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Rendezvous missions to small bodies, such as asteroids and comets, have been of interest in recent years. The motion of a
spacecraft in the proximity of a small body is significantly perturbed primarily due to the irregular shape of the small body and solar
radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motion has a significant
effect that cannot be neglected. In addition, when the exposed surface of a spacecraft is deformed, the effect of solar radiation pressure
completely differs from that of a spacecraft that has an ideal flat surface. In particular, this deformation effect is dominant for a solar
sail spacecraft having a huge and flexible membrane. However, natural orbit-attitude coupled dynamics of solar sail spacecraft around
small bodies that are stationary in both the orbital and attitude motions have yet to be observed. The present study therefore investigates
the natural coupled motion of solar sail spacecraft that involves both a Sun-synchronous orbit and a Sun-tracking attitude motion. This
orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without
requiring active control. Thus, the proposed method can reduce the use of orbit and attitude control systems, which reduces the weight
of a spacecraft and prolongs the life time of the mission. The present study investigates the theory behind achieving Sun-synchronous
orbits with Sun-tracking attitude motion for a solar sail spacecraft. Moreover, several simulations are performed, assuming a Jovian
Trojan asteroid exploration mission with solar sail spacecraft (which is scheduled to be launched by JAXA in the early 2020s). It is
thereby demonstrated that this novel orbit-attitude coupled motion is feasible and useful for small-body missions.
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1. Introduction

Small celestial bodies, such as asteroids and comets, often
retain information on the dynamical evolution of the solar sys-
tem. Thus, rendezvous missions to small bodies play a key role
in understanding our solar system. In such missions, a space-
craft faces unique difficulties from the perspective of dynamics
around the target body. First, the gravity of a small body is very
weak, and therefore, the motion of a spacecraft is perturbed by
the solar radiation pressure (SRP). In addition, irregular grav-
itational field around a small body also perturbs the motion of
a spacecraft. Because of these perturbations, the dynamics of
spacecraft around small bodies is complex and completely dif-
fers from that around planets.

This intriguing environment around small bodies has been
investigated in many previous studies for both orbital and at-
titude dynamics. The orbital motion subject to SRP perturba-
tion and gravity irregularity exhibits significant changes in or-
bital elements.1) One of the proposed solutions to this problem
is implementing Sun-synchronous frozen orbits, for which the
orbital geometries are constant with respect to the Sun, as de-
picted in Fig. 1(a).2–5) On the other hand, the attitude dynamics
around small bodies is unique in that it can be predominantly
affected by gravity gradient (GG) torque due to the higher or-
der gravitational terms.6, 7) It has been revealed that the stability
behavior of the attitude motion is dependent on the shape of a
small body.8, 9) In addition to the GG torque, the SRP torque can
also exert an influence on the attitude of a spacecraft, resulting
in more complex dynamics.10)

Although the studies described above analyze the orbital mo-
tion and the attitude motion of a spacecraft separately, these
motions are not independent in reality. For example, GG torque

varies depending on the position of a spacecraft about a gravi-
tational mass; at the same time, the gravitational force and the
SRP force are dependent on the attitude state when the space-
craft is modeled as a rigid body.12) Recent studies have dis-
covered that such orbit-attitude coupling effect significantly im-
pacts the motion of a spacecraft under the strongly perturbed
environment in the vicinity of a small body.13–15) These dy-
namical features around small bodies lead to the frequent use
of orbit and attitude control systems, such as thrusters and reac-
tion wheels.

To circumvent this problem, the authors have recently identi-
fied the natural orbit-attitude coupled motion that involves both
a Sun-synchronous orbit and a Sun-tracking attitude motion, as
illustrated in Fig. 1.11) The proposed method enables a space-
craft to maintain its orbital geometry and attitude state with re-
spect to the Sun without requiring any active control. For this

(a) Sun-synchronous orbit (b) Sun-tracking attitude
motion

Fig. 1. Sun-synchronous orbit and Sun-tracking attitude motion.11)



Fig. 2. JAXA’s solar power sail for the Trojan asteroid mission.18)

reason, the implementation of a Sun-synchronous orbit with a
Sun-tracking attitude motion is advantageous for solar power
generation, thermal design, and optical observation. Besides,
it can reduce the use of the orbit and attitude control systems,
thereby reducing the mass of a spacecraft, prolonging the life
time of the mission, and reducing the operational workload.

In particular, this type of orbit-attitude coupled motion offers
a major advantage to a solar sail spacecraft having a huge mem-
brane, because conventional reaction control systems require
large resources for a spacecraft with a large moment of inertia.
The authors’ previous research on the coupled orbit-attitude dy-
namics around small bodies was designed for a spacecraft with
an ideal flat surface.11) However, when the membrane of a so-
lar sail spacecraft is deformed, the effect of SRP differs from
that of a spacecraft that has an ideal flat surface.16) Therefore,
this study extends the theories in our previous paper by taking
into account the deformation of the surface exposed to the solar
radiation. The extended theories are also applicable for a space-
craft mounting solar array paddles with gimbal mechanism that
cannot be modeled as a single flat plate. The novel dynamics
presented in this paper exhibits unique and variable character-
istics.

The present study was designed to develop general theories
of coupled orbit-attitude motion of solar sail spacecraft around
small bodies. First, the orbital motion is modeled as Lagrange
planetary equations, and the solutions of Sun-synchronous or-
bits are analytically solved. Next, the attitude motion is mod-
eled as linearized Euler equations, and conditions required to
achieve Sun-tracking motion are derived. The analyses of atti-
tude motion consider the SRP effect of non-flat surfaces that is
not taken into account in our previous research. Last, the orbital
and attitude motions are propagated by numerical integration on
the basis of non-linear equations of motion including the orbit-
attitude coupling effect. The analytical and numerical analyses
are performed for the Jovian Trojan asteroid exploration mis-
sion with a solar power sail, which is scheduled to be launched
by JAXA in the early 2020s.17, 18) It is thereby demonstrated
that the proposed method is feasible for real missions.

2. Dynamics model

2.1. Spacecraft and small body model
The physical parameters for a spacecraft used in this paper

are given in Table 1. These parameters are based on JAXA’s
solar power sail for the Trojan asteroid mission. Throughout
this paper, the z axis of the spacecraft body-fixed frame is re-
garded as the axis that should be directed toward the direction

Table 1. Spacecraft parameters.

Item Symbol Value
Mass m 1200 kg

Projected area A 3000 m2

Moments of Inertia Ix, Iy 8.24 × 104 kg ·m2

Iz 1.64 × 105 kg ·m2

Optical constants Cs,Cd,Ca 0.2, 0.1, 0.7

Table 2. Small body parameters.

Item Symbol Value
Distance from the Sun d 5.2 AU

Mean diameter 20 km
Axis ratio Ra : Rb : Rc 1.4 : 1.2 : 1
Density 2.0 g/cm3

Rotation period Trot 10 hr

of the Sun, that is, the normal direction of the surface where
solar cells are mounted. Cs, Cd, and Ca are optical constants
of the spacecraft surface that correspond to the modes of spec-
ular reflection, diffuse reflection, and absorption, respectively,
which satisfy Cs + Cd + Ca = 1.

The physical parameters for a small body are given in Ta-
ble 2. This study assumes a hypothetical Trojan asteroid that is
moving in a circular orbit, with a radius of 5.2 AU, around the
Sun. The body is modeled as a homogeneous triaxial ellipsoid,
with a mean diameter of 20 km, rotating uniformly about the
shortest axis. This rotation axis is assumed to be perpendicular
to the ecliptic plane. The rotation axis can take any direction
in general; however, it has been observed that near Earth as-
teroids and main belt asteroids with small diameters (≤30 km)
are more likely to to have a small obliquity.5, 19, 20) Although
detailed discussions are required to directly apply the theory to
Trojan asteroids, this assumption regarding the rotation axis is
made for initial analyses in this study.
2.2. Coordinate system

To describe the orbital and attitude motions of a spacecraft,
six different coordinate systems are used, as shown in Fig. 3.

Inertial coordinate: (xI , yI , zI) A right-handed Cartesian co-
ordinate system that is fixed in the inertial space.

Hill coordinate: (xH , yH , zH) The origin is at the center of a
small body. The x axis points in the anti-Sun direction, the z
axis is aligned with the angular velocity vector of the orbit of
the small body around the Sun, and the y axis completes a right-
handed Cartesian coordinate system.

Small-body-fixed coordinate: (xS B, yS B, zS B) The x, y, and z
axes are fixed on the longest, intermediate, and shortest axis,
respectively, of the small body. The z axis is identical to zH

because of the assumption given in the previous subsection.

Sun-pointing coordinate: (xS P, yS P, zS P) The origin is at the
center of the spacecraft. The z axis points in the Sun direction,
the x axis is parallel to the plane formed by xH and yH , and the
y axis completes a right-handed Cartesian coordinate system.

Spacecraft-fixed coordinate: (xS C , yS C , zS C) The origin is at
the center of the spacecraft. All axes are fixed on the spacecraft
and are aligned along the principal directions.



Spin-free coordinate: (xS F , yS F , zS F) The origin is at the cen-
ter of the spacecraft. The z axis is identical to zS C , the x axis
is parallel to the plane formed by xS P and yS P, and the y axis
completes a right-handed Cartesian coordinate system.

From these definitions, the attitude of the spacecraft can be
expressed by Euler angles (θ, φ, ψ), considering a 2-1-3 rotation
sequence from the Sun-pointing coordinate to the spacecraft-
fixed coordinate. Because the distance between the small body
and the spacecraft is sufficiently smaller than that between the
Sun and the small body, θ and φ can be regarded as in-plane and
out-of-plane Sun angles with respect to the ecliptic plane.

Let Au denote a 3-dimensional vector in an arbitrary A-
coordinate system, and let BCA denote the rotational transfor-
mation matrix from an A-coordinate to an B-coordinate system.
Then, the rotational coordinate transformation for the vector is
expressed as Bu = BCA

Au. The rotational coordinate transfor-
mation matrices between some of the coordinate systems are
given in the following paragraphs. Here, the rotational trans-
formation matrices about the x, y, and z axes by an angle ϑ are
denoted as Rx(ϑ), Ry(ϑ), and Rz(ϑ).

When the rotation angle of a small body with respect to the
Hill coordinate is denoted by θrot, as shown in Fig. 3, the ro-
tational transformation from the Hill coordinate to the small-
body-fixed coordinate is given by the equation below.

S BCH = Rz(θrot) (1)

Let (x, y, z) denote the position of the spacecraft in terms of the
Hill coordinate, and d denote the distance between the Sun and
a small body. Because x, y, z � d holds in the proximity of the
small body, the rotational transformation from the Hill coordi-
nate to the Sun-pointing coordinate is given by the following
equation:

S PCH ' Rx

(
−
π

2

)
Rz

(
π

2

)
(2)

Fig. 3. Coordinate systems.

Considering a 2-1-3 rotation sequence with a rotation an-
gle set of (θ, φ, 0), the rotational transformation from the Sun-
pointing coordinate to the spin-free coordinate is expressed as
follows:

S FCS P = Rx(φ)Ry(θ) (3)

On the other hand, a 2-1-3 rotation sequence with a rotation an-
gle set of (θ, φ, ψ) corresponds to the rotational transformation
from the Sun-pointing coordinate to the spacecraft-fixed coor-
dinate, which is given by the following equations:

S CCS F = Rz(ψ) (4)
S CCS P = S CCS F

S FCS P = Rz(ψ)Rx(φ)Ry(θ) (5)

2.3. Gravity model
The gravity of a small body is calculated based on an triaxial

ellipsoid model. Let UG,C00 , UG,C2k , and UG,C4k denote the gravi-
tational potential of a mass element due to the zeroth-, second-,
and fourth-order gravity terms; R denote the relative position
vector of a mass element with respect to the center of mass of
the small body; r denote the relative position vector of the cen-
ter of mass of the spacecraft relative to that of the small body;
and ρ denote the relative position vector of the element relative
to the center of mass of the spacecraft. The geometric relations
between the position vectors are illustrated in Fig. 4.

Considering the derivative of the gravitational potentials with
respect to R, the gravitational force and the GG torque can be
expressed by Eqs. (6) and (7).

FG =

∫
∂UG,C00

∂R
dm +

∫
∂UG,C2k

∂R
dm + m

∂UG,C4k

∂R

∣∣∣∣∣
R=r

(6)

TGG =

∫
ρ ×

∂UG,C00

∂R
dm +

∫
ρ ×

∂UG,C2k

∂R
dm (7)

These equations assume that the gravitational potential up to
the fourth order contributes to the force acting on the space-
craft, while the potential up to the second order contributes to
the torque. In Eq. (6), the spacecraft is treated as a point mass
for the calculation of the gravitational force due to the fourth-
order terms. By contrast, the shape of the spacecraft is taken
into account for the force due to the zeroth- and second-order
terms, which means that the attitude of the spacecraft exerts in-
fluence on the orbital motion, thereby causing the gravitational
coupling effect. The explicit formulations of UG,C00 , UG,C2k ,
UG,C4k , FG, and TGG are provided in our previous paper.11)

Small body

Spacecraft

Fig. 4. Position of a spacecraft relative to a small body.



3. Solar radiation pressure model

The formulations of SRP force and SRP torque acting on
a spacecraft with non-flat surfaces are derived in this sec-
tion. When the surface of a spacecraft is deformed, the ef-
fect of SRP differs from that of an ideal flat surface. One
of the most comprehensive models proposed in preceding re-
search is the Generalized Sail Model, which is applicable to
solar sail spacecraft with arbitrary shapes and optical parame-
ters.21, 22) The more simplified model has been constructed for
spinning solar sails that is referred to as the Generalized Spin-
ning Sail Model (GSSM).16) The GSSM serves as a valid model
for spacecraft with axisymmetrical shapes and spin-stabilized
spacecraft that are assumed to be axisymmetrical by applying
spin-averaging.This model has been exploited to investigate the
attitude motion of solar sail spacecraft subject to SRP torque.
In addition to the torque model, this paper derives an SRP force
model by extending the GSSM theories in order to analyze the
orbital motion as well.

3.1. Derivations of force and torque models
The SRP force dFS RP acting on a sail element dA on the

membrane is expressed by the equation below.16, 23)

dFS RP = −P(n· s){(2(n· s)Cs + B f Cd)n+ (Cd +Ca)s}dA (8)

Here, n is a unit vector normal to the sail element; s is a unit
vector pointing from the spacecraft to the Sun; B f = 2/3 is the
Lambertian coefficient; and P = P0/d2 is the SRP acting on the
surface of the spacecraft, where P0 ' 1 × 1017 kg m/s2 is the
solar flux constant.24) Note that the vector n is given such that
n · s ≥ 0 is satisfied. The sail element dA and the unit vectors
n and s are depicted in Fig. 5. Let κ1, κ2, and κ3 be defined as
follows:

κ1 = 2Cs, κ2 = B f Cd, κ3 = Cd + Ca (9)

Then, the SRP force exerted on a spacecraft is expressed by the
equation below.

FS RP =

∫
dFS RP

= FS RP,1 + FS RP,2 + FS RP,3

(10)

where

FS RP,1 ≡ −Pκ1

∫
(n · s)2ndA

FS RP,2 ≡ −Pκ2

∫
(n · s)ndA

FS RP,3 ≡ −Pκ3

∫
(n · s)s dA

(11)

In the same manner, the SRP torque can be calculated from the
following equation.

TS RP =

∫
ρ × dFS RP

= TS RP,1 + TS RP,2 + TS RP,3

(12)

Fig. 5. Sail element on the membrane of a solar sail spacecraft.

where

TS RP,1 ≡ −Pκ1

∫
ρ × (n · s)2ndA

TS RP,2 ≡ −Pκ2

∫
ρ × (n · s)ndA

TS RP,3 ≡ −Pκ3

∫
ρ × (n · s)s dA

(13)

The vectors ρ and s can be expressed in the spacecraft-fixed
coordinate by the equations below.

S Cρ =

 ρ cosσ
ρ sinσ
ζ

 , S C s =

 sx
sy
sz

 (14)

Then, the normal vector n is derived as

S C n =
∂ρ

∂ρ
×

∂ρ

ρ∂σ
=


−
∂ζ

∂ρ
cosσ +

∂ζ

ρ∂σ
sinσ

−
∂ζ

∂ρ
sinσ −

∂ζ

ρ∂σ
cosσ

1

 (15)

An arbitrary axisymmetrical or spinning spacecraft can be
reduced to an equivalent simplified model on the basis of the
following assumptions:16)

η =
∂ζ

∂ρ
= const. � 1, ξ =

∂ζ

ρ∂σ
= const. � 1,

ζ(ρ) = h + ρη, h � Rsc,

p1 = const., p2 = const., p3 = const.

(16)

Figure 6 depicts the reduced model based on the GSSM and the
physical implications of the sail parameters. The deformation
of a sail is characterized by two parameters: the outer-plane de-
formation angle η and the torsion angle ξ. Rsc is the equivalent
sail radius, which satisfies A = πR2

sc, and h is the offset of the
sail attachment from the center of mass of the spacecraft.

A sail element dA can be expressed by the equation below.

dA = ρdρdσ (17)

Then, the SRP force applied to a spacecraft is derived as follows
from Eqs. (10) and (11) by neglecting higher-order terms of η
and ξ.

S C FS RP = −
PA
2
× (2κ1sz + κ2)(η2 + ξ2)sx + 2κ3sxsz
(2κ1sz + κ2)(η2 + ξ2)sy + 2κ3sysz

2(κ1sz + κ2 + κ3sz)sz + κ3(η2 + ξ2)(s2
x + s2

y)


(18)



Fig. 6. Reduced model equivalent of an arbitrary spinning spacecraft
based on the GSSM.16)

Likewise, the SRP torque acting on a spacecraft is calculated as
follows from Eqs. (12) and (13).16)

S CTS RP =
PARsc

3
×

−(2κ1 sz + κ2 + κ3 sz)(ξsx − ηsy) + κ3 sysz

(
2η +

3h
Rsc

)
−(2κ1 sz + κ2 + κ3 sz)(ηsx + ξsy) − κ3 sx sz

(
2η +

3h
Rsc

)
2(κ1 sz + κ2)ξsz + κ3ξ(s2

x + s2
y)


(19)

Once the direction of the Sun is specified in terms of the
spacecraft-fixed coordinate, that is S C s = [sx, sy, sz]T, then the
force and torque due to SRP can be computed from Eqs. (18)
and (19). These equations indicate that the SRP force and
torque are governed by the parameters η and ξ, and the SRP
torque depends on the parameter h as well. It is to be noted
that substitution of η = ξ = 0 into Eqs. (18) and (19) yields the
SRP force and torque exerted on a spacecraft with an ideal flat
surface.
3.2. Linearization of the torque model

Assuming that Sun-tracking attitude motion is achieved and
the zS C axis is directed close to the Sun, the equations below
hold true.

sx, sy � 1 and sz ' 1 (20)

Based on this assumption, Eq.(19) is linearized as follows:

S CTS RP '
PARsc

3
×

−(2κ1 + κ2 + κ3)(ξsx − ηsy) + κ3sy

(
2η +

3h
Rsc

)
−(2κ1 + κ2 + κ3)(ηsx + ξsy) − κ3sx

(
2η +

3h
Rsc

)
2(κ1 + κ2)ξsz


(21)

=
PARsc

3

 −b2 b1 0
−b1 −b2 0

0 0 b3


 sx

sy
sz

 (22)

where

b1 = (2κ1 + κ2 + 3κ3)η + 3κ3
h

Rsc

b2 = (2κ1 + κ2 + κ3)ξ
b3 = 2(κ1 + κ2)ξ

(23)

Let a matrix B be defined as follows:

S C B =
PARsc

3

 −b2 b1 0
−b1 −b2 0

0 0 b3

 (24)

Considering the form of Eq. (22), the SRP torque acting on a
spacecraft is expressed in a general form by the linearized equa-
tion below.

TS RP ' Bs (25)

To comprehend the dynamics regarding the Sun angles θ and
φ, the following part derives the SRP torque in terms of the spin-
free coordinate system. B and s are expressed in the spin-free
coordinate as follows:

S F B = (S CCS F)T S C BS CCS F = S C B (26)

S F s = S FCS P
S Ps '

 −θφ
1

 (27)

From Eqs. (25)–(27), the SRP torque based on the GSSM is
formulated by the following equation:

S FTS RP '
PARsc

3

 b1φ + b2θ
−b2φ + b1θ

b3

 (28)

It is important to reiterate that φ and θ are assumed to be suffi-
ciently small, such that Eq. (28) is linearized with respect to φ
and θ.

4. Orbital motion

This section provides Sun-synchronous orbit solutions that
are solved by an analytical approach based on Lagrange plan-
etary equations. Although the solutions have been derived in
previous research and this part is not the contribution of the
present study, the derivation of the solutions is presented for the
sake of clarity in subsequent sections.

4.1. Lagrange planetary equations
The most predominant gravity-irregularity effect stems from

the C20 term, in general, which corresponds to the oblateness of
a gravitational mass. The orbital motion of a spacecraft subject
to SRP perturbation and the oblateness effect is expressed by
the following averaged Lagrange planetary equations:5, 11)

da
dt

= 0

de
dt

= −KS RP

√
1 − e2(sinω cos Ω + cosω sin Ω cos i)

di
dt

= −KS RP
e

√
1 − e2

cosω sin Ω sin i

dΩ

dt
= −KS RP

e
√

1 − e2
sinω sin Ω +

KJ2

(1 − e2)2 cos i − N

dω
dt

= −
KS RP

e
√

1 − e2
{(1 − e2) cosω cos Ω − sinω sin Ω cos i}

+
KJ2

(1 − e2)2

(
5
2

sin2 i − 2
)

(29)



Table 3. Parameters of the ideal Sun-synchronous orbit.

Item Symbol Value
Semi-major axis a 60 km

Eccentricity e 0.0547
Inclination i 90.91 deg

Longitude of the ascending node Ω -90 deg
Argument of periapsis ω 90 deg

Period τ 1.429 days

where (a, e, i,Ω, ω) denotes the set of orbital elements defined
in the Hill coordinate; N denotes the mean motion of a small
body; and KJ2 and KS RP are functions of the semi-major axis a,
as follows:

KJ2 =
3
2

√
µC20R2

a

a
7
2

, KS RP =
3
2
|FS RP, 0|

m

√
a
µ

(30)

Here, FS RP, 0 represents the SRP force for the case where the
Sun angles are zero. This formulation assumes that the zS C axis
of the spacecraft is constantly directed toward the Sun. FS RP, 0

is obtained from Eq. (18) by substituting sx = sy = 0 and sz = 1.
4.2. Sun-synchronous orbit solutions

Sun-synchronous frozen orbits can be achieved when all of
the derivatives of orbital elements described in Eq. (29) are
equal to zero. Several types of orbits are known to satisfy this
condition. The present study investigates one of these orbits,
called a near-polar terminator orbit, because this type of or-
bit can avoid solar eclipse and has relatively small eccentric-
ity.5) The orbital elements of near-polar terminator orbits can
be solved as follows:

a = free, e = f1(a), i = f2(a)

Ω = ±
π

2
, ω = ∓

π

2
(31)

Here, f1(a) and f2(a) are implicit functions of the semi-major
axis obtained by solving the following equations numerically:

KS RP
e

√
1 − e2

+
KJ2

(1 − e2)2 cos i − N = 0

KS RP

e
√

1 − e2
cos i −

KJ2

(1 − e2)2

(
5
2

sin2 i − 2
)

= 0
(32)

An example of a Sun-synchronous orbit around the small
body expressed in the Hill coordinate system is presented in
Fig. 7, and the corresponding orbital elements are provided in
Table 3. The semi-major axis is given as 60 km, and the ec-
centricity and inclination are solved from Eq. (32). This orbit
is solved for a spacecraft with an ideal flat surface that satis-
fies η = ξ = 0. The result demonstrates that the solution of a
Sun-synchronous orbit actually exists, even when both the SRP
perturbation and the gravity irregularity are predominant. Note
that Fig. 7 merely shows an ideal elliptic orbit that is not the
result of numerical integration.

5. Attitude motion

5.1. Linearized Euler equation
Attitude motion of a spacecraft observed in the spacecraft-

fixed or spin-free coordinate is expressed by the Euler equations
below.

I
dωS C/I

dt

∣∣∣∣∣
A

= −ωA/I × IωS C/I + T (33)

Fig. 7. Example of a Sun-synchronous orbit.

where d/dt|A represents the time derivative in an A-coordinate
system; ωA/B denotes the angular velocity vector of an A-
coordinate system relative to a B-coordinate system; T is the
sum of external torques acting on a spacecraft; and I is the mo-
ment of inertia tensor which can be expressed as follows be-
cause of the axisymmetry:

S C I =

 Ix 0 0
0 Iy 0
0 0 Iz

 , S F I =

 Ir 0 0
0 Ir 0
0 0 Iz

 (34)

where Ir ≡ Ix = Iy. Assuming that φ, θ � 1 holds, the equa-
tion of attitude motion expressed in the spin-free coordinate is
linearzed as the following equation:11) Irφ̈

Ir θ̈
IzΩ̇z

 =

 −IzΩz(θ̇ − N)
IzΩzφ̇

0

 + S FTGG + S FTS RP (35)

where S FωS C/S F = [0, 0,Ωz]T.
If the GG torque due to higher-order gravity terms is ne-

glected for simplicity, TGG can be expressed as follows, based
on Eq. (7):

TGG =
3µ
|r|5

r × Ir (36)

When a Sun-synchronous frozen orbit is achieved, position vec-
tor r is expressed explicitly as a function of the true anomaly. In
such a case, the GG torque can be averaged over one period of
the orbit around a small body as given by the equation below.11)

S FTGG =
3µ(Iz − Ir)

4a3(1 − e2)
3
2

 c1φ + c2θ + c4
c2φ + c3θ + c5

0

 (37)

where

c1 = 2(− sin2 i sin2 Ω + cos2 i), c2 = − sin 2i cos Ω

c3 = 2 sin2 i cos 2Ω, c4 = − sin 2i sin Ω, c5 = sin2 i sin 2Ω

(38)

Substitution of Eqs. (28) and (37) into Eq. (35) yields a linear
differential equation in terms of φ and θ.



5.2. Stability conditions of Sun-tracking attitude motion
The attitude motion of a spacecraft is composed of a low

frequency component called precession and a high frequency
component called nutation. In general, the time dependence of
precession is much slower than nutation. Therefore, when the
nutation motion is ignored such that only the precession motion
is considered, the change rates of φ and θ can be approximated
as constant, yielding φ̈ ' θ̈ ' 0.16) This assumption is also
valid for the case where the spacecraft is in pure rotation.10)

Then, considering the first and second components of Eq. (35),
the equation is simplified to a first-order differential equation as
follows:

IzΩz

[
θ̇
φ̇

]
=

[
IzΩzN

0

]
+

[
S FTGG,x

−S FTGG,y

]
+

[
S FTS RP,x
−S FTS RP,y

]
(39)

From Eqs. (28) and (37), Eq. (39) can be rewritten as the equa-
tion below.[

θ̇
φ̇

]
=

1
IzΩz

([
C2 C1
−C4 −C3

] [
θ
φ

]
+

[
C5 + IzΩzN
−C6

])
(40)

where

p =
PARsc

3
, q =

3µ(Iz − Ir)

4a3(1 − e2)
3
2

C1 = pb1 + qc1, C2 = pb2 + qc2, C3 = −pb2 + qc2

C4 = pb1 + qc3, C5 = qc4, C6 = qc5

(41)

The equilibrium attitude state is solved by substituting φ̇ =

θ̇ = 0 into Eq. (40), as follows:

φeq =
C2C6 −C4(C5 + IzΩzN)

C1C4 −C2C3

θeq =
−C1C6 + C3(C5 + IzΩzN)

C1C4 −C2C3

(42)

The stability of the motion around an equilibrium point is in-
vestigated on the basis of the characteristic equation below.

λ2 + αλ + β = 0 (43)

Here, λ represents the eigenvalues of the 2×2 matrix in Eq. (40),
and α and β are defined as follows:

α = −
1

IzΩz
(C2 −C3)

β =
1

(IzΩz)2 (C1C4 −C2C3)
(44)

The attitude motion exhibits stability when both of the eigenval-
ues possess non-positive real component. Thus, the necessary
and sufficient condition to achieve stability is expressed by the
two inequalities below.25)

α > 0 and β > 0 (45)

Both stable and unstable motions can be categorized into spirals
and nodes, depending on the sign of ∆ = α2−4β. Figure 8 shows
a phase plane that visualizes the classification of the modes of
attitude stability, which include center, spiral, node, and saddle.
The gray region in the figure corresponds to the stable cases.

Fig. 8. Phase plane and classification for the attitude stability.25)

6. Coupled orbit-attitude motion

6.1. Hill’s equation and Euler equation
Orbital motion is modeled by the Lagrange planetary equa-

tion in Section 4, and attitude motion is analyzed by the lin-
earized Euler equation in Section 5. Although these models
enable analytical analyses to comprehend the fundamental dy-
namics behind the complex orbit-attitude coupled system, they
are formulated with approximations that involve linearization
and averaging. Therefore, this section investigates non-linear
orbit-attitude coupled dynamics to demonstrate the validity of
the analytical theories established in the previous sections.

The orbital motion of a spacecraft in the vicinity of a small
body moving in a circular orbit around the Sun can be modeled
as Hill’s equation below.24, 26)

m

 ẍ
ÿ
z̈

 = m

 2Nẏ + 3N2x
−2Nẋ
−N2z

 + H FG + H FS RP (46)

Here, N = |ωH/I | is the mean motion of a small body. The
gravitational force H FG and the SRP force H FS RP are calcu-
lated from Eqs. (6) and (18), which incorporate the effect of the
attitude motion of a spacecraft.

On the other hand, the attitude motion is described by
Eq. (33), and the motion observed in the spacecraft-fixed co-
ordinate is given by the equation below. Ixω̇x

Iyω̇y
Izω̇z

 =

 (Iy − Iz)ωyωz
(Iz − Ix)ωxωz
(Ix − Iy)ωxωy

 + S CTGG + S CTS RP (47)

where S CωS C/I = [ωx, ωy, ωz]T. The GG torque S CTGG and the
SRP torque S CTS RP are calculated from Eqs. (7) and (19). Be-
cause the GG torque is depending on the position of the space-
craft relative to the small body, Eqs. (46) and (47) form coupled
orbit-attitude equations of motion.

Considering a 2-1-3 rotation sequence from the Sun-pointing
coordinate to the spacecraft-fixed coordinate with an Euler an-
gle set of (θ, φ, ψ), a kinematic equation that describes the re-
lationship between angular velocities and Euler angles can be
expressed as follows: φ̇

θ̇
ψ̇

 =

 ωx cosψ − ωy sinψ
(ωx sinψ + ωy cosψ) sec φ + N
(ωx sinψ + ωy cosψ) tan φ + ωz

 (48)

Here the derivation of this equation is provided in authors’ pre-
vious work.11)



6.2. Simulation results
The simulated results obtained for orbit-attitude coupled mo-

tion are provided in Figs. 9–11. These results show the cou-
pled motions of a spacecraft orbiting in the Sun-synchronous
orbit shown in Fig. 7. The simulations are performed assuming
JAXA’s solar power sail for the Trojan asteroid mission. The
spin rate of a spacecraft is given by Ωz = 20 rpd and the mo-
tions are propagated for 350 days. The simulations compare the
motions with different sail deformation parameters.

Figure 9 shows the case where a spacecraft has an ideal flat
surface (i.e. η = ξ = 0). Figure 9(a) illustrates the orbital
motion in the Hill coordinate and Fig. 9(b) depicts a visual rep-
resentation of the attitude trajectory in the φ-θ plane, where the
origin corresponds to the direction of the Sun. It can be ob-
served from Fig. 9(a) that the orbital shape and geometry re-
main constant, and thus, this orbit is a Sun-synchronous or-
bit. On the other hand, Fig. 9(b) indicates that the spacecraft
is constantly directed toward the Sun, with a slight oscillation
around the equilibrium point which is represented as the ma-
genta point. Here, the blue arrows in Fig. 9(b) represent the
torque field calculated from Eq. (40). The attitude motion ex-
hibits marginal stability and the equilibrium point is classified
as a center. This result demonstrates that a Sun-synchronous or-
bit with Sun-tracking attitude motion can actually be achieved.
Such a marginally stable Sun-tracking attitude motion has been
observed in previous research as well.11)

On the other hand, when the surface of a spacecraft is de-
formed, the orbit-attitude coupled motion shows a unique be-
havior that has not been observed in past research. Figure 10
illustrates the simulation result for a non-flat solar sail space-

(a) Orbital motion

(b) Attitude motion

Fig. 9. Orbit-attitude coupled motion, η = 0 and ξ = 0.

craft that is characterized by a deformation angle η = −0.5 deg
and a torsion angle ξ = −0.2 deg. These parameters yield
α = 2.5×10−7 /s, β = 3.2×10−12 /s2, and ∆ = −1.3×10−11 /s2;
therefore, the mode of the attitude motion is a stable spiral, ac-
cording to the phase plane presented in Fig. 8. The attitude tra-
jectory illustrated in Fig. 10(b) indeed shows a stable spiral mo-
tion, which converges to the equilibrium point. This result ver-
ifies that analytical theories agree with numerical simulations.
Here, this simulation assumes that the torque around the zS C

axis caused by SRP, which is referred to as a windmill torque,
is cancelled out by reflectivity control devices such that the spin
rate of the spacecraft remains constant.27)

Another simulation result is provided in Fig. 11. The sim-
ulation is performed with the same spacecraft and asteroid pa-
rameters as those of the case provided in Fig. 10. However,
the initial longitude of the ascending node possesses an error of
15 deg in this case. Figures 11(a) and 11(b) illustrate that both
orbital motion and attitude motion are significantly disturbed.
This observation implies that, in order to achieve a stable orbit-
attitude coupled attitude motion under the strongly perturbed
environment around a small body, it is essential to fulfill certain
initial conditions.

7. Conclusion

The present study investigated the implementation of station-
ary orbit-attitude coupled motion of solar sail spacecraft around
small bodies. First, the SRP force and torque acting on a space-
craft with non-flat surfaces has been formulated. On the basis
of this SRP model, the analytical conditions to achieve both

(a) Orbital motion

(b) Attitude motion

Fig. 10. Orbit-attitude coupled motion, η = −0.5 deg and ξ = −0.2 deg.



(a) Orbital motion

(b) Attitude motion

Fig. 11. Orbit-attitude coupled motion with initial errors.

Sun-synchronous orbits and Sun-tracking attitude motion were
successfully derived. The main contribution of this study is to
systematically analyze the stability of Sun-tracking attitude mo-
tion by introducing a phase plane. According to the phase plane
analysis, it was demonstrated that the attitude motion can be
classified into several different modes depending on the effects
of GG torque and SRP torque.

In addition to analytical analyses, numerical simulations
were also performed based on non-linear coupled orbit-attitude
equations of motion to verify the validity of the analytical the-
ories. The numerical analyses demonstrated that a spacecraft
can maintain its orbital geometry and attitude state with respect
to the Sun under a proper condition. Moreover, when the sur-
face of a sail is deformed, the attitude motion exhibits a spiral
behavior that has not been observed in our previous study on
the orbit-attitude coupled motion around small bodies. From
the analyses presented in this paper, it is concluded that the
proposed natural orbit-attitude coupled dynamics of solar sail
spacecraft is useful for small body missions.
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