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Utilisation of the “Dzhanibekov’s Effect” for the Possible Future Space Missions
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This paper is uncovering the mystery of the interesting “Dzhanibekdiés® (often also called Dzhanibekov’s phenomenon),
providing systematic detailed explanation of the intriguing phenomenon using the numerical simulation methods and tools, employing
non-linear equations of motion of the rigid bodies. Based on the developed simulation model, we also explore the possibilities of
utilisation of the “Dzhanibekov’s fect” for possible future new space missions, employing periodic change in the attitude orientation
of the spacecraft. In our conceptual designs, in particular, we consider novel cases of the control of the dynamics of the spinning
rotating spacecraft via active change of its inertial properties. This, for example, enables for the spacecraft with initial stable axial
spin, at the desired time, to be transferred into the “Dzhanibekov’s” unstable flipping mode (maybe, for changing its head attitude by
180 or observations) and then, if needed, to return back to the initial stable spin. Essentially, we present the method of controlled
switching ON and OFF of the unstable periodic flipping motion of the spacecraft (known as “Dzhanibekests) &ia controlled
morphing of the spacecraft. This paper also presents the 6-masses conceptual design of the spacecraft, capable of producing required
morphing, necessary for activation or de-activation of the flipping tumbling, without use of the gyroscopes. We also produce geometric
interpretation of the “flip OMOFF" developed method.

Key Words: “Dzhanibekov’s &ect”, Rigid body dynamics, Euler’s equations of motion, Morphing spacecraft, Tumbling motion

Nomenclature

v, 0,¢ Euler angles
Wy, Wy, Wz components of the angular velocity
d derivative
G centre of the mass of the rigid body
H(t) angular momentum vector
Lxs Lyys 122 principal moments of inertia
My, M, M, dumbbell masses in the 6-mass spacecraft
M ©  mass matrix
Maa, Mbb, Mcc :  moments of inertia in original Euler’s work
Nx, Ny, N, : torque components
P pivot point
P,Q,R torque components in original Euler’'s work
(S P axial positions of the spacecraft masses L
t time ~ . el
X Y, Z principal axes of the rigid body Fig. 1. Vladimir Aleksandrovich DzhanibekéV
X system’s states
Subscripts hicle. All arrived payloads, sent to the orbital space station
f . final “Salyut-7", were constrained to prevent their movements dur-

i : initial ing the launch and flight of the space vehicle. The fixation
of the payloads to the bases was secured by the classical fix-
ation elements, involving long threaded rods and fixation “ear
) ] wing butterfly” nuts. The unpacking process involved exhaust-
1.1. Discovery of the phenomenon in space _ing unscrewing of many nuts, which required for each of the
Viadimir Aleksandrovich Dzhanibekov is a famous Russian s to be rotated many times for them to travel significant dis-
cosmonaut (shown in Fiff), who with his five space flights is  {ances along their corresponding fixing rods. To speed up the
recognised the champion in this category. In fact, he has spenf,,cess, viadimir Dzhanibekov has applied a significant torque
in space 145 days, 15 hours and 35 sechdame duration of iy ise to the wing of the nut, which resulted in the initia-
his open space walks is 8 hours and 34 minutes. tion of the fast rotation of the nut and its conjugated transla-
His first flight was in 1978. And during his fifth space flight, ti;nal motion along the threaded rod. The impulse wag-su
on 25-June-1985, he worked on-board of the space assemblyjent for the nut to complete unscrewing process on it own, and
“Salyut-7"-"Soyuz T-13", unpacking the payloads, delivered e, (6 |eave the rod. From this moment the nut continued its
from the Earth by *Progress-24 (#125)" supply transport Ve- e flight, travelling along the axis of the left rod, while still

1. Introduction



being in rotation about this axis. After travelling the transla- 1.3. Historical perspectives: Euler's equations

tional distance about 42 cm, the nut, after its apparent stable Leonhard Euler (April 15, 1707 - Sept. 18, 1783) was a fa-
and undisturbed flight, suddenly changed its axial orientationmous Swiss physicist and mathematician (the most eminent of
by 180 degrees, simultaneously changing its direction of rotat-the 18th century and one of the greatest in history), who made
ing to opposite in the body-axis coordinate system and contin-key contributions to various fields of mathematics and mechan-
ued its flight backwards. It was even more amazing for the dis-ics, leaving long-lasting heritage of more than 500 books and
coverer to realize, that this pattern of motion has been repeategapers. It has been computed that his publications during his
in the periodic sequence, without any apparent external forceworking life averaged about 800 pages a year. His portrait is
applied. Using gymnastics terminology, it looked almost like presented in Figd Among numerous Euler’'s works, where
the nut was performing the “Rounfidackflip”. This spectac-
ular behaviour in the weightless environment of “flipping” of
the rigid body on the axis of main rotation, later was named
the “Dzhanibekov’s fect” or “Dzhanibekov’s phenomenon”.
Attracting attention of scientists and engineers, this discovery
has even prompted a new hypothesis, that the Earth, similar
to the “wing nut” in Dzhanibekov’s phenomenon, is regularly
performing its flips, but with a period of approximately 12,000
yearsd In view of its potential importance, as a matter of pre-
caution, the Dzhanibekov’s discovery was classified by author-
ities for 10 year$)

Later on, the Dzhanibekov's phenomenon, which initially
was perceived by some as counter-intuitive or even mysteri-
ous, has been explained in various journal and on-line pub-
lications®*) the Euler's equations have paved the theoretical
ground to its scientific manifestation. Various popular videos / , — : @
and demonstrations became available to the wide audience. Al K\\\‘N\\\\v\'\\&g
On numerous occasions, Vladimir A. Dzhanibekov himself ex- : — =
plained his discovery in various lectures, TV programs and in-

terviews™® Fig. 2. L.Euler's portrait from the University of Tartu collectié#.
1.2. Demonstrations of the Dzhanibekov’s phenomenon on
board of the International Space Station he developed rigid-body dynamics, very influential publication

Later on, the Dzhanibekov’s phenomenon has been reprol3) has a very special place in history. It presented Euler's equa-
duced and observed during numerous demonstrations on boardons for the dynamics of a rigid body, widely used in modern

of International Space Station. Interested readers are referred t8ngineering and science. In Fi@ we show the title of the
multiple videos in the media. publication, available from the Euler’s arctitfeand the repro-

A series of experiments with various rigid bodies, including duced famous Euler's equations, exactly as they appeared in the
cylinders, cubes and right rectangular prisms was conducted original work: In the equations in Fig M, accordingly to
board of the ISS by Dan Burbank and Anton Shkaplerov, mem-

bers of the 30-th expeditich. ® 14 B

Japanese astronaut Koichi Wakata (JAXA), has also con-| = Si== == Steaie St srmssr e me=r=trd
ducted an experiment on board of ISS with spinning and tum- DU MOUVEMENT
bling plierst9 DE .

Another similar video is where astronaut Kevin Ford (NASA) ROTATION DES CORPS SOLIDES
is conducting another experiment on board of ISS (34-th expe- - AUTOUR D'UN AAE VARIADLE
dition) with spinning and tumbling plie/s) ‘ vak M. EULER

Richard Garriott, pioneer in commercial space travel, has
also run a series of outreach program experiments on board of  (a) The title of the historic L.Euler's woik5), dated by 1758.
the ISS and in the vidéd demonstrates Dzhanibelkov'fect,

d.

using a deck of playing cards. P = Maa. : C:C“ = M (cc =) Eﬂf—m—r!

Another video on the topic shows a tumbling T-haRdlex- § &
periment on board of the ISS and is a wonderful illustration of | Q = M2. ‘]'_”7"5_9 —+ M (28 = cc). bt L

the instability of rotation about an asymmetric object’s interme- 28 28
diate principal axis. - d. ycoly 34 col'a cof B
R = Mce. bb ~— 82), ————————

The Dzhanibekov’'s phenomenon, and also so called “tennis e agde + M ~) 2g

racket phenomenon” were explained using Euler’s equations for
an unconstrained rigid bo@y.It has been realised that rotation
of the body about the axis with intermediate principal moment
of inertia becomes unstable, resulting in sudden change of itEuler, is the weight, and Euler emphasised taia, Mbb and
attitude. Mcc are the inertia moments of the body along the three fixed

(b) Euler’'s equations as they appeared in the original L.Euler’s @Byk
Fig. 3. Famous Euler’s equations for the rigid body dynarifs.



axe3? andP, Q andR are the moments of the forces along the
principal axes.

In modern language, the Euler’s equations in B(@) can be
written as follows:

DN = o o+ (I ) w0,
DNy =Ly @y + (hex— 122) wztoy
Z Nz =l w; + (lyy = Ixx) WxWy

wherex, y, z are the principal axes of inertia fixed to the body;
the components of angular velocity in this systemare (wy,
wy, wy), the torque iN = (Nx, N,, N,) and the diagonal ele-
ments of the inertia tensor atg,, |, andl,,.

(1)

The equations, known as “Euler’s equations” for a rigid body,
referred to as principal inertia axes, and with the angular veloc-

ity components in terms of the angles 3, y, which are the

For solving the rigid body dynamics problems, using numerical
methods, we combine matrix equatioB¥ &nd [) into a single
equation:

Ikx O O 0 0 0 Wy
o 1, O 0 0 0 wy
0 0 Iy 0 0 0|} wz | _
0 O O sivsing cosyp O o[
0 O O siMcosp -sing O 0
0 0 O co9 0 1 )

(lyy =129 Wy Wz
(Izz_ Ixx) WzWx
(Ixx — lyy) WxWy

wWx

Wy

Wz

(6)

2.2. Programming considerations

angles subtended by the rotation axes with the principal ones Ordinary diferential equations can béieiently solved using
fixed in the body. It could be said that these are the Euler an-Runge-Kutta methods. MATLA® has a set of specialised pro-
gles, although actually they are usually defined by applying thecedures, includingde45, ode23, ode113, odel5s, ode23s,
rotation operator to the axes fixed on the body, so that eactbde23t, ode23tb, ode15i, to deal with various tasks, for ex-
angle is related to the angular velocities of rotation known asample, described by the ordinaryffdirential equation in the

precession, nutation and spin.
2. Numerical Simulation of the “Dzhanibekov’s Effect”

2.1. Equations of motion

Euler's equations[l), in the general case, can be applied for
moments summed about any poiit where® is a point on
the rigid body that is attached to a fixed pivot in the inertial

classical formi{x} = {f(t, x)}.
There is also a very useful option enabling solution of the
problems, involving so called “mass” matrix:

[M(t X)X} = {f(t, %)} ()

This option, accessible via theleset, in some cases can im-
prove dficiency and can also handle cases when the mass ma-
trix is singular (non-invertible). As it can be seen, our Egs.

reference system. However, in this case the inertia propertiei@ correspond to the format given with EGZ){ therefore, we

should be calculated relative to the pofnt

In our study we will apply the Euler’s equations for moments
summed about the center of mgssf the rigid body, free from
any external torqueNy = N, = N, = 0) and in the further
notations we will imply thatyy, 1,,, 1,; are principal moments
of inertia of the body with respect to tig

lixwx = (lyy = 122 wyw; =0

Iyy ‘.Uy - (Izz_ |xx) wwx =0 (2)
l22007 = (Ixx = 1) wxwy =0
The matrix form of the above is:
IXX 0 0 (%)x (IL/L; - IZZ) Wy Wz
0 I!/y 0 Wy = (I22— 1xx) watwx (3)
0 0 |lypm W (Ixx = lyy) wxwy

use MATLAB® ode procedure in conjunction with the “mass
matrix” option to simulate dynamic behaviour of the morphing
spacecraft models.
2.3. Study Case-1: results

Let us consider a task of simulating the motion of the rigid
body with the following parametersty, = 0.3, 1,, = 0.35,
I, = 0.4 (all in kg*m?), with the initial conditiongwy = 0.1,
iwy = 15,jw, = 0.1 (all in rads). Equationsld) were solved
numerically and main results are given in Fdfy. Their obser-
vation confirms periodical flipping of the system: indeeg in
Fig.[(a) is periodically changing its sign. Fig(b) confirms
that during the “flipping” motion, the angular momentum in the
system is concerved. At last, Fid(c) shows that whiley is
monotonically increasing, the pattern is quite dierent: there
are evident “plateau” segments corresponding to small changes
in ¢ around 0, 18C, 360, etc. However, the most important

In order to be able to describe instantaneous orientation of aobservation in the context of this paper is presence of the mul-

rigid body with respect to a fixed coordinate system, we will
use the angles, 6 andg, the Euler angléd :

wy = ¥ SiNG sing + 6 cose

w, = ¥ Sinf cosg — 6 sing (4)
wy = Y COSH +
which can also be written in the matrix form:
singsing  cosp O |( ¢ wy
sing cosp -—sing O 0 =1 w, (5)
cosf 0 1 ¢ Wy

tiple zero-crossings for various components of the angular ve-
locity, in particular, forwy andw, in the test case.

3. Proposing New Spacecraft Desiggislissions, Utilising
Dzhanibelov’'s Phenomenon
3.1. Proposing Idea of "Switching ONOFF"
Dzhanibekov’s spacecraft flipping by controlled
morphing of the tumbling object
Flipping motion of the rigid body, during which the direc-
tion of the angular velocity of the main rotation, let say, is
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(b) Time histories of the angular momenta of the spacecraft.
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(c) Time histories of the angular momenta of the spacecraft.
Fig. 4. Dzhanibekov’s &ect: simulation results for the study Case-1.

To solve this task, we are proposing to utilise the controllable
morphing of the rigid body (the spacecraft, in the context of
this paper). We are proposing for the purpose of stabilisation
of the object to purposely change the mass distribution within
the spacecraft, after which the intermediate moment of inertia
becomes the smallest largest among all principal moments
of inertia. In the illustration case, where we selegjeakis to
be the axis of the main rotation, the condition for the unstable
"Dzhanibekov’s &ect’-type motion can be written as:

(8)

However, if via special design of the spacecraft, enabling the
change of its principal moments of inertia (via mechanical or
other means), the targeted valuelgf is in controllable way
forcefully "moved” outside the embrace bf; andl,, then the
condition of instability Eq.[&) would no longer be satisfied and
the unstable motion would be "switched OFF"!

//—\\
‘<\_/<[‘ilyy,; =

Solution-1: makd,, smaller thanl,y andl,,

Ix < lyy < lzz

Solution-2: makd,, larger thanly, andl,

//—\\/—\
< rily )< <
N //

Fig. 5. Possible conceptual solutions for stabilising an unstable spacecraft
with its main rotation abouj axis.

Conceptually, this proposition can be illustrated with the di-
agram in Fig[Bl which presentswo solutions. The first con-
ceptual solution involves reduction of initial valuelgf (which
we denote ad,,) to its new (or final) valugl,,, being smaller
thanl,y value. And the second solution involves increase of the
initial value ofl,, (which we denote ad,,) to its new value
ilyy, being larger thar,..

For the numerical verification of the concept, let us assume
the following demonstration values = 0.3, 1,, = 0.35 and
I, = 0.4 (all in kg*m?), which are conforming with the general
condition EqlB) of the flipping unstable motion, which would
result if the main rotation aboytaxis is initiated. And in this
case, in order to test the concept of "switching OFF” the flipping
motion, we will changel,, = 0.35 to its new value ofl,, = 0.2
(solution-1) or¢l,, = 0.5 (solution-2).

However, in order to proceed with the numerical simulations,
we need to expand the Euler equations, allowing variations in
the moments of inertia of the rigid body.

3.2. Equations of motion: extending Euler’s equations

In order to simulate the cases of the morphing spacecraft with

variable moments of inertia, we need to extend classic Euler’s

intermnittenly changing to opposite, is called “Dzhanibekov’s Egs. ). We note that the sum of the moments about the center
effect”. It is a consequence of the momet of inertia, associatedof mass of a rigid body due to external forces and couples equals
with the main rotation, being between two other values of the to the rate of change of the angular momentum about the center

moments of inertialxyx andl, in other words, having an inter-
mediate value among principal moments of inertia.

What if there is a need to stop or suspend for some time the

flipping unstable motion of the object?

of masst?

Y

dH

o
T odt

D N=

Inertial

Body



Also, the components of the angular momentum vect?i’cﬁt), z
with respect to the body-axis frame can be expressed by the
product between the principal moment of inertia matgand
the components of the angular velocity vectors as follows:

Ixx 0 0 Wy
Fi(t) :[ o 1, O ] Wy
0 O

22 Wz

Therefore, extended Euler's equations can now be written as:

I lkx 0 O } wx i 0 0 ][ ax
o1, O wy ¢+| 0 1, O wy ¢+ "z &
0 0 Iy Wy 0 0 Iz w;
0 | 0 0 0 Fig. 6. Six-masses conceptual model of the morphing spacecraft.
—Wz Wy XX Wy
[ w;, 0 —wy H o 1, O } w, =30
—wy wy O 0 0 Iy Wy 0
9) ,
For solving themorphingrigid body dynamics problems, using
2il:]rgleerz:slllJ ;r:it(e)t:.ods, we combine matrix Eq@) §nd B) into a Zz: "y (axis of rotation)
ke O O 0O 0 O( 7
o1, O 0 0 0 wy = —
0 0 Iz 0 0 0 wz | _ ~ 07 X
0 0 O sising cosp O v il ya
0 0 0 siMcosp -sing O 6 02+ A
0 0 O cog 0 1 ) 03] e
. e
(lw - Izz) wyWz — I_XX Wy 004677\0:\ﬁ-—ﬁ\\ﬁ ’
(Izz = Ixx) wzwx = IW Wy ; 0 X[nt:].z 0.4 -0.5 y [m]
lxx = 1) wxw, — 12z W
(1 'U) a)); v (10) (a) Solution-1, as per Fif
a)y z
Wy
Equations[T0) are the main equations, used in this paper and
solved usingpde MATLAB ® Runge-Kutta solver, with “mass 04
matrix” option, as per Eq[). 0o ~ y (axis of rotation)

4. Proposing Geometric Morphing of spacecraft: Concep-
tual Considerations

ER
. . N i T4
To demonstrate the feasibility of the controllable behaviour | b
of the spacecraft, let us consider a simple conceptual model of ' ‘ /,/‘o.s
the morphing spacecraft, constructed as an axisymmetric set 04l /o
of three orthogonal dumbbells, each of which has negligible 0.6 TT O'N*O?‘*Tﬂ/_o_s yml
mass of the rod, connecting two equal concentrated masses at its x[m] '

ends. Let us also assume, for conceptual simplicity, that three (b) Solution-2, as per Fi@
dumbbells are connected at the middle points of their rods, andkig. 7. conceptual 6-masses design of the morphing spacecraft, capable
the corresponding masseg, m, andm, are located at the dis-  of self-transfer from unstable “Dzhanibekov'et’-type flipping motion
tancegy, r, andr, from the axes of rotatior, y andz, as shown  to stable motion (and vice versa): white spheres - unstable configuration for
in Fig.(@). In the illustrated conceptual design, morphing of the y main rotation, black spheres - stable configuration.
spacecraft is achieved via independent synchronised control of
the position coordinates, = ry(t), r, = r,(t) andr, = r,(t) of
the massesy, m, andm. ) o

The principal moments of inertia of the system can be calcu- 1 "€n by adding all equations ii]), we can get:
lated as follows:

Lo = 2My 12 + 2myr? : (IXX +1, + IZZ) =2 (mxrﬁ +myrs+ er§) (12)
I, = 2myr2 + 2myr2 (11)
|2z = 2myrZ + 2myr7 Then, subtracting fronflf) consecutively each of EJLI), we



can get:
_0.35]
[ = Iyy+IZZ_IXX gﬂ 0.3 ‘
2my =2 0.25¢ ;
~ |
l2z+ Ixx — | .21 w
r, = 2zt Xy (13) \ |
i 2r‘ny 0 5 10 15 20
lx + 1y = 12z 0
;= y| —————— -
2m, ~: 0.2F
Let us assume, for the illustration purpose, thgt= m, = E-OA’
m, = 1Kg, lxx = 0.3Kg*m?, Iyx = 0.35kg*n?, Iy = 0.4kg*n?. L2-06F
Then, for the case of the tumbling spacecraft considered in Secq{ gl ‘ ‘ ‘ |
tion[2.3] we can find the initial radial positions of the spacecralft 0 5 10 15 20
masses, using Eq&3): s

Fig. 8. Time history of the controlled manipulation with the moment of

irx=02500m ir, =02958m r; =0.3354 n(14) inertial,, to stop flipping motion of the system (Case-2).

These values for the unit masses would ensure, that the in-

ertial properties of the spacecraft dig = 0.3kg*m?, I, = ;
0.35kg*n?, I, = 0.4kg*m?. Note that in our example hetg, & 05 i
has arintermediatevalue among all principal moments of iner- *z 0.45 |
tia: Iyx < 1, < |z therefore if the spacecraft is provided with % 0.4t !
the initial angular velocitiesy = 0.1rads, w, = 15rads and $0_35
w; = 0.1rads, with the prevailing rotation aboytbody axis, L ‘ ‘
then the spacecraft rotation about this axis would be unstable 0 5 10 15 20
and classical “Dzhanibekov’stect” periodic flipping would be 08
observed. —
It will be shown in Sectiol5.2] that if during the "flipping” o 06
motion, at the instant, when the angular velocitigs = w, i:o 0.4r1
are close to zeros, the moment of ineflig = 0.35kg*n? is 502
rapidly changed to its new value gf,, = 0.2kg*m?, then the T
nature of the followed motion of the system would change from 0 5 10 15 20
unstable “flipping” to stable. We call it “switching OFF” the tIs]
flipping motion. Fig. 9. Time history of the controlled manipulation with the moment of

This will be occurring because the moment of inetfjsstops inertial,, to stop flipping motion of the system (Case-3).
being the intermediate value and the rotation alydaubdy axis
is becoming stable, without changes in the directionpf

The new values of the position radii, corresponding to the 5. Motion of Spacecraft with Geometric Morphing

“solution-1" in Fig.[5, can be calculated using EJ{EY: J A ; f
5.1. Study Case-2: "Switching OFF” flipping motion o
i=01581m r, =03536m r,=0273915) the sgacecraft after one fIi?) (solutionl?rl)) °
The spacecraft masses at these radius positions are shown in Figureldlshows that at the instaht= 6.77 s, the angular ve-
Fig[Z(a) with dark color. locity w, has its highest value and, changes its value from
The flipping motion can be also stopped, using “solution-2”, negative to positive. It is believed that this instant, correspond-
shown in conceptual Fi@ For the purpose of the illustration ing to the most prominent rotation abaubody axis, would be
of the concept, let us consider rapid increase ofltfefrom the best time to apply morphing to the spacecraft. In our demo

its initial value of;l,, = 0.35kg*n? to its new value ofl,, = case the moment of inertig, is changed from 0.35 t0 0.2, as
0.5kg*m?. The new values of the position radii, corresponding per Fig[8within relatively short period of time of 0.2 s. Results
to the “solution-2" in Fig[H, can be calculated using EJEY: of the simulation are given with FilQ Figure [I0(a) shows

that the simulated morphing led to the step-type increase of the
angular velocityw, of the body and did not initiate significant
The spacecraft masses at these radius positions are shown wscillations inwx andw,. In contrast to Case-1, wheseandH
Fig.[A(b) with dark color. plots had similar shapes, in the Case-2 these plots Heretit.

The morphing of the spacecraft from the initially unstable Figure[IQ(b) shows that morphing did not change the angular
configuration [as per Eq[I#l)], associated with the "flipping”  momenturrH, and after the morphing was completed, the value
motion, to its final stable configuration [as per H@iS)(or (16 of H, stayed almost unchanged, evidencing that attempt to stop
and Solution-1 or 2 in Fidg], are shown in FidZ, where masses  the “flipping” motion was successful. At last, note that as the
for the initial configuration are shown in white, whereas the stabilised value o§ = 18C, the stabilised spacecratft is flying
masses for the final configuration are shown in black color. backwardswith its initial heading attitude changed by 280

frx=0.2500m ¢r, =0.2958 m ¢r, = 0.3354 1f16)



1 change of the moment of inertlg, (associated with the main

x rotation of the spacecraft), which initially had its valuglgf =

0.35, being an intermediate value, surrounded by the smallest
. Ixx = 0.2 and largest,; = 0.4 moments of inertia:

Iux <ilyy <z a7

While keeping values offyx andl,, unchanged, the value bf,
in the presented experiment was changed frggn= 0.35 to
1 the final value of1,, = 0.5, as per Fidgd, after which it became
the largest principal moment of inertia:

w,,.‘. wy, w. [1/s]

J lx < 12z < tlyy (18)

10 15 20 . .
¢ [s] FigureIOshows that as one of the consequences of the increase

of I,,, was a reduction from 15 to 10.5 yacbf the associated
angular velocityw, of the spacecraft. This simulation result is

in perfect agreement with the conservation of the angular mo-
.......... H, mentum of the system, suggesting that the rotational speed must
—4, be reduced by the ratio of 36(;l,,/¢l,,) = 15x (0.35/0.5) =

10.5 rads.

In contrast to Case-1, whee and H plots had similar
shapes, in the Case-3 these plots aftedint. Figurdl1(b)
shows that morphing did not change the angular momeityim
and after the morphing was completed, the valuélpbtayed
almost unchanged, evidencing that the stopping “flipping” mo-
tion has been successful.

5.3. Study Case-4: "Switching OFF” flipping motion of
the spacecraft after two flips (solution-1)

We now demonstrate switching OFF the “flipping” motion
— ‘ ‘ ‘ of the morphing spacecraft after it performs two flips. The time

£ Js] history of morphing is similar to presented in H.but mor-
phing is starting at = 1354 s. Results of this Case-4 are pre-
sented in FigI2 Observed reduction of the angular velocity
10% is the same, as for the Case-2, however, in Case-2 after the mo-

H,, H,, H., Hia [kgxmz/s]

(b) Time histories of the angular momenta of the spacecraft.

X
2 I i | tion is stabilised, the spacecraft continues its flight backwards,
< A ! ] whereas in the current case, the stabilised attitude of the space-
=L } i craft is the same as at the initial time.
0 5 ‘ 1‘0 1‘5 20 5.4, Study Case-5: "Switching ON” spacecraft flipping
: motion
=80 | § In a similar way as stabilisation, described in the Cases 2-
iﬁo L l ) 4 was achieved, we can initiate the “flipping” motion of the
= ok ‘ i ‘ ‘ ] spacecraft. For this, the axis of the major rotation of the system
0 5 10 15 20 (let say,y) initially should coincide with the axis of minimal or
o | . maximal moments of inertia, i.e. one of the conditions should
B ! be satisfied!,, < min(lxx, 127 orl,, > max(xx, 17). In this case
< toor ! 1 initiated rotation would be stable, without “flipping”. To acti-
200 1 ‘ ‘ vate the “flipping” motion, morphing of the system should be
0 5 10 15 20 performed, which should result Iy, becoming an intermediate
A value between,y andl,.. In the study Case-5, as illustration,
(c) Time histories of the angular momenta of the spacecraft. we use the following valuesvy = 0.1, w, = 26.25,w, = 0.1
Fig. 10. Simulation results for the study Case-2: switchirfftbe "flip- (all - in rads), Ixx = 0.3, ilyy = 0.2, flyy = 0.35,1, = 0.4 (all
ping” motion of the spacecrafiNote: brr is an instant, at which the "flip- - jn kgxm?). The time history of applied morphing is presented

ping” motion of the spacecraft was stopped, or, in other words, "switched j, Fig.I3and the results of the simulation are shown in E#.
OFF”. )
5.2. Study Case-3: "Switching OFF” flipping motion of 5.5. Study Case-6: "Switching ON” spacecraft flipping
the spacecraft after one flip (solution-2) motion with following "Switching OFF”
It is interesting to observe that stabilisation of the system, Case-6 represents further development of the Case-5 by
illustrated with Figs[Id has been achieved with a controllable switching OFF the “flipping” motion at = 9.89 s, instant of
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(c) Time histories of the angular momenta of the spacecraft.
Fig. 11. Simulation results for the study Case-3: switchirffjthe "flip-

%10

10

ping” motion of the spacecraft.

the maximal value ofv,. The time history of applied morph-
ing is presented in Figl5 and the results of the simulation are

shown in Fig[Ia

(c) Time histories of the angular momenta of the spacecraft.
Fig. 12. Simulation results for the study Case-4: switchirfgtbe "flip-
ping” motion of the spacecraft.

6. Main Results and Conclusions

This paper is dedicated to the numerical simulation and anal-
ysis of the “Dzhanibekov’s fect” - non-stable “flipping” mo-
tion of the rigid body with periodic change by 186f the di-
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(b) Time histories of the angular momenta of the spacecraft.
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(c) Time histories of the angular momenta of the spacecraft.

Fig. 14. Simulation results for the study Case-5: activation of the "flip-

ping” motion of the spacecraft.
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Fig. 13. Time history of the controlled manipulation with the moment of
inertial,, to stop flipping motion of the system.

rection of the main axis of its rotation, always occurring when
the body is provided with the main rotation about its axis with
intermediate principal moment of inertia.

In this work we proposed and developed a new concept of uti-
lizing “Dhanibekov’s Hrect” for changing attitude of the space-
craft via its inertial morphing, without employing classical gy-
roscopes. Moreover, we proposed and tested a new method of
switching OFF the “flipping” motion on the main axis of rota-
tion by transferring motion to the stable (i.e. “non-flipping”)
mode. For the implementation of this transformation, we pro-
posed two main conceptual solutions, involving changes to the
system, resulting in the intermediate moment of inertia becom-
ing the smallest or largest principal moment of inertia of the
body. A conceptual model of the 6-mass model of the spacecraft
enabling controllable switching OFF of the “Dzhanibekov’s Ef-
fect” flipping is presented.

Furthermore, implementation of the transfer of the stable mo-
tion of the spacecraft to the unstable (i.e. “switching ON” the
“flipping” mode) has also been successfully completed.

These “flipping” mode “switching ON” and “switching OFF”
capabilities and their combinations have been successfully
demonstrated on the representative study cases.

To achieve the main objectives in the study, we first devel-
oped a model of the tumbling spacecraft, based on the non-
linear Euler’s equations of rigid body motion and successfully
simulated classical “Dzhanibekov'stEcts” for the rigid bod-
ies with constant inertia properties. As main further develop-
ment we enhanced the analytical and numerical models, which

15 20
"
@ 05 | 1
a |
g I
%% 0 |
"ﬁ‘ |
S.05) i 1
|
1 1 1 1
0 5 10 15 20

t [s]

Fig. 15. Time history of the controlled manipulation with the moment of
inertial,, to activate flipping motion of the system and then to turrfiit o



It has been demonstrated that time of activation of the space-

""""" “x craft controllable morphing and its duration are critical factors
| in the quality of stabilisation and “flipping” de-stabilisation pro-
T cesses. Based on the simulated tests, we proposed recommen-

. dations on morphing of the spacecraft.

At last, a new graphical interpretation of the transfer of
the proposed morphed spacecraft from stable mode to the
“Dzhanibekov’s Hect” “flipping” mode and vice versa, have

been presented.
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