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In this paper, we propose several methods to find combinations of trajectories that are easy to match from noncontiguous trajectories 

around the lunar gravity assist without optimization calculation by defining a new trajectory called a virtual hyperbola. The two given 

perilune vectors are propagated in different ways in 2-body and N-body, and calculated Δv between the trajectory to tie and legs. The 

usefulness of the methods is confirmed from trade-off table about the correlation between the cost of Δv in the approach methods and 

the Δv of the optimization calculation, and computation time. As a result, it was possible to establish the methods with normal 

correlation and shortening calculation time. 

Key Words: Matching, Gravity Assist, Lunar, Trajectory Design, Patched-Hyperbolas 

 

1.  Introduction 

In the patched-conic approximation model, a multiple 

gravity-assist trajectory is divided into various 

planet-to-planet (or moon-to-moon) legs connected by 

conic arcs. To find valid trajectories for gravity assist, we 

search for incoming and outgoing legs which match their 

hyperbolic excessive velocities. The swing-by body is 

often assumed to have a zero sphere of influence and the 

effect of its gravity is regarded as an instantaneous 

change to the trajectory. However in the high fidelity 

model, we have to convert the patched conic orbits into a 

continuous, N-body integrated trajectory. In our test case, 

we found out that just by matching the V-infinity of the 

incoming and outgoing legs maybe not be sufficient or it 

might require a high additional maneuver. To save time 

in the conversion and to reduce the added ΔV penalty 

cost (Optimization cost), the purpose of this paper is to 

find a way of selecting good matching trajectories for 

lunar gravity assists. Three approaches are applied to 

evaluate the two sets of incoming and outgoing legs.The 

relationship between Δv calculated in these approaches 

and Δv when optimizing is evaluated and if a strong 

correlation is found, it can be considered to be useful for 

the approach methods. The correlation is judged by 

whether it is a linear relation or not. In addition, when 

data that does not conform to the correlation is obtained, 

if the data is located below the correlation straight line, it 

means that the data generates negative correlation. 

Therefore, it is assumed that the case where it is located 

above is evaluated as good. A trade-off table of the 

approach methods and optimization calculation is made 

using the above two and calculation time as evaluation 

items. The three methods are divided in the case of the 

2-body problem and the N-body problem and the six 

pattern methods are evaluated. This results is applied to 

the future JAXA missions EQUULEUS, DESTINY＋that 

use lunar gravity assists. 

 

2.  Model 

"Virtual hyperbola" and three approach methods used in 

this paper are introduced. 

2.1  Virtual Hyperbola 

In this paper, virtual hyperbolic trajectory is defined. 

At first, the pre-given perilune vector of the incoming 

trajectory is transfered to the infinity backward and the  

perilune vector of the incoming trajectory is transfered to 

the infinity forward. The transfering to infinity is 

generated by setting the true anomaly to Equation (1). 

                                𝑇∞ = cos−1 (−
1

𝑒
)                       (1) 

The normal vector of the orbital plane defined by the 

velocity vectors at the two infinities is calculated as 

shown in Equation (2).  

                               𝒉̂ =
𝑽𝑖𝑛 × 𝑽𝑜𝑢𝑡

|𝑽𝑖𝑛 × 𝑽𝑜𝑢𝑡|
                       (2) 

The turn angle by the swing-by can be calculated as 

shown in Equation (3). 

             φ = cos−1 (
𝑽𝑖𝑛 ∙ 𝑽𝑜𝑢𝑡

|𝑽𝑖𝑛||𝑽𝑜𝑢𝑡|
)                 (3) 

１

（

１

） 



2 

 

Also, using the Equation (3), the radius of the moon at  

swing-by is obtained as shown in Equation (4). 

     𝑟 = (
𝜇

|𝑽𝑖𝑛||𝑽𝑜𝑢𝑡|
) (

1

sin(𝜑/2)
− 1)      (4) 

Since the unit vector is obtained from Equation (5), the 

perilune position vector can be defined as Equation (6). 

                    𝑹̂𝑝 =
𝑽𝑖𝑛 − 𝑽𝑜𝑢𝑡

|𝑽𝑖𝑛 − 𝑽𝑜𝑢𝑡|
                        (5) 

                                𝑹𝑝 = 𝑟𝑹̂𝑝                            (6) 

The unit vector of the perilune velocity vector can be 

obtained from the Equation (2) and (5) as in Equation 

(7). 

                              𝑽̂𝑝 = 𝒉̂ × 𝑹̂𝑝                        (7) 

Since the orbital energy is preserved, the magnitude of 

the perilune velocity vector can be obtained as shown in 

Equation (8), so the moon velocity vector can be defined 

as Equation (9). 

                        𝑉𝑝 = √|𝑽𝑖𝑛|2 +
2𝜇

𝑟
                     (8) 

                               𝑽𝑝 = 𝑉𝑝𝑽̂𝑝                              (9) 

Also, the time of this perilune vector is defined by the 

Equation (10) from the time of the incoming orbit and 

the outgoing orbit. 

                                  𝑡𝑝 =
𝑡𝑓 + 𝑡𝑏

2
                         (10) 

 

Fig. 1. Virtual Hyperbola 

 

2.2  Approach Methods 

The three approach methods for evaluating combination 

of trajectories that are easy to match are introduced. 

2.2.1  Approach Method 1 

 The perilune vector of the virtual hyperbola is 

transfered to backward for N-days(N-days is optional.) 

and the perilune vector of the outgoing trajectory is 

transfered to backward for N-days. Computing the ΔV 

transfer cost through the trajectory to tie between an 

outgoing leg and an opposite virtual hyperbola leg. 

 

Fig. 2. Approach Method 1 

 

2.2.2  Approach Method 2 

The perilune vector of the incoming trajectory is 

transfered to backward for N-days and the perilune 

vector of the virtual hyperbola is transfered to backward 

for N-days. And like Approach Metho1, the perilune 

vector of the virtual hyperbola is transfered to backward 

for N-days(N-days is optional.) and the perilune vector 

of the outgoing trajectory is transfered to backward for 

N-days. Computing the total ΔV transfer cost through the 

trajectory to tie between an incoming leg and an opposite 

virtual hyperbola leg, and between an outgoing leg and 

an opposite virtual hyperbola leg. 

 

Fig. 3. Approach Method 2 

 

2.2.3  Approach Method 3 

The perilune vector of the virtual hyperbola is 

transfered to backward and forward for N-days. The 

perilune vector of the incoming trajectory is transfered to 

backward for n-days(n-days is optional.) and the perilune 

vector of the outgoing trajectory is transfered to forward 

for n-days. Computing the total ΔV transfer cost through 
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the trajectory to tie between an incoming leg and a 

virtual hyperbola leg of the same side, and between an 

outgoing leg and a virtual hyperbola leg of the same side. 

 

 

Fig. 4. Approach Method 3 

 

2.3  Trajectory Propagation Methods 

In this paper, a method based on 2-body and N- body is 

used. In case of 2-body, suppose that the spacecraft is 

affected only by the influence of gravity from the moon, 

and when tying the legs, use the Lambert problem and 

solve the boundary value problem. In case of N-body, 

suppose that the spacecraft is affected by the gravity of 

all the planets of the Sun, Solar System and the moon, 

and we use the Single Shooting method to solve the 

boundary value problem. 

 

2.4  Evaluation Criteria 

2.4.1  Evaluation1 

Correlation coefficients are used to evaluate whether 

there is a linear correlation. Assuming that the data of the 

cost of Δv by the approach method is x, the data of the 

cost of Δv by optimization is y and the average value of 

them is 𝑥̅，𝑦̅ , then the correlation coefficient r is 

defined as in Equation (11). 

             𝑟 =
∑ (𝑥𝑖 − 𝑥̅𝑖)

𝑛
𝑖=1 (𝑦𝑖 − 𝑦̅𝑖)

√{∑ (𝑥𝑖 − 𝑥̅𝑖)
2𝑛

𝑖=1 }{∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1 }
      (11) 

n is the number of elements of data. r is calculated 

between −1 ≤ 𝑟 ≤ 1, it can be determined that there is 

a positive correlation if it increases exponentially, a 

negative correlation if it increases negative, and there is 

no correlation as it is close to zero, In this paper we aim 

to have a positive correlation. Refer to Table 1. as the 

evaluation criteria of the values. 

Table 1. Correlation evaluation 

𝑟 ≤ 0.2 No correlation 

0.2 < 𝑟 ≤ 0.4 Weak correlation 

0.4 < 𝑟 ≤ 0.7 Normal correlation 

0.7 < 𝑟 ≤ 1.0 Strong correlation 

2.4.2  Evaluation2 

A linear approximation line is calculated from the data 

of the cost of Δv by optimization using the least squares 

method and evaluated from the line at the position of 

data outside the range of standard deviation ± σ given by 

Equation (12). 

                               𝜎 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅𝑖)

2

𝑛

𝑖=1

                    (12) 

 

3.  Results 

The results on three approaches (2-body, N-body) are 

indicated. * indicates the relationship between cost of Δv 

by the approach method and Δv by optimization. The 

solid line is the least squares line calculated from all the 

data, the dotted line at the top of the solid line is +𝜎 

from the least squares line, and the dotted line at the 

bottom is −𝜎. 

3.1  Approach Method 1 (2-body) 

 

Fig. 5. ∆𝑣 cost and least squares line  

Approach Method 1 (2-body) 

 

Fig. 6. ∆𝑣 cost close up Approach Method 1 (2-body) 

Correlation coefficient : r = -0.2358 

Since there is a negative correlation, there is no 

correlation between cost of Δv of the approach method 

and Δv of optimization. 
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3.2  Approach Method 2 (2-body) 

 

Fig. 7. ∆𝑣 cost and least squares line Approach Method 2 (2-body) 

 

Fig. 8. ∆𝑣 cost close up Approach Method 2 (2-body) 

Correlation coefficient : r = 0.4443 

It can be seen that there is an ordinary correlation from 

the correlation coefficient. There is one piece of data 

apart from the standard deviation, but it is thought that it 

is good as a tendency because it is located at the upper 

part and has a positive correlation. 

 

3.3  Approach Method 3 (2-body) 

 

Fig. 9. ∆𝑣 cost and least squares line Approach Method 3 (2-body) 

 

Fig. 10. ∆𝑣 cost close up(Method3 2-body) 

Correlation coefficient : r = 0.2933 

It can be read that there is a weak correlation from the 

correlation coefficient. There is also one point apart from 

the standard deviation here, but it is located at the upper 

part and is thought to be a tendency because it has a 

positive correlation. 

 

3.4  Approach Method 1 (N-body) 

 

Fig. 11. ∆𝑣 cost and least squares line 

Approach Method 1 (N-body) 

 

Fig. 12. ∆𝑣 cost close up Approach Method 1 (N-body) 

Correlation coefficient : r = -0.0384 

 Since there is a negative correlation, there is no 

correlation between cost of Δv of the approach method 

and Δv of optimization. 
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3.5  Approach Method 2 (N-body) 

 

Fig. 13. ∆𝑣 cost and least squares line 

Approach Method 2 (N-body) 

 

Fig. 14. ∆𝑣 cost close up Approach Method 2 (N-body) 

Correlation coefficient : r = 0.5765 

It can be seen that there is an ordinary correlation from 

the correlation coefficient. There are four points apart 

from the standard deviation, including those on the line, 

but there are both the one located at the upper part and 

the one located at the lower part, and it is difficult to 

estimate the influence on the correlation. 

 

3.6  Approach Method 3 (N-body) 

 

Fig. 14. ∆𝑣 cost and least squares line 

Approach Method 3 (N-body) 

 

Fig. 15. ∆𝑣 cost close up Approach Method 3 (N-body) 

Correlation coefficient : r = -0.7565 

Since there is a strong negative correlation, there is no 

correlation between cost of Δv of the approach method 

and Δv of optimization. 

 

3.7  Trade-off table 

The results 3.1-3.6 are summarized in Table 2 as a 

trade-off table. Evaluation items are Evaluation1 

indicating correlation, Evaluation2 indicating data 

deviating from correlation and calculation time. 

Especially focusing on Evaluation 1 and calculation time, 

evaluate comprehensively. 

Table 2(a). Trade-off table 

 Approach1 

2-body 

Approach2 

2-body 

Approach3 

2-body 

Evaluation1 × △ △ 

Evaluation2 − ◎ ◎ 

Computation 

time 
◎ ◎ ◎ 

Comprehensive 

judgment 
× 〇 △ 

Table 2(b). Trade-off table 

Approach1 

N-body 

Approach2 

N-body 

Approach3 

N-body 

Optimization 

× 〇 × ◎ 

− 〇 − − 

〇 △ 〇 × 

× 〇 × 〇 
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4.  Conclusion 

In this paper, we propose a new approach and analyze it 

to find combinations of trajectories that are easy to 

match without optimization. In the approach methods, 

we focused on that there is a strong correlation between 

the Δv when optimized and the cost of Δv in the 

approach methods, and how much calculation time can 

be shortened, and made a trade-off table including 

optimization calculation. As a result, it turned out that 

the  Approach Method 2 (2-body, N-body) is good. 

However, it also shows that the correlation is insufficient. 

In the future, we will confirm the correlation further by 

changing the transfering time and increasing the number 

of data points from 10 pieces. 
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