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This paper provides insight into the performance of a new filtering approach for estimation of the shape of an unknown target by
means of a single LIDAR instrument mounted on a known observing spacecraft. The algorithm presented here proceeds by sequentially
processing point-cloud observations so as to solve for the deviation in the shape model’s vertices coordinates. The shape is refined by
adding degrees of freedom where measurement residuals are found to be bad. The performance of the algorithm is demonstrated on
the shape model of KW4 Alpha and Itokawa, using a very coarse a-priori. The filter was able to reconstruct the shape with a satisfying
degree of accuracy. Future work will focus on augmenting the estimated state with the relative position and attitude of the targeted
shape, in addition to relying on more realistic dynamics and observation model.

Key Words: shape determination, filtering, Lidar, observability

Nomenclature

aT b : Dot product of the RN vectors a and b
[x̃] : Matrix of the operator v 7→ x × v = [x̃]
n̂ j : j-th unit outward-pointing normal vector
Pk : Coordinate of the k-th Lidar pixel
ûk : Unit vector directing the k-th lidar ray
Vi, j : i-th vertex coordinates of the j − th facet
ρk : k-th range collected from the true shape
ρ̄k : k-th range collected from the a-priori shape
ρ̂k : k-th range collected from the corrected shape
I3 : Identity matrix of R3,3

Subscripts
k : Measurement index (k ∈ ~0,Nm − 1�)
j : Facet index ( j ∈ ~0,N f − 1�)
i : Local vertex index (i ∈ {0, 1, 2})
o : Observation time index (o ∈ ~0,Np − 1�)

1. Introduction

The development of modern batch and sequential orbit de-
termination methods kicked off during the Apollo program.1)

The first implementation of an attitude filter followed shortly
after, once the modeling of rotational dynamics improved.2) Be-
sides the development of more advanced filtering architectures,
some recent improvements in attitude determination stemmed
from the development of new attitude sets such as Modified
Rodrigues Parameters. These alternative parametrizations pro-
vide an elegant solution to attitude singularities, along with a
constraint-free structure.3) It must be noted that these early ef-
forts were concerned with the estimation of the position and
attitude state of a known spacecraft. In particular, various ob-
servation types related to angles and angle-rate of change could
be provided by start trackers or speed gyros. Those strategies
are thus not as easily applicable when in-situ measurements of
these quantities are not available.

The last 15 years have showed a new emphasis put on space-
craft autonomy. The success of advanced robotic missions such
as satellite servicing or proximity operations about small bodies
like asteroids or comets was found to be heavily dependent on

the capacity of spacecraft to operate autonomously as they carry
out their mission.4) Achieving science or engineering goals
without reducing the mission envelope thus requires spacecraft
to perform data processing and decision making without exter-
nal input. This is a textbook example of where advanced state
and parameter estimation techniques are needed. For instance,
orbital debris mitigation can only be addressed by means of au-
tonomous robotic servicing spacecraft if one was able to re-
motely determine the state, inertia, or any other relevant pa-
rameter of a non-cooperative target for which little if no apriori
information is available.5) Pioneering rendez-vous, remote in-
spection and stand-off of a servicer and a non-cooperative target
was demonstrated in 2012 in the frame of the PRISMA experi-
ment,6) using angle-only measurements provided by an optical-
camera and ground-in-the-loop processing. The final relative
separation between the two spacecraft was close to 3 kilome-
ters in average, which is too far to allow resolved observations
of the target.

Decreasing the relative distance between the target and the
observing spacecraft is thus necessary to obtain a more favor-
able observation geometry, enabling one to get insight into the
target’s rotational dynamics, inertia parameters or even shape.

The inertia estimation case is actually multifold. It covers at
least two scenarios, whether external torques are present or ab-
sent. Beginning with cases where external torques are present,
one can identify two subcases: either the torques are a conse-
quence of the target’s dynamics (maneuver, SRP,...) or the ac-
tion of an external agent (such as an inspecting spacecraft) ap-
plying a known torque to the target to as to make its inertia ten-
sor observable7)8).9) Small bodies like asteroids or comets have
also been a target of interest, because of the coupling of their ro-
tational motion with their orbit about the Sun. The example of
4179 Toutatis demonstrated how the inertia tensor could be es-
timated by means of Doppler data collected over years of obser-
vation passes, while accounting for external torques.10) Moving
on to the case where external torques are absent, or neglected, it
becomes clear from Euler’s equations that the full inertia tensor
becomes non-observable. However, it is still possible to extract
insightful results from the one-dimensional space of estimated
inertia tensors , such as the direction of the principal axes. Ele-



gant batch-like approaches such as the one developed in11) can
be utilized to estimate the inertia tensor along with the position
of the target’s center of mass in a purely torque-free manner, but
only if angular velocity measurements are available in addition
to angles.

The next step naturally consists in complementing the in-
ertia tensor of the observed target with a proper description
of its shape. This process pertains to the reconstruction of
a parametrized shape model representative of the target. The
parametrization can either be implicit or explicit. One of the
state-of-the-art of the implicit techniques is known as the Pois-
son Surface Reconstruction (PSR). It aims at reconstructing the
indicator function representative of the inside of a dense, fully-
registered point cloud.12) The quality of the reconstructed point
cloud is excellent, as the variational methods PSR relies on
are ensured to return a continuous isosurface from the source
point cloud. Such point clouds can be comprised of hundred
of millions of data points, often time collected over observa-
tion campaigns, making the global shape reconstruction a very
computationally-intensive process. Yet, they remain the method
of choice when the quality of the reconstructed shape model
is paramount, and when storage capabilities or computational
power are not a concern.

An interesting contribution relying on a more sustainable
Bayesian framework was provided by Lichter and al., in which
they performed shape, inertia and attitude parameter estimation.
The shape was parametrized implicitely using voxels.13) How-
ever, it must be noted that the observation model retained in
this study was fairly optimistic, as it was assuming that a fully-
registered point cloud was readily available from a formation of
spacecraft carrying LIDAR instruments.

A recent unifying approach relying on factor graphs was
proposed to carry out the determination of position, attitude
and shape simultaneously.14) This Bayesian framework inher-
ited from ground-based SLAM techniques was tested on the
SPHERES testbed onboard the ISS to validate this approach.
If this method appears to perform really well from an estimate
quality standpoint, it is recognized as too slow to operate real-
time due to the increasing complexity of the graph model as
more observations are accumulated. Optimal landmark track-
ing was also shown to provide a satisfying estimate of the rel-
ative state between Rosetta and 67P/Churyumov-Gerasimenko,
but this approach was relying on ground-based processing and
manually positioned landmarks.15)

It thus appears that a sequential framework able to au-
tonomously perform position, attitude, inertia and shape deter-
mination real-time does not exist yet. If these problems have
been solved independently, attempting to tackle them simulta-
neously has only been attempted by few. This paper thus aims
at exploring the theory and implementation of a framework that
we believe could fulfill this role. This framework leverages re-
cent filtering results applied to LIDAR measurements collected
by a unique instrument, to produce estimate of the aforemen-
tioned quantities on-line. Because it is one of the most daunting
issues identified in our review of the literature, this paper will
focus on the autonomous shape determination exclusively.

Fig. 1. Illustration of the uk ray intersecting with the shape at S k and the
resulting range measurement ρk .

2. Method

2.1. Shape model parametrization
As pointed out in the introduction, a number of ways exist to

represent a shape. An explicit shape parametrization by means
of vertices and triangular facets was retained in this study. This
was motivated by the relative ease with which one can formulate
a mean-square estimation framework operating on the shape
model parametrized like so. Moreover, this shape representa-
tion can easily be related to gravity field computation through a
Polyhedron Gravity Model evaluation.16)

2.2. Shape model batch update
We are assuming that our shape of interest is being observed

by a Lidar instrument collecting range measurements, following
the same notations as in Figure 1. For the purpose of shape de-
termination, a natural performance index one can seek to mini-
mize is the L2 norm of the range residuals, namely

J2 =
1

Nm

Nm−1∑
k=0

(ρk − ρ̂k)2 (1)

Writing a first-order expansion of the estimated range measure-
ment about some a-priori ρ̄k,

J2 '
1

Nm

Nm−1∑
k=0

(
ρk − ρ̄k −

∂ρ̄k

∂V
δV

)2

(2)

Introducing the prefit residuals δρk = ρk − ρ̄k and the notation
H̃k =

∂ρ̄k
∂V , the performance index gets rewritten into

J2 =
1

Nm

Nm−1∑
k=0

(
δρk − H̃kδV

)2
(3)

Setting the first partial derivative of J2 relative to δV to zero,
we obtain the so-called normal form of the filter:(

HT H
)
δV = HTδρ (4)

with

H =


H̃0
H̃1
...

H̃Nm−1

 (5)



Fig. 2. Illustration of a patch of visible facets (light blue) bounded by two
unobserved facets (light red). Observable and unobservable vertices are
highlighted using the same color code.

δρ =


δρ0
δρ1
...

δρNm−1

 (6)

It must be noted that Equation (4) cannot actually be solved,
as the matrix HT H is singular. This singularity stems from two
reasons:

1. δV contains coordinates of vertices that belong to facets
that were never seen in any of the Nm Lidar measurements.
Some components of δV are thus completely unobserv-
able.

2. Even though δV is reduced to deviations in the coordinates
of observable vertices (e.g belonging to observed facets),
it still encompasses observable deviations directions (e.g
normal to each facet) and unobservable directions (e.g tan-
gential to each facet). The latter would cause a change in
the facet’s vertices coordinates that yield no variation in
the measured range.

The first point can be taken care of by simply keeping track of
which facets were seen by the Lidar, and by only including co-
ordinates of the vertices belonging to those observable facets in
δV. Addressing the second point requires rewriting the solved-
for deviation of the l-th seen vertex in the a-priori shape δVl as
a linear combination of the normal vectors of the facets the l-
th observable vertex belongs to, thus explicitly excluding any
non-observable displacement :

δVl =
∑

j such that Vl∈ j

αl, jn̂ j (7)

where the sum can include up to three terms, since an arbitrary
displacement can be decomposed into any set of three linearly
independent vector.

The corrected normal equation thus reads

Λα = N (8)

where α holds the normal components of all the solved-for dis-
placements. The matrix N maps the now solved-for normal
component of the displacements along each normal to the devi-
ation in the coordinates of the observable vertices. Note that for
computational efficiency, the information matrix and the normal
matrix are computed in the following way:

Λ = (HN)T (HN) =

Nm−1∑
k=0

(
H̃kN

)T (
H̃kN

)
(9)

N = (HN)T δρ =

Nm−1∑
k=0

NT H̃T
k δρk (10)

A damping term was finally added to the information matrix
in the form of

Λ′ = Λ + βI (11)

where β = 10. This procedure effectively lowers the magnitude
of the α and helps alleviating the linearization error inherent to
this first-order filter.

For the sake of illustration, Figure 2 shows a set of observed
and unobserved facets. Only the vertices belonging to at least
one observed facet are themselves observable. Assuming that
δV holds the deviations in the coordinates of V0, V2, V3, V4 and
V5 in this order, the N matrix corresponding to Figure 2 would
read

N =


n̂1 n̂2 n̂3 03 03 03 03 03 03
03 03 03 n̂1 03 03 03 03 03
03 03 03 03 n̂1 n̂2 03 03 03
03 03 03 03 03 03 n̂2 n̂3 03
03 03 03 03 03 03 03 03 n̂3

 (12)

2.3. Observation Model
We are using the notations introduced in Figure 1. Given a

lidar ray direction ûk emitted from the pixel Pk and intersecting
with the j-th facet at S k, there is a positive real number ρk such
that

PkS k = ρkûk (13)

Taking the dot product of this expression with the normal to the
facet n̂ j, we get

PkS T
k n̂ j = ρkûT

k n̂ j (14)

But since

PkS T
k n̂ j =

(
PkV0, j + S kV0, j

)T
n̂ j = PkVT

0, jn̂ j + 0 (15)

We have

ρk =
n̂T

j PkV0, j

n̂T
j ûk

(16)

The expression of the range measurement and the associated
partials can be obtained from

ρk =
PkVT

0, jn̂ j

n̂T
j ûk

(17)

=

(
V0, j − Pk

)T
n̂ j

n̂T
j ûk

(18)

=

(
V0, j − Pk

)T
n j

nT
j ûk

(19)



where n j is the outward surface normal of facet j,

n j =
(
V1, j − V0, j

)
×

(
V2, j − V0, j

)
(20)

Using n j instead of its dimensionless counterpart n̂ j drastically
simplifies the expression of the partial derivatives required to
set up the filter. We thus have

∂ρk

∂V0, j
=

nT
j

ûT
k n j

+

(
V0, j − Pk

)T

ûT
k n j

I3 −
n jûT

k

ûT
k n j

 ∂n j

∂V0, j
(21)

∂ρk

∂V{1,2}, j
=

(
V0, j − Pk

)T

ûT
k n j

I3 −
n jûT

k

ûT
k n j

 ∂n j

∂V{1,2}, j
(22)

∂n j

∂V0, j
= [Ṽ2, j] − [Ṽ1, j] (23)

∂n j

∂V1, j
= [Ṽ0, j] − [Ṽ2, j] (24)

∂n j

∂V2, j
= [Ṽ1, j] − [Ṽ0, j] (25)

Equation (10) can now be solved for the displacement coor-
dinates α. The corresponding deviation in the coordinates of
the observable vertices is thus given by

δV = Nα (26)

Applying this deviation to the corresponding vertices effectively
updates the shape. This batch procedure is iterated five times
every time the Lidar sends a ”flash” towards the true target.
2.4. Facet splitting

One of the drivers of our approach is to let the filter determine
by itself where and if new degrees of freedom should be added
to the estimated shape model. Namely, additional state parame-
ters come in the form of new vertices that are inserted at appro-
priately chosen locations. Ideally, one could begin the shape
determination procedure with a very coarse, isotropic shape
model, that would get further refined based on where residuals
indicate underfitting of the measurement data. Such underfit-
ting is characteristic of a lack of local control over the shape.
To this end, the facet found to have the worst observation resid-
uals among all facets at a given measurement time is split, along
with its neighbors, according to the splitting scheme shown on
Figure 3. This procedure adds three new vertices to the esti-
mated shape model, along with ten facets. If four old facets
are effectively removed from the shape model, their vertices are
conserved and properly reassigned to the new facets so at to re-
tain a consistent surface normal orientation. Note that a facet
and its children were not allowed to be subdivided more than 5
times.

V0

V1 V2

V3

V4

V5

V6

V7V8 F0

F1

F2

F3F4

F5

F6

F7

F8 F9

Fig. 3. Splitting scheme used to decompose 4 facets (in grey) into 10
facets after introducing 3 new vertices (in green), keeping the 6 vertices
that were forming the original facets (in blue).

2.5. Facet recycling
Due to the updates in the vertices coordinates along with

the introduction of new facets, it is necessary to ensure the
mesh does not degenerate. Degeneracy can occur when a facet
shrinks to the point that it almost reduces to an edge. Such
degenerated facets are tracked and recycled, according to the
recycling scheme presented on Figure 4. Tracking facet degen-
eracy helps preventing issues such as self-intersecting facets, as
degenerate facets are often time a precursor of the former. The
criterion used to flag a facet as degenerate was the minimum
angle between two edges of the same facet, that was becoming
less that ηmin = 15◦. This scheme was also used to recycle any
pair of facet ( f0, f1) whose normal vectors (n̂0, n̂1) were found
to be spuriously oriented. That is, such a pair was discarded
when it was satisfying

n̂T
1 n̂2 < − cos(γmin) (27)

where γmin was set to 20◦. This check helped ensuring that no
facet was folding over one of its neighbors.
2.6. Summary

A flowchart illustrating the general functioning of our
method is provided on Figure 5. In the presented scenario, N f

Lidar flashes are cast at times t1, ..., t f towards the true shape
model. At every observation time to, a set of true measurements
ρo is collected from this reference shape. The lidar generates a
set of computed observations from the estimated shape model
and only retains Nm residuals value by excluding outliers. Nm

will always be less or equal than the lidar’s resolution. These
residuals are then processed by the batch, which returns devi-
ations in the coordinates of the vertices that were observed on
the estimated shape. The shape is then updated and the process
repeats itself for Niter iterations. Facet insertion/recycling then
takes place, and time moves forward to the next observation.
The body-fixed frames of the reference, estimate and lidar are
updated to reflect their new state and the process goes on.
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V3

V4
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V6

a) before recycling

V0

V1

V2

V3

V4

V5

b) after recycling

Fig. 4. Illustration of the facet recycling scheme. The highlighted facets
formed by V4,V5,V6 and V5,V1,V6 should be recycled as their smallest
vertex angle is less than a threshold value. The recycling consists in merging
the vertices along the smallest edge. The facet degeneracy vanishes after
facet recycling is complete. In this example, one vertex and two facets were
thus removed from the shape model.

ρo
ρ̄p

δρp =




δρ0
δρ1
..
δρk
..

δρNm−1


 δVp

Reference Estimate

Batch

Lidar

for to ∈ {t0, ..., tNo−1}

for p ∈ {0, ..., Niter − 1}

Fig. 5. Functioning of the autonomous shape determination algorithm

3. Results

3.1. Setup
The performance of the filter was illustrated on asteroids

KW4 Alpha and Itokawa, for which shape models are avail-
able. The first of these two shape models presents a spin-top
like shape that was obtained by means of high-resolution radar
data from the primary body of the binary system 1999 KW4.17)

This KW4 shape model was comprised of 9168 facets and 4586
vertices. The Itokawa shape model derives from the one estab-
lished from the observations collected by the Hayabusa space-
craft,18) downsampled to a resolution of 768 facets and 386 ver-
tices. The two shape models are shown on Figure 6 and Figure
7.

For both cases, the a-priori target used to initialize the fil-
ter was set to a faceted sphere of very coarse resolution, com-
prised of 80 facets and 42 vertices.. This a-priori was then cor-
rected using observations collected over either of the two real-
istic shape models.

The Lidar instrument itself was on a circular orbit about the
shape model’s center of mass. The inclination of the orbit was
set to i = 80◦, and the orbit rate was set to a constant value
of ωl = 2π · 10−2 rad/s. Both reference and estimated shape
models were spinning at a rate of ωs = 2 · 10−1 rad/s about the
ẑ axis of the inertial frame of reference. ωl and ωs were cho-
sen so as to be non-commensurable for good surface coverage.
The Lidar line-of-sight axis was always pointing at the center
of mass of the reference shape model. The observation time in-
terval was set to [t1, t f ] = [0, 500](s) with a 1-second interval in
between measurements. Finally, the range measurements were
not corrupted by any noise. This is a current limitation of our
approach, which will be addressed in our future work. Note that
the typical range error provided by a Lidar instrument is in the
order of a few centimeters, which is way less than the resolution
of the shape models we are using in this paper.

Fig. 6. Reference KW4 Alpha shape model

Fig. 7. Reference Itokawa shape model



3.2. Performance
The shape models estimate of KW4 and Itokawa after 500

seconds were respectively comprised of 1720 facets, 862 ver-
tices and 720 facets, 362 vertices.

The resulting shape models are shown on Figure 9 and Figure
11. Visual inspection of the meshes revealed no folded facets
or self-intersecting regions. A more quantitative measure of the
shape quality is provided by the relative differences in volume
and surface area between the estimated shape models and their
corresponding reference. Both KW4 and Itokawa saw their vol-
ume and surface area captured with less than 0.5% of relative
error, as shown on Figure 12 and Figure 13. It is noticeable that
the KW4 surface area error does not continue decreasing after
t = 300 seconds. This can be related to the difference between
the allowable number of facets in the estimate and the number
of facets in the true shape model. Letting each facet to be subdi-
vided more would add the missing degrees of freedom enabling
the shape to be captured more accurately.

Fig. 8. A-priori of KW4 shape model overlaid with the reference mesh
wireframe

Fig. 9. Final estimate of the KW4 shape model overlaid with the reference
mesh wireframe

This is exemplified by the better accuracy of the Itokawa
shape model, obtained for an estimate comprised of nearly as
many facets at the reference shape.

The current performance bottleneck resides in the ray-casting
procedure, that is repeated N f times for the reference shape
model and N f ∗Niter times for the estimated shape model. Most
of the computational cost arises from finding the intersection
of the cast rays with the targeted shape models. A brute-force
approach relying on exhaustive facet search was used, but will
be replaced by a voxel-grid based search shortly. The code was
implemented in C++ using the Armadillo library.19)

Fig. 10. A-priori of Itokawa shape model overlaid with the reference mesh
wireframe

Fig. 11. Final estimate of the Itokawa shape model overlaid with the ref-
erence mesh wireframe
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Fig. 12. Volume and surface area relative difference for the KW4 shape
determination
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Fig. 13. Volume and surface area relative difference for the Itokawa shape
determination

4. Conclusion

This paper validated the functioning of a new shape determi-
nation approach relying on sequential data processing for aster-
oids KW4 and Itokawa. This approach was enabled by the care-
ful rewrite of the solved-for state deviation in a more observable
form. Contrary to the state-of-the art techniques of shape recon-
struction, the shape determination problem is solved sequen-
tially as data comes in, making the storage of raw point cloud
measurements unnecessary. Performing mesh subdivision and
facet recycling authorized the use of a very coarse a-priori that
appears to converge to a satisfying estimate of the observed
shape models. Future work will focus on solving the relative
position, attitude determination problem. Moreover, incorpo-
rating realistic relative orbital dynamics will be considered, in
addition to using noisy range measurements. This will enable
us to complement our filter with a measure of the confidence in
the estimated shape. The facet recycling scheme will also be
reworked so as to improve its robustness. Finally, including the
knowledge of the observing spacecraft’s orbit into the filtering
problem could help constraining the estimated shape model fur-

ther, thanks to the evaluation of the Polyhedron Gravity Model
over the estimated shape model. This sequential filtering-based
approach could thus enable spacecraft with limited memory or
computational capabilities to perform on-board shape model re-
construction.
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