it is more influenced by the 

perturbation from ℋ𝑟𝑒𝑠𝑜𝑛2 which approaches ℋ𝑟𝑒𝑠𝑜𝑛1 from 

the bottom direction. In addition, the islands appearing at the 

bottom area of the phase space can be explained by the direct 

interaction of ℋ𝑟𝑒𝑠𝑜𝑛1  and ℋ𝑟𝑒𝑠𝑜𝑛2  in that region. 

Furthermore, the lower three plots are full of chaos. 

 

4.4 Maximal Lyapunov Characteristic Exponent of 

Chaotic Orbits 

In addition to the above study about the extent of chaotic 

layers, the chaos can also be characterized quantitatively by 

calculating the value of the maximal Lyapunov Characteristic 

Exponent (mLCE), which is an indicator of the regular or 

chaotic properties of orbits15). Its basic idea is to measure the 

distance between two orbits that start close, until infinite time 

t → ∞. It characterizes the average growth rate of a small 

perturbation of the solution of a dynamical system and is 

defined as 

t
0

1
λ lim ln ( )

t

t
t

    

in which 𝝊(𝑡) is the deviation vector with respect to the 

reference orbit at time 𝑡  . It is also the solution of the 

corresponding variational equations of the dynamical system. 

If λ > 0, the orbit is chaotic; if λ = 0, the orbit is regular. 

The numerical algorithm applied here is the standard method 

originally developed by Benettin and Galgani16). Its detailed 

implementation can be found in Skokos15). It has to be 

mentioned that for regular orbits it might take a long time for 

λ to achieve zero. However, within a moderate time interval 

the tendency to zero is already visible.  

Since it is obvious that large 𝑒 introduces stronger chaos, 

the mLCE of orbits selected from the chaotic and regular 

regions (if there is no chaos) on the maps from Fig. 2 are 

given in Fig. 5. These maps primarily indicate the effect of 𝑖 

on dynamics at 𝑒 = 0.1. The integration time is chosen such 

that a stable value of all the mLCE values can be achieved.  

It can be seen that the more inclined the orbit, the larger 

mLCE value it has, indicating a stronger tendency to chaos. 

The resonant orbits around 1996 HW1 have large mLCE 

values (magnitude 10-5), due to its highly irregular 

gravitational field. Additionally, the mLCE values not only 

can identify the chaotic behavior of orbits, but also give us a 

hint on the extent of chaotic property.   

 

Fig. 5. The mLCE of regular and chaotic orbits from the Poincaré 

maps of ℋ2𝑑𝑜𝑓 for 1996 HW1. 

 

5. Conclusion 

In this study, a 2-DOF Hamiltonian of the 1:1 resonant 

dynamics of a gravitational field up to degree and order 4 was 

built. The 1-DOF Hamiltonian ℋ0  was first studied by 

finding the EPs and examining their stability for non-circular 

and non-polar orbits around 1996 HW1. This ℋ0 was proven 

to capture the main characteristics of the 1:1 resonant 

dynamics. For ℋ0, 𝑖 was found to play a significant role on 

the number of EPs. When 𝑖 approaches 𝜋, there is only one 

stable EP left, due to the dominant strength of C31 over C22 on 

the structure of the phase space. The 2nd degree and order 

harmonics largely determine the stability of the EP, while the 

higher order terms either introduce new EPs and change the 

resonance width or break the symmetry of the dynamics. 

By applying Poincaré maps, the 2-DOF Hamiltonian 

ℋ2𝑑𝑜𝑓  was then investigated. Two Hamiltonians ℋ𝑟𝑒𝑠𝑜𝑛1 

and ℋ𝑟𝑒𝑠𝑜𝑛2 were defined in this 2-DOF model and their 

locations and widths were determined numerically for 

different combinations of 𝑒 and 𝑖.  

With the overlap criteria, the extent of chaotic regions was 

qualitatively explained by the distance between the two 

resonances as well as their resonance strength. For small 𝑒 

and 𝑖 close to 180°, the dynamics of ℋ𝑟𝑒𝑠𝑜𝑛1 around the 

stable EP is hardly influenced for the situation when  

ℋ𝑟𝑒𝑠𝑜𝑛1 and ℋ𝑟𝑒𝑠𝑜𝑛2 are further apart. When 𝑖 gets further 

away from the equatorial plane, ℋ𝑟𝑒𝑠𝑜𝑛2 becomes close to 

and almost interacts with ℋ𝑟𝑒𝑠𝑜𝑛1. When the two resonances 

have an obvious overlap for 𝑖  getting close to the polar 

region, large chaos becomes apparent and new islands come 

forth in the phase space. Though the structure of the phase 
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space is largely determined by 𝑖, a large value of 𝑒 definitely 

gives rise to strong perturbations of ℋ𝑟𝑒𝑠𝑜𝑛2, which makes 

the main island distorted and the chaotic region extended. In 

addition, the mLCEs of the chaotic and regular orbits were 

calculated, from which the above conclusion was proven 

quantitatively. 

The results and analyses in this paper serve as an example 

of the relationship among resonance overlap, extent of chaos 

and strength of the perturbing terms. The 2-DOF resonant 

dynamics of other main motion resonances, e.g. 1:2, 2:3, 3:2, 

can also be investigated with the approach applied in this 

paper. 
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Appendix A 

Table A1 The primary zonal and tesseral terms contributing to 

the 1:1 resonance. 

𝑛 2 2 3 3 4 4 4 

𝑚 0 2 1 3 0 2 4 

𝑝 1 0 1 0 2 1 0 

𝑞 0 0 0 0 0 0 0 

Θ𝑛𝑚𝑝𝑞 0 2𝜎 𝜎 3𝜎 0 2𝜎 4𝜎 

 

The expressions of ℋ1 and ℋ2 are given as 
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(A.2) 

Appendix B 

Table B1 The 4th degree and order spherical harmonics of 

1996 HW1. 

1996 HW1 (all Snm terms are zero) 

C20 -1.21847×10-1 C31 -1.3964×10-2 C41 0 

C21 0 C32 0 C42 -4.258×10-3 

C22 5.8547×10-2 C33 2.547×10-3 C43 0 

C30 0 C40 3.8779×10-2 C44 5.16×10-4 
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