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    Through the approach of periodic orbits, stability of the orbital motions around uniformly rotating irregular asteroids is 

analyzed. For the planar case, studies show that the phase space structure is quite different from that of the two-body 

problem when the 2OD terms are large, and stable orbital motions interior of the 1:1 resonance generally do not exist. For 

the three-dimensional orbits, studies show that the motions with orbit inclinations close to the critical values are unstable, 

thus are able to escape from or collide with the asteroid following a non-planar route. Taking Eros as an example and 

considering higher order non-spherical terms, some extraordinary orbits are found, such as orbits with orbital plane 

co-rotating with the asteroid, orbits are “quasi-stationary” in space, and frozen orbits with argument of perigee different 

from 0, 90, 180, and 270 degrees. 
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1.  Introduction 

 

  Asteroids are remnants of the early solar system and are 

targets of many observation/search programs from both the 

ground and the space. With the success of several past space 

missions, there is a growing interest on sending new probes to 

these primitive objects, such as the two on-going missions 

Hayabusa-21) and OSIRIS-Rex2), and also some proposed or 

planned missions. 

Different major bodies in the solar system, asteroids are 

usually much smaller and irregularly-shaped. This makes their 

gravity much weaker and irregular compared with those of the 

major bodies, which cause difficulties to studying the probe’s 

orbital motion, for two problems: (1) the traditional analytical 

satellite theory based on perturbation theory converges slowly 

or fail due to the relatively large non-spherical perturbations. 

(2) the relatively small gravity makes other perturbative forces 

such as the solar radiation pressure much larger. This paper 

focuses on the first problem. 

Through the approach of periodic orbits in the asteroid’s 

body-fixed frame (which can also be viewed as resonance 

orbits in the inertial frame), we qualitatively describe how the 

phase space structure and the stability of the orbital motions 

around asteroids are affected by non-spherical terms. For the 

planar orbital motions and highly irregular asteroids, we find 

that the phase space structure is quite different from that of the 

two-body problem, and generally no stable motions interior of 

the 1:1 resonance can be found. For the three-dimensional 

motion, we find that orbits with orbit inclinations close to the 

critical values are unstable. 

To make the results of the current paper more general, most 

of the work is carried out in the 2OD gravity field. However, 

results in the current work can be used as a step stone to the 

results in the gravity field of specific asteroids. At the end of 

the work, taking the asteroid Eros and an example, and also 

considering a gravity with higher order non-spherical terms, 

some interesting periodic orbits are reported. This conference 

paper is a brief summarize of the work presented in Ref 3) and 

4). Readers who are interested in the results can find more 

details in these two references. 

 

2.  Equations of Motion 

 

  In the body-fixed frame of a uniformly rotating asteroid, the 

orbit of a small body follows 
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where na is the rotation speed of the asteroid, and V is the 

minus of the asteroid’s potential5). Truncated at the second 

order, V takes the form of 
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To attribute physical meaning to the 2OD terms 2J  and 22J , 

we use an ellipsoid shape model with three semi-axes as 𝑎 ≥

𝑏 ≥ 𝑐 and a constant density of 2.5g/cm3 for the asteroid. We 

have 
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Instead of using a value representing the size of the asteroid 

for the reference radius Re, we use the height of the 

synchronous orbit 
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which is obtained by assuming the asteroid as a particle. Eq. 

(1) admits an integral of the form 
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where C is called as the Jacobi constant. Eq. (1) also admits 

four equilibrium points outside of the asteroid, two of which 

lie at the long axis and the other two lie at the short axis. 

Viewing the equilibrium points in the inertial frame, they are 

actually orbits that are in 1:1 resonance with the asteroid’s 

rotation. 

One remark is, only the 2OD gravity of the asteroid is 

considered, although the ellipsoid shape model for the asteroid 

is taken. 

 

3.  Stability of the Planar Motion 

 

3.1.  Poincaré section 

  For the planar case, Poincaré maps serve as a useful tool to 

separate stable orbits from unstable ones. Fig. 1 shows the 

Poincaré maps for the Jacobi constant of the equilibrium point 

at the asteroid’s long axis. The asteroid has a shape parameter 

as a:b:c = 1km: 0.65km: 0.4km. The rotation period is 36h, 

30h, 24h and 20h. 

 

 

Fig. 1. Poincaré maps for a same asteroid but with different 

rotation periods. 

 

One obvious feature of Fig. 1 is that there are many resonance 

islands in Fig. 1, and these islands gradually disappear when 

the asteroid rotates faster. The centers of the resonance islands 

are actually periodic orbits in the asteroid’s body-fixed frame. 

The problem of the Poincaré maps such as the one in Fig. 1 is 

that we have to fix one Jacobi constant to generate it. If the 

Jacobi constant changes, we may have a completely different 

map. The reason is that we peer the dynamics of the system 

from different slices of the energy but not globally. On the 

contrary, we are able to globally describe how the resonance 

orbits are organized in the phase space, via the approach of 

periodic orbits in the asteroid’s body-fixed frame, even when 

the non-spherical perturbations are very large. 

3.2.  Families of periodic orbits 

  In this study, there are three kinds of periodic orbits. Two 

have member with near-circular shapes in both the asteroid’s 

body-fixed frame and the inertial frame. They are denoted as 

Family I and II in this study. The other one has members of 

eccentric orbits in the inertial frame, and is denoted as Family 

III. Family I is interior of the 1:1 resonance and Family II is 

outside of the 1:1 resonance. In the unperturbed two-body 

problem, the relation between these periodic families (we use 

the terminology “genealogy”) is shown in Fig. 2. The ordinate 

is the Jacobi constant and the abscissa is the period. 

 
Fig. 2. Genealogy between the three periodic families on the 

T-C plane for the unperturbed two-body problem. Family I are 

II are denoted as solid lines and Family III is denoted as 

dashed lines. 

 

In the presence of the 2OD terms, the genealogy is distorted 

by perturbations, as shown by Fig. 3 and Fig. 4. 

 
Fig. 3. Genealogy between periodic families for an asteroid 

with a:b:c = 1km: 0.9km: 0.8km and a rotation period of 12h. 

 
Fig. 4. Genealogy between periodic families for an asteroid 

with a:b:c = 1km: 0.6km: 0.4km and a rotation period of 12h. 

 

Comparing Fig. 2 with Fig. 3-4 shows that each resonance 

splits into two branches, but the genealogy between periodic 

families generally remain unchanged although distorted from 

that of the 2BP. This means it’s still proper to view the orbital 

motions close to the asteroid as perturbed Keplerian orbits. 

However, when the asteroid is even more elongated, the 

genealogy of periodic families is completely different from 

that of the 2BP. Fig. 5 shows only two periodic families for 

the case of a:b:c = 1km: 0.3km: 0.2km. 

 

Fig. 5. Genealogy between periodic families for an asteroid 

with a:b:c = 1km: 0.6km: 0.4km and a rotation period of 12h. 
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For clarity, many other periodic families that are also in the 

same region of the T-C plane are not shown in Fig. 5. 

Difference between Fig. 5 and Fig. 2-4 indicates that maybe it 

is no longer valid to view the orbital motions as perturbed 

Keplerian orbits anymore. 

 

3.3.  Stability analysis 

Thick lines in Fig. 3 and Fig. 4 indicate the stable orbits in 

the families. With the increase of the 2OD terms, stable region 

quickly shrinks on the T-C plane. For example, in Fig. 4, 

except some stable 2:1 resonance orbits, generally no stable 

orbits exist in each resonance. This indicates that the stable 

resonance islands in Fig. 1 no longer exists, no matter what 

the Jacobi constant is. A qualitative picture is given in Fig. 6. 

The gray ring in Fig. 6 indicates a chaotic region enveloping 

the 1:1 resonance. In this chaotic region, generally no stable 

resonance orbits exist except the 1:1 one. When the asteroid 

becomes more elongated (a) or rotates fasters, the width of 

this region increases and may eventually touches the surface 

of the asteroid. In such cases, no stable orbits interior of the 

1:1 resonance can be found. 

      

Fig. 6. Two intuitive pictures showing the process of gradual 

disappearance of stable regions interior of the 1:1 resonance. 

 

One remark is: stability of retrograde periodic orbits shows 

much better robustness than prograde periodic orbits with 

respect to non-spherical perturbations. 

 

4.  Stability of the Three-Dimensional Motion 
 

4.1.  The secular resonance 

Studies show that the problem of critical orbit inclination 

plays an important role in determining the stability of three 

-dimensional orbits. When orbits have inclinations close to the 

critical values 1cos 1 5pro

ci
  or 

retro pro

c ci i  , there is 

no secular change to the argument of periapsis  , i.e., 

0  . We view the problem in this work as the secular 

resonance which happens between the longitude of the 

ascending node   and the angle    , i.e., 

0    . Since periodic orbits are resonance orbits in 

the inertial frame, when the three-dimensional periodic orbits 

have inclinations close to the critical values, the orbital 

resonance can be taken as overlapping with the secular 

resonance, and this causes chaos and instability of the 

three-dimensional motion. Similar phenomena have been 

observed in many problems of celestial mechanics6-8), 

including the perturbed motions by the non- spherical gravity 

terms9-10). 

The mechanism is qualitatively described as follows. Take 

the 2:1 resonance as an example. Actually there are a series of 

resonance angle for this resonance, as given by Eq. (6). The 

difference between these resonance angles is the coefficients 

of the argument of periapsis. Denote these resonance angles as 

sub-resonances. The distance between these sub-resonances is 

denoted as a . 
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we have 0a   when 0 , which happens when the 

orbit inclinations are close to the critical values. This causes 

the overlap of different sub-resonances and the chaos of this 

resonance, a process as illustrated by Fig. 7. In the left frame, 

this orbital resonance does not overlap with nearby resonances. 

As a result, even the orbital motion is chaotic within this 

resonance, the chaos is not global, i.e., the orbit does not 

escape. However, if this resonance also overlaps with nearby 

resonances, then the motion becomes globally chaotic and 

may eventually escape this resonance, as shown by the right 

frame of Fig. 7. 

 

Fig. 7. Two intuitive pictures showing overlap between sub- 

resonances (left) and different resonances (right). 

 

4.2.  Families of periodic orbits 

In the unperturbed two-body problem, three-dimensional 

periodic families connect vertical bifurcation orbits of Family 

III with those of Family I or Family II. An intuitive picture is 

shown in Fig. 8. 

 

Fig. 8. An illustrative picture showing the genealogy between 

the three-dimensional periodic families (denoted as “vertical 

(m-2n:n) resonant family” or “n:(m-n) resonant family” in the 

figure), and Family I, II, and III. 
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However, in the presence of the 2OD terms, this genealogy 

may be broken apart by families of eccentric frozen orbits. In 

the perturbed case, each three-dimensional periodic family 

splits into two branches. We only take the 2:1 resonance as 

example. Fig. 9 shows the genealogy of this family for three 

asteroids with shape parameters a:b:c as 1km: 0.99km: 0.4km 

(a, b), 1km: 0.95km: 0.4km (c, d), and 1km: 0.6km: 0.4km (e, 

f). We can see that the T-C curves of these three-dimensional 

periodic families are distorted from vertical lines on the T-C 

plane by the 2OD terms. Moreover, each branch of the 

three-dimensional periodic family is broken apart by families 

of eccentric frozen orbits, such as the ones enveloped in the 

dashed squares in Fig. 9a. 

 

Fig. 9. Genealogy of three-dimensional 2:1 resonance family 

in the presence of 2OD terms. The upper and lower three 

frames are for different branches of the 2:1 resonance. From 

left to right, the frames correspond to asteroids with different 

shapes. 

 

One remark is that the genealogy of the three-dimensional 

periodic families is not always broken apart by families of 

eccentric frozen orbits. Shown in Fig. 9 is just a particular 

example for the 2:1 resonance. For other resonances, there are 

cases where one branch is broken apart and the other branch 

remains a single family, or cases where both branches remain 

a single family. Moreover, the genealogy of the periodic 

families may change for different combinations of the J2 and 

J22 terms. 

4.3.  Stability analysis 

In section 4.1, stability property of spatial orbital motions is 

already introduced. In this section, we take specific examples 

to support the arguments in section 4.1. 

(1) In the case of Fig. 9a and b where the J22 term of the 

asteroid is very small, the stable segment on the T-C 

curve with orbit inclinations between 
pro

ci  and 
retro

ci  

exists. Due to the extremely small J22 term, the width of 

the sub-resonances of the 2:1 resonance which is directly 

proportional to J22 is small. They do not overlap with 

each other, and allows stable regions far away from 
pro

ci  

and 
retro

ci  exist. Fig. 10a shows the time history curve of 

the resonance angles for two stable orbits denoted as 

crosses in Fig. 9a and b. 

(2) In the case of Fig. 9c and d where the J22 term of the 

asteroid becomes larger, starting from both ends, the 

stable region between 
pro

ci  and 
retro

ci  shrinks. Fig. 10b 

shows the time history curve of one orbit which was 

stable in Fig. 9b but now becomes unstable due to the 

influence of the secular resonance. This orbit is chaotic 

and exhibits large vibrations in its orbit eccentricity, but 

this orbit does not escape. This corresponds to the case 

shown by the left frame of Fig. 7. 

(3) In the case of Fig. 9e and f where the J22 term of the 

asteroid is much larger, the stable region between 
pro

ci  

and 
retro

ci  completely disappears. In this case, not only 

the sub-resonances of the 2:1 one overlap with each other, 

but also the 2:1 resonance overlaps with nearby ones and 

cause the global instability of the orbits. One example is 

shown in Fig. 10c, with its positions on the T-C curve 

denoted as a cross in Fig. 9f. In Fig. 10c, two curves are 

given. One is for the orbit eccentricity, which shows that 

the eventual fate of the orbit is to escape. The other is for 

the orbit inclination, which indicates that the escape route 

follows an orbit inclination close to 
pro

ci . 

 

Fig. 10. Left: time history curve of two stable orbits denoted 

as crosses in Fig. 9a and b; Middle: time history curve of the 

orbit eccentricity for an unstable orbit denoted as a cross in 

Fig. 9d; Right: time history of the orbit eccentricity and the 

orbit inclination for an unstable orbit denoted as a cross in Fig. 

9f. 

 

5.  A Case Study 

 

Above work is carried out in the 2OD gravity. The results 

can help us qualitatively describe the global dynamics around 

asteroids, but generally can be directly applied to specific 

asteroids. However, as already being stated previously, results 

of the 2OD gravity can serve as good initial seeds to be 

continued to the results for specific asteroids. In this section, 

we take the asteroid Eros as an example to show some results. 

Details of the periodic families are omitted here. Readers can 

found them in Refs 3) and 4). We only report some interesting 

periodic orbits found here. The results are presented in the 4th 

order and 4th degree gravity of Eros. 

5.1.  Out-of-plane stable orbits co-rotating with asteroid 

We find that there are stable out-of-plane periodic orbits 

with their orbital plane co-rotating with Eros, such as the two 

ones shown in Fig. 11a. Both orbits are retrograde. For fast 

rotating irregular asteroids such as Eros, these orbits are of 

no practical uses because they already collide with the 

asteroid’s surface. However, for slowly rotating asteroids, 

these stable out-of-plane orbits are of practical uses because 

they are outside the asteroid. For example, if we artificially 

set Eros’s rotation period as 48h, Fig. 11b shows two such 

example orbits. Existence of these periodic orbits is due to 

the secular resonance an   which happens between the 

precession rate of the orbital ascending node and the 

asteroid’s rotation. These orbits are interesting because they 

can be used to repeatedly visit certain regions of the asteroid. 
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Fig. 11. Left: two stable out-of-plane orbits around Eros when 

its rotation period takes the current true value of 5.27h. Right: 

two stable out-of-plane orbits when Eros’s rotation period is 

set as 48h. 

 

5.2.  Quasi-stationary orbits 

We also find periodic orbits that are not only in the 

resonance an   as the one in Fig. 11, but also in the 

resonance 0M      . This means that the mean 

orbital frequency of the orbit is zero, which also means that 

the orbit does not circle the asteroid in one period. So viewing 

in the inertial frame, the orbit is “quasi-stationary”. Fig. 12 

shows such an example in the 4th order and 4th degree gravity 

of Eros. We notice that part of the orbits lies within the 

Brillouin sphere where the 4th order and 4th degree gravity is 

no longer valid. This makes the results in Fig. 12 doubtful. 

Existence of such orbits in the asteroid’s real gravity still 

requires further work. 

 

Fig. 12 A “quasi-stationary” orbit around the asteroid Eros 

 

6.  Conclusion 

 

This paper describes the global dynamics around uniformly 

rotating irregular asteroids, in a 2OD gravity, through the 

approach of periodic orbits, in the body-fixed frame of the 

asteroid. For the planar case, studies show that for extremely 

elongated asteroids, the phase space structure is different from 

that of the 2BP, indicating that it is no longer to treat the 

orbital motion close to the asteroid as Keplerian orbits. For 

highly elongated asteroids, orbital motions interior of the 1:1 

resonance are generally unstable. For three-dimensional orbits, 

their stability is influenced by the secular resonance. Near 

circular orbits with orbit inclinations close to critical values 

are generally unstable. 
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