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    The High-fidelity Asteroid Deflection Evaluation Software (HADES) deals with the high-fidelity modelling of 

spacecraft operations at irregular shape asteroids. The software can handle any operational orbit, with particular care paid to 

fixed hovering configurations. Different control techniques based on both continuous and discrete methods have been 

considered and implemented. The manoeuvre execution itself can be affected by errors in magnitude and direction.  

The spacecraft orbit determination can be performed either through a performance model or by on-board measurements, a 

navigation camera and a LIDAR, which are processed by an Unscented H-infinity Filter (UHF). HADES can employ 

different levels of accuracy between the assumed environment knowledge and the real world. The aim of this paper is to 

discuss in details the models that can be used to describe the dynamics and the estimation of a spacecraft hovering at an 

irregular object. It will show how the various modelling assumptions can affect the results regarding the control budget and 

on-board estimation in the highly perturbed environment of the comet 67P/Churyumov–Gerasimenko.  
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Nomenclature 

 

r  :  position vector 

µ  :  gravitational constant  

SRP :  solar radiation pressure 

u  :  control vector 

A  :  spacecraft cross section 

msc :  spacecraft cross section 

srpS
 

:  solar radiation pressure at 1 AU 

1AUr  :  astronomical unit in km 

  :  angular velocity of the asteroid orbit 

U :  non-uniform gravity potential  

       :  rotation matrix around 2 axis  

  :  covariance matrix 

n :  measurements noise 

R :  measurement noise covariance 

  :  controller gain 

b :  control box 

     :  mean value of acceleration 

Q :  LQR controller gain on state error 

U :  LQR controller gain on the control  

  :  linearized central body acceleration  

A :  constant discrete state matrix 

B  :  constant discrete control matrix 

S :  matrix solution of Riccati equations  

   :  time interval 

   :  delta velocity 

   :  manoeuvre execution error 

  :  measurements 

K :  Kalman gain 

α :  performance bound in    filter 

ξ :  scaling parameter 

c :  ellipsoid semi-axes 

 Subscripts 

a :  asteroid 

sc :  spacecraft 

0 :  reference 

k :  step 

x :  state 

z :  measurements 

xz :  cross correlation state-measurments 

    :  nominal 

est :  estimated 

ref :  refernce 

 

1.  Introduction 

 

  In the last 20 years, there has been considerable progress in 

the exploration of the minor celestial objects by spacecraft. 

Recently the most remarkable mission has been Rosetta, 

which arrived at Comet 67P/Churyumov–Gerasimenko on 6 

August 2014. The lander Philae achieved the first-ever soft 

landing on the surface of the comet on 12 November 2014. As 

shown by the difficulties on the identification of the final 

landing spot of the probe, the environment near minor bodies 

is pretty complex because of the lack of precise data where 

simplification regarding the shape and composition of the 

asteroid can drive to a completely incorrect picture of the 
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dynamics.  

  The navigation in close proximity of asteroids can be 

complicated due to the fact that the environment is uncertain, 

especially if the asteroid presents an irregular shape and 

rotation state. The motion of the spacecraft around the 

asteroid is, thus, highly nonlinear. Generally, the gravitational 

harmonics of the celestial minor bodies are estimated from 

on-board data collected during a close fly-by,
1)

 during 

approach phases or by ground-based radar imaging data.
2) 3)

 

Thus, it is necessary to evaluate possible different navigation 

strategies to increase the mission reliability and the possibility 

to cope with both unknown environment and system 

performance uncertainties.  

  One important aspect when designing proximity operations 

is to evaluate how the different control techniques and 

on-board instruments affect the performance of the system. 

The manoeuvre execution itself can be affected by errors in 

magnitude and direction.  

  This kind of missions typically requires the spacecraft to fly 

in a tight formation relatively close to the asteroid, so 

on-board estimation capabilities are desirable and indeed 

required when the delay time between ground and the 

spacecraft is too high to ensure the safety of operations. 

  Methods based on optical navigation camera and laser light 

radar (LIDAR) or laser range finder (LRF) integrated 

measurements have been proved to be a feasible option for a 

single spacecraft to approach or land on an asteroid.
4)5)

 

Landmarks can also be considered when a map of the surface 

is available before the beginning of operations. 

The idea beneath this paper is to describe the operating 

environment a spacecraft will face at the asteroid, to show 

how the different assumption can affect the outcomes of the 

simulation. This can advise the reader on how to handle with 

the results and margins when it comes to the control budget 

for instance. 

  HADES is a high-fidelity simulation tool to assess GNC 

close proximity operations. Detailed models about the close 

proximity environment about Near Earth asteroids (NEA) and 

the involved operations are required during preliminary 

assessment of mission requirements especially under the 

presence of uncertainties. The implemented spacecraft 

dynamics considers the most relevant perturbations, i.e. third 

body effect from the Sun, solar radiation pressure (SRP) and 

irregular gravity field of the rotating asteroid. The software 

uses both spherical harmonics and actual asteroid’s shape. In 

the first case the coefficients can be given from actual data or 

they are calculated on a user-defined ellipsoid; in the second 

case the gravity field is reconstructed from the asteroid 

tetrahedral mesh. The software can handle any operational 

orbit, with particular care paid to inertial and body fixed 

hovering. Different control techniques based on both 

continuous and discrete methods have been considered and 

implemented. HADES has a detailed model of camera and 

LIDAR, where the actual illumination and visibility 

conditions are modelled using real asteroid shape data. At 

initial stage one can also assume a performance model, but we 

will see how this can produce misleading results in reality.  

  We want to underline that we devoted detailed explanations 

of the models in order for the interested readers to use them 

and recreate the results of the simulations, rather than 

retrieving all the information from diverse sources.  

  Thus this paper is organised as follows. Section 2 explains 

the different dynamic models and main modeling assumptions. 

In Section 3, the control technique used to maintain the 

spacecraft on its reference trajectory is briefly explained. 

Section 4 shows the estimation process through the Unscented 

H-Infinity filter and the assumed measurement models. 

Finally, Section 5 shows some obtained results. In particular, 

all the analyses for the GNC case are applied to the scenario 

of comet 67P/Churyumov–Gerasimenko whose shape model 

is well known after the visit of the mission Rosetta in 2015. 

The shape of the comet magnifies the possible source of 

mis-modelling which can affect the overall navigation. We 

considered inertial hovering configuration where the 

spacecraft maintains its location fixed with respect to the 

object. In particular we place the probe at 2.7 km, which is the 

periapsis distance of Rosetta’s orbit. 

 

2. Dynamic Models 

 

  In this section we want to give an accurate description of 

the models used to describe the dynamics of the spacecraft. 

 

2.1. Hill’s Reference Frame 

  In this section, we introduce the motion dynamics of 

spacecraft and asteroid in the non-inertial Hill’s reference 

Frame (see Fig. 1). It is assumed that the asteroid body frame 

(later described) is coincident with this frame at the beginning 

of the simulations. 

 

Fig. 1. Hill Reference Frames. 

 

The spacecraft is subjected to the force due to solar gravity, 

solar radiation pressure and the asteroid’s irregular gravity. 

The nonlinear relative equations of motion are given by:
6) 

 

                                                    
                                                 (1) 

 

   represents the instantaneous angular velocity with which 

the asteroid (i.e. the reference frame) rotates around the 

Sun.           is the solar radiation pressure;   

           is a control input for continuous control. In the 

case of impulsive control this term is null and impulsive 

variation of velocity is applied at the time of the manoeuvre. 
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U is the higher order potential of the asteroid.  

The SRP depends on the distance from the Sun as the 

spacecraft exposed area, the reflectivity coefficient and the 

mass: 

 

     (2) 

 

 

2.2. Asteroid motion around the Sun 

  The motion of the asteroid with respect to the Sun is given 

as: 

             
                   (3) 

 

Note that no perturbations acting on the asteroid are 

considered (i.e. Keplerian motion is assumed). 

2.5. Gravity field models 

  The asphericity of these bodies gives raise to perturbations 

that affect all orbital elements, especially at low altitude. The 

models that have been considered to describe these effects are 

based on the standard Legendre polynomials of the gravity 

field potential as defined by Cunningham,
7)

 and on shape 

model.
9)

 The model works nicely when outside the object 

circumscribing sphere while it is completely unreliable inside.  

The use of Legendre polynomials allows an efficient 

computation of the potential and resulting perturbation as a 

function of the Cartesian coordinates in the body fixed 

reference frame. In the case of an ellipsoidal shape an 

analytical formula for calculating the even terms of the matrix 

C is available.
 8)

 The gravity model works for an arbitrary 

shape and was implemented from the equations used in 
9)

. 

This model assumes a uniform asteroid density and allows 

expressing the local acceleration in an arbitrary location in 

space with respect to the asteroid’s centre of mass. It is 

especially suited for proximity operations, where the 

harmonic techniques fail to provide an accurate representation 

of the gravity field. 

 

3. Controller 

 

  We want to calculate the optimal gain matrix K such that 

the state-feedback law          (where k is the discrete 

step) minimizes the quadratic cost function 

 

        
       

             

 

   

 

 

  for the discretized state-space model of Eq. (6). Also in this 

case we neglected the contribution of the Coriolis force. For 

convenience we report the results: 
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                  . Integrating the equations of motion for 

a time step    using explicit Euler, one obtains  
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Ak and Bk are constant discrete state matrix in this case. Then 

the state-feedback gain K results: 

                
           

                  (6)                          

S is given by the solution of the discrete-time Riccati 

equation:  

   
          

       
     

    
            (7)       

  Although the controller will work using only proportional 

correction manoeuvre, we decided to add the integrative 

contribution due to the action of the gravity field during the 

interval between corrections. The integrative contribution 

improves the accuracy because otherwise the spacecraft will 

tend to move towards an artificial equilibrium point where   

           

                 
  

  
  

           

           
                (8) 

 

  We assume that the overall effect from the other forces is 

negligible and the LQR is able to cope with those 

perturbations. The integrative contribution is calculated 

assuming a constant acceleration:        

  

                           (9) 

 

    is the mean value of acceleration as measured at centre, 

superior and inferior edge of the control box defined by a 

characteristic length, b, used to calculate the gain. The 

integrative contribution was added only when contribution of 

the perturbations does not work to reduce the position error. 

This is done simply to include the fact that the gravity acts 

favourably by attracting the spacecraft towards the reference 

position when the spacecraft is above the nominal altitude. 

We required the controller to perform the maximum delta-v 

manoeuvre equal to       when the error in position (on 

components base) is equal to b and the velocity error is      
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(where      is the velocity acquired by constant gravitational 

acceleration during a free fall along b). This means that:  

                                

                                 
  )        (10) 

  In practice, if the spacecraft started moving from the 

nominal stated, a reflection manoeuvre would be performed at 

the edge of the control box. Error in the manoeuvre execution 

has been modelled in terms of magnitude and direction as: 

               
                (11) 

where       is the nominal manoeuvre, and and      are 

the error angles on two directions. The errors are generated 

randomly consistently with the assumed execution error 

statistics. 

 

4. Navigation Models 

 

  The Navigation Module conceptually contains two 

trajectory estimation routines 

1. A performance model based on typical knowledge of the 

spacecraft trajectory. 

2. A real-time on board filter based on the Unscented 

H-infinity Filter (UHF) which uses LIDAR and camera 

measurements.  

The first is a simple performance model for the orbit 

determination which consists of pseudo state vector 

measurements   simply given as. 

  

                          (12) 

Note that the measurement error is given along track and 

across track, thus a transformation from the local rotating 

frame to the Cartesian one is performed. In the second case 

the estimate is calculated as the filter state vector    , and 

covariance updated matrix    are represented as follows 
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(13) 

 

  The predicted mean of the state vector    
 , the covariance 

matrix   
  and the mean observation    

  can be 

approximated using the weighted mean and covariance of the 

transformed set of sigma points. 
10)11)

 Rk is a suitable matrix 

which in the case of normal distribution coincides with the 

measurement noise covariance matrix at time step k. In order 

to assure that the covariance matrix is positive definite, this 

value is calculated at each iteration as:
11)

 

  
   

             
       

           
      

          
 
 
  

  (14) 

  The hypothesis underneath the generic Kalman filter is that 

the noise in measurements, dynamic model and priors is 

Gaussian in nature. This might not be the case in general and 

even though the UKF has proven to work reasonably well 

when the Kalman filter hypotheses are not satisfied, a better 

alternative would be to use a     filter, also called minmax 

filter. The    filter does not require prior assumptions on 

the nature of the noise, and minimizes the worst-case 

estimation error. The choice of the    filter is preferable 

when the Gaussian hypothesis cannot be fully guaranteed, for 

example when biases in the instruments are not detected. 
10)11)

   

In our case, besides biases affecting all the instruments, the 

LIDAR measurements are affected by the camera process and 

errors. Therefore, the noise introduced by the LIDAR cannot 

be modelled as an uncorrelated white noise. In order to deal 

with nonlinearities, one can use an extension to the     

filter, the Extended    Filter (EHF), analogous to the 

extended Kalman filter. In this case, however, some 

hypotheses need to be introduced on the smoothness and 

regularity of the process and measurements. An alternative is 

to introduce the unscented transformation in the    filter to 

avoid the approximation of the Jacobian matrices,
11)

 and build 

an Unscented    Filter. 

 

4.1. Instruments Model 

  Two instruments are considered for performing navigation: 

a navigation camera and a LIDAR. It is assumed that the 

attitude of the spacecraft is known with a level of precision 

corresponding to the one of the star tracker on two axes. We 

assumed two kind of image processing: 

1. The camera identifies the centroid on the body surface 

based on the actual illumination conditions. 

2. The camera identifies land-marks points on the surface. 

  The measurement from the camera is affected by the 

spacecraft attitude pointing, the pixelization and the 

centroiding errors (where the last one is the mismatch between 

centroid and centre of mass). The pixelization error is due to 

the fact that the image of the asteroid is formed by a discrete 

number of pixels. This is sensible if one assumes that a 

complementary map could be built while starting the orbit 

acquisition, combining the pictures. For what concerns the 

LIDAR, it generally provides range from the spacecraft to a 

point on the surface of target object and works at a range from 

50 m to 50 km. It is assumed that the LIDAR illuminates the 

point on the surface that corresponds to the centroid derived 

from the elaboration of the images acquired by the camera.
13)

 

The actual illumination and visibility condition are considered 

such that the image on the screen of the camera will be as 

shown in an example of Fig. 2, where the centre of brightness 
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has been represented along with the footprint of the LIDAR 

on the surface as taken around it. In the bottom, it shows the 

som landmarks on the area visible to a 12 degrees FoV 

camera. 

 

 

 

Fig. 2. Example of image as seen on the screen of the camera generated 

using the Comet 67P/Churyumov–Geras imenko (left), footprint of the 

LIDAR around the corresponding centre of brightness (right), landmarks 

points (blue dots bottom). 

 

5. Case Study 

 

  In the following, we will move from simpler to more 

complex models, showing how the different assumptions can 

lead to dissimilar results, especially for what concerns the 

control budget. We considered a number of four different 

cases: 

1. The comet shape is assumed to be an ellipsoid, thus 

gravity field is described as an 8
th

 order ellipsoidal field 

and a performance model is used for the estimated 

trajectory. 

2. The gravity field of the comet is given by the actual 

spherical harmonics, and a performance model is 

employed for navigation purposes. 

3. Same as above, but the estimated trajectory is obtained 

through filtering where the gravity order is reduced with 

respect to the real one, and the shape of the comet is an 

ellipsoid whose mean radius for the measurements 

model differs by 1% error from the actual radius. 

4. In this case the dynamics and the measurements are 

given by the actual shape of body, while the filter relies 

on the harmonics, and the mean radius for its 

measurement model differs by 1% error from the actual 

one. The gravity field in the real world is generated 

using the actual shape, while the filter relies only on a 

third order gravity field. 

  In the following, we first introduce the environment in 

Section 5.1 and the spacecraft operative conditions in Section 

5.2. We then analysis the characteristic trend for the single 

simulation in Section 5.3 and eventually we discuss the results 

with the aid of a Monte Carlo simulation to draw some 

statistical conclusions in Section 5.3.5. 

 

 

5.1. Comet Comet 67P/Churyumov–Gerasimenko 

  In the followings, the analysed methods are tested. Besides 

the calculation of mere control figures as the navigation 

budget, the comparison is based also on the capability to 

control the spacecraft with a limited number of actuations. 

The minor body selected was the Comet 

67P/Churyumov–Gerasimenko, whose Keplerian elements are 

reported in see Table 1.  The motion of the asteroid around 

the Sun was considered purely Keplerian without any 

perturbation and simulations start from perigee. Moreover 

there is no effect of the coma included in the simulation. The 

asteroid was assumed to be shaped as an ellipsoid of 

semi-axes          
                     km. For 

reference to the next analyses, where the shape of the comet 

will be used in the dynamics as well as in the measurements 

generation, Fig. 3 shows the 3D mesh of the well-known 

duck-shape comet.  

 

Fig. 3. Shape of Comet 67P/Churyumov–Geras imenko.  

 

  Assuming such a shape allows calculating the gravitational 

harmonics analytically. 
8)

 When we will consider the actual 

shape, we used the denormalized Stokes coefficients for the 

third order degree,
 8)

 as reported in Table 1.The gravity 

constant from the asteroid is thus 6.67259∙10
-7

 km/s
3
.  

 

Table 1. Comet 67P/Churyumov–Gerasimenko from JPL database. 

Items Values  

a [AU] 3.464805313920435 

e .6414365761974745 

i [deg] 7.04529818125678 

  [deg] 50.08466699140272 

 [deg] 12.84210194638212 

C20  −7.93× 10−2 

C22  2.71 × 10−2 

C30  -1.36 × 10−2 

C31  10−2 

C32, C33, S31, S32, S33  10−3 

C22  10−4 

C11, S21 10−13 

C10 , S11, S21, S22  10−14 
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The asteroid rotates around c3 axis every 12.4043 hrs with the 

equatorial plane coincident with the asteroid orbital plane at 

the beginning of the simulation (c1 and c2 aligned with x-y of 

the Hill reference frame). 

5.2. Spacecraft characteristics 

The initial nominal condition of the spacecraft was randomly 

generated around the nominal operational trajectory in the 

local Hill’s frame (radial, tangential and out of plane 

components – position in km, velocity in km/s): 

                                  

We arbitrarily decided to place the spacecraft at about 2.7 km 

from the surface of the comet (considering the maximum 

semi-axis   ) as it was the periapsis distance of Rosetta. 

Table 2 reports the characteristics of the sensors assembly.  

 

Table 2. Measurements assembly characteristics 

Items Values  

Lidar mounting error  0.001 deg 

Lidar range error  20 m 

Lidar range bias  1 m 

Number of pixels per side 2048 

Camera FoV 40 deg 

WAC FoV 12 deg 

NAV FoV 2.4 deg 

Attitude error  0.0057 deg 

Attitude bias 0.0006 deg 

 

  We first assumed a 40 degree wide angle camera; otherwise 

the asteroid would not be contained in the camera screen, and 

then we employ a WAC and a NAC which were on-board of 

the mission Rosetta to simulate the land-marks scenarios.   

The spacecraft is assumed to have an area to mass ratio of 

0.0393       and an equivalent reflectivity coefficient 

(given by reflection and diffusion) of 1.3. We considered an 

actuation error of 3% (3σ) on magnitude and 2 degrees on 

angles (3σ). For the navigation we used the performance 

model where the pseudo state vector was known with 20 m 

along track, 10 m cross track in position and 2 mm/s along 

track and 1 mm/s cross track in velocity (all the quantities are 

1σ). We used an error of 20 m just to have an along track error 

comparable to the one obtained using extensive radiometric 

measurements.  

  For what concerns the controller, the gain b was set to 30 m 

and manoeuvres below 1 cm/s were not executed. The 

actuation time was coincident with the measurements 

frequency of 10 minutes. 

5.3. Results   

  In this section, we want to see how different dynamics and 

measurements model affect the performance of the state 

estimate along with the navigation budget.  In the following 

we will show the trend for the controlled and estimated 

trajectory when a filter is employed. In any case the random 

number generator was set to the same value at the beginning 

of simulation in order to present consistent results. The 

spacecraft is placed on the nominal trajectory, while in 

Section 5.3.5 we will report the statistical control budget 

obtained by modifying the initial conditions, accordingly with 

the initial filtering guess of 50 m on position and 2 cm/s in 

velocity for each component.  

5.3.1. Case 1- Ellipsoid shape and performance model  

  The first analysed case can be considered a first guess, 

where the control performance can be preliminary tested, 

under a typical trajectory knowledge from ground station. The 

fact comet shape is assumed to be an ellipsoid and the gravity 

field is described as an 8
th

 order ellipsoidal field simplifies 

considerably the dynamics. Fig. 4 shows the trend for the 

controlled position and velocity. As one can see, the trajectory 

error is confined between 30 m boundaries and the maximum 

velocity error is in the range of 2 cm/s, basically due to a 

combination of control capabilities and actuation error.  The 

peak along y direction is due to the rotation of the comet with 

subsequent strong variation of the gravity field after 12 hours 

when the distance of the spacecraft with respect to the surface 

is the minimum. 

 

Fig. 4. Case 1: controlled pos ition ( left) and veloc ity (right). 

5.3.2. Case 2- Spherical harmonics and performance model 

  Although the spacecraft motion results confined as in Case 

1, the variation of the gravity field of due to the actual 

spherical harmonics is stronger driving the spacecraft outside 

the 30 m boundaries, see Fig. 5.  

 

Fig. 5. Case 2: controlled pos ition ( left) and veloc ity (right). 

 

This case also shows the limitation of using the linearized 

approach of Section 3 to calculate the controller gains. Time 

varying gains accordingly to the relative configuration of the 

spacecraft could improve the overall controller performance 

and could be analysed in future works.  

5.3.3. Case 3- Spherical harmonics and filtering 

  In this case, we employ the on-board system to estimate the 

trajectory of the spacecraft. The gravity field in the filter is 

known to second degree harmonics, while shape of the comet 
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is assumed to be an ellipsoid whose mean radius for the 

measurements model differs by 1% error from the actual 

radius. Fig. 6 shows the controlled trajectory where one can 

see that the controlled position error is biased along the x 

direction where the combination of the gravity field and the 

lack of shape knowledge produce the maximum effect. In fact 

from Fig. 7, we see that the estimation error itself is biased 

along the x-axis by a value that in mean terms is about 25 m 

that is consistent with 1% size error. Note that the lack of 

harmonics leads the filter to place the spacecraft closer to the 

comet (negative sign along x error). In Fig. 6 right, we see that 

as a consequence of the estimation error also the controlled 

velocity error is in general increased with respect to Case 2. If 

we compare its trend with the one of Fig. 5 we see that the 

difference is mainly due to the estimated velocity (Fig. 7 

right). 

  

Fig. 6. Case 3: controlled pos ition ( left) and veloc ity (right).  

 

Fig. 7. Case 3: estimated position (left) and veloc ity (right).  

5.3.4. Case 4- Shape model and filtering 

  In this case the dynamics and the measurements are given 

by the actual shape of body, while the filter relies the third 

order gravity field of Table 1, and the mean radius for its 

measurement model differs by 1% error from the actual one. 

This case is the most interesting because it allows us to 

1. demonstate the effect of the size of the asteroid in terms 

of accuracy of the mesh; for computational convenience 

we use a baseline coarse mesh in the filter of 100 facets 

and we compare the results with respect to a 1000 facets 

shape; 

2. evaluate the impact of the on-board processing on the 

performance; spacecraft computer have limited 

computational capabilities, so fixed-time step integrator 

are used to reduce the computation burden; a fixed step 

Runge-Kutta of order five for all the time-integrations is 

employed in the filter;  

3. analyse the use of wide and narrow angle cameras to 

identify landmarks on the visible spots with the  

on-board processing.  

  Fig. 8 and Fig. 9 show the controlled and estimated 

trajectory trends in the case the shape model used for both the 

real world camera and the filter is a 1000 facets polyhedron. 

On the contrary of Case 3, the filter positions the spacecraft 

farther from surface (Fig. 9 left) and the error is in the range 

of 25, which is 1% of the major semi-axis. This produces also 

a velocity error which biased along x. The higher control 

errors are as a consequence along x (see Fig. 8). Nonetheless 

the overall system manages to contain the spacecraft within 50 

m error from the reference position. 

 

Fig. 8. Case 4 using a 1000 faces mesh for the asteroid surface: controlled 

position (left) and velocity (right).  

 

Fig. 9. Case 4 using a 1000 faces mesh for the asteroid surface: estimated 

position (left) and velocity (right).  

 

  Fig. 10 and Fig. 11 show that similar trend are obtained 

when the on-board system relies on simplified surface models 

with 100 facets polyhedron.  

 

Fig. 10. Case 4 using a 100 faces mesh for the asteroid surface: controlled 

position (left) and velocity (right).  

 

The main difference can be seen on the controlled and 

estimated trajectory peaks which are slightly higher than the 

ones in the 1000 facets case. 
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Fig. 11. Case 4 using a 100 faces mesh for the asteroid surface: estimated 

position (left) and velocity (right).  

 

  Eventually, if the computational capabilities are limited to a 

fixed-step time integrator, we obtain that the overall errors are 

further amplified. With reference to Fig. 12 and Fig. 13, we 

see that the controller and the filter errors are above the 50 m 

we have seen in the previous case. Also the velocity 

periodically exceeds 1 cm/s error.  

 

Fig. 12. Case 4 using a 100 faces mesh for the asteroid surface and 

on-board f ixed step integrator: controlled position ( left) and veloc ity 

(right).  

 

 

Fig. 13. Case 4 using a 100 faces mesh for the asteroid surface and 

on-board fixed step integrator: estimated position (left) and veloc ity 

(right).  

 

This is due to the discrepancy between the measurement 

model in the filter and the actual model, as well to the strong 

sensitivity of the dynamics to the variation of the conditions 

and numerical errors which mislead the filter to wrong 

estimate. 

  The next set of figures (from Fig. 14 to Fig. 17) shows the 

results for controlled and estimated trajectory using a WAC 

and a NAC. The same conditions as in the previous case have 

been used. The most noticeable thing about the use of the 

landmarks is that the controlled and estimated trajectory result 

to be more accurate with respect to the analysed examples of 

this section. Using the NAC, the overall control-navigation 

system is able to maintain the spacecraft within the assumed 

boundaries. In any case, the expected error would be in the 

range of the difference between the on-board model and the 

real world, unless the navigation system is not able to estimate 

a corrective factor to fit the measurements with its own 

on-board models.  

  Although from this single simulation is not clearly possible 
to deduce it, the fact that NAC can identify the points on the 
surface more accurately has beneficial effects on the 
navigation and the controlled trajectory. This trend will be 
more clearly shown with the MC simulations in the next 
section.   

  

Fig. 14. Case 4 using a 100 faces mesh, on-board fixed step integrator, 

landmarks with WAC: controlled pos ition (left) and veloc ity (right).  

 

 

Fig. 15. Case 4 using a 100 faces mesh, on-board fixed step integrator, 

landmarks with WAC: estimated position (left) and veloc ity (right).  

 

 
Fig. 16. Case 4 using a 100 faces mesh, on-board fixed step integrator, 

landmarks with NAC: controlled position (left) and veloc ity (right).  

 

 
Fig. 17. Case 4 using a 100 faces mesh, on-board fixed step integrator, 

landmarks with NAC: estimated position (left) and velocity (right).  

 

5.3.5. Summary 

  An important factor is represented by the impact of the 

environment as well as the system assumptions on the control 

budget. Of course the number of uncertain parameters which 

can affect this figure tends to diminish thanks to extensive 
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ground support prior the start of and during operations. 

Nonetheless good models can help mission designer and 

system engineers to use more refined values and predict which 

will be the behavior of the system. For the above cases, we 

performed a Monte Carlo analysis consisting in 200 

independent realizations where the initial trajectory and initial 

filter guess was drawn from a normal distribution with a 

dispersion of 50 m and 2 cm/s in position and velocity, 

respectively. We did not consider the 1000 facets polyhedron 

case because the difference with respect to the 100 facets was 

marginal, as well for the high computational cost.  

  The effect on the ∆v in terms of mean and standard 

deviation is reported in Table 3. We see that as we move from 

simpler models to more complex ones, the control budget 

tends to increase monotonically. Also the dispersion appears 

to increase, although Case 2 displays a slightly higher 

dispersion with respect to Case 3, which is caused by the fact 

that in this configuration the spacecraft is systematically place 

closer to the surface, thus the deviation are magnified. Among 

the most fidelity models, the use of a NAC is the one 

presenting the minimum mean value, with also the smallest 

dispersion thanks to the better precision of the navigation 

system.  

 

Table 3. Impact of different modelling assumptions of the performance of 

the control budget.  

Scenario Mean ∆v [m/s] 1-sigma ∆v [m/s] 

Case 1 2.1816  0.023907 

Case 2 2.1922 0.024455 

Case 3 2.2094 0.019932 

Case 4  2.2431 0.019559 

Case 4 OB 2.2748 0.025643 

Case 5 OB+WAC 2.1200 0.023470 

Case 6 OB+NAC 2.1156 0.01996 

 

If we consider a level of confidence of 99.7 (corresponding to 

3-sigma), we see that the maximum difference in control 

budget is about 16%, obtained considering minimum 3-sigma 

value for case 5 and the maximum 3-sigma budget for case 4. 

 

6. Conclusions 

 

  This paper presented a comparative assessment on how the 

different modelling assumptions can affect the overall control 

and navigation performance. For this purpose we used the 

main features of the High-fidelity Asteroid Deflection 

Evaluation Software developed at Deimos Space S.L.U. for 

close proximity operations. In order to stress the effects from 

the uncertain environment we considered the duck-shaped 

67P/Churyumov–Gerasimenko, whose gravity field cannot 

easily model. In this way we could assess how the knowledge 

of the environment affects the navigation and the control 

budget. We showed and compare several cases and we 

focused on the navigation performance for different level of 

environment knowledge, assuming shape and harmonics 

models for the gravity field and the measurements generation.  

  In general if we use a performance model and the 

environments is quite predictable or well known the 

performance of the controller does not differ much from the 

one obtained with relatively more accurate models. When the 

environment is pretty unknown the difference could differ 

significantly, although where we place the spacecraft in 

principle affects the subsequent results. From the analysis, one 

can deduce that the navigation by landmarks outperforms the 

navigation system by ranging and centroid measurements as 

expected.   

  From the analysed cases we have seen that the control 

budget difference can be as high as 16%. Although this level 

is often absorbed by safety margin which can be 20% for 

known environment or as high as 100% for highly perturbed 

and uncertain minor objects, this work and HADES can be 

applied to several other analysis. For instance if the size of the 

asteroid is roughly known as well as it composition and 

rotational motion, we could perform extensive analysis based 

on different shapes, masses and angular velocities to draw 

accurate predictions of the control and navigation 

performance. 
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