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This paper is uncovering the mystery of the interesting “Dzhanibekov’s effect” (often also called Dzhanibekov’s phenomenon),

providing systematic detailed explanation of the intriguing phenomenon using the numerical simulation methods and tools, employing

non-linear equations of motion of the rigid bodies. Based on the developed simulation model, we also explore the possibilities of

utilisation of the “Dzhanibekov’s Effect” for possible future new space missions, employing periodic change in the attitude orientation

of the spacecraft. In our conceptual designs, in particular, we consider novel cases of the control of the dynamics of the spinning

rotating spacecraft via active change of its inertial properties. This, for example, enables for the spacecraft with initial stable axial

spin, at the desired time, to be transferred into the “Dzhanibekov’s” unstable flipping mode (maybe, for changing its head attitude by

180◦ or observations) and then, if needed, to return back to the initial stable spin. Essentially, we present the method of controlled

switching ON and OFF of the unstable periodic flipping motion of the spacecraft (known as “Dzhanibekov’s effect”) via controlled

morphing of the spacecraft. This paper also presents the 6-masses conceptual design of the spacecraft, capable of producing required

morphing, necessary for activation or de-activation of the flipping tumbling, without use of the gyroscopes. We also produce geometric

interpretation of the “flip ON/OFF” developed method.
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Nomenclature

ψ, θ, ϕ : Euler angles
ωx, ωy, ωz : components of the angular velocity

d : derivative
G : centre of the mass of the rigid body

H⃗(t) : angular momentum vector
Ixx, Iyy, Izz : principal moments of inertia
mx, my, mz : dumbbell masses in the 6-mass spacecraft
M : mass matrix

Maa, Mbb, Mcc : moments of inertia in original Euler’s work
Nx, Ny, Nz : torque components
P : pivot point

P, Q, R : torque components in original Euler’s work
rx, ry, rz : axial positions of the spacecraft masses

t : time
x, y, z : principal axes of the rigid body

x : system’s states
Subscripts

f : final
i : initial

1. Introduction

1.1. Discovery of the phenomenon in space
Vladimir Aleksandrovich Dzhanibekov is a famous Russian

cosmonaut (shown in Fig.1), who with his five space flights is
recognised the champion in this category. In fact, he has spent
in space 145 days, 15 hours and 35 seconds.2) Time duration of
his open space walks is 8 hours and 34 minutes.

His first flight was in 1978. And during his fifth space flight,
on 25-June-1985, he worked on-board of the space assembly
“Salyut-7”-“Soyuz T-13”, unpacking the payloads, delivered
from the Earth by “Progress-24 (#125)” supply transport ve-

Fig. 1. Vladimir Aleksandrovich Dzhanibekov1)

hicle. All arrived payloads, sent to the orbital space station
“Salyut-7”, were constrained to prevent their movements dur-
ing the launch and flight of the space vehicle. The fixation
of the payloads to the bases was secured by the classical fix-
ation elements, involving long threaded rods and fixation “ear
wing butterfly” nuts. The unpacking process involved exhaust-
ing unscrewing of many nuts, which required for each of the
nuts to be rotated many times for them to travel significant dis-
tances along their corresponding fixing rods. To speed up the
process, Vladimir Dzhanibekov has applied a significant torque
impulse to the wing of the nut, which resulted in the initia-
tion of the fast rotation of the nut and its conjugated transla-
tional motion along the threaded rod. The impulse was suffi-
cient for the nut to complete unscrewing process on it own, and
then to leave the rod. From this moment the nut continued its
free flight, travelling along the axis of the left rod, while still



being in rotation about this axis. After travelling the transla-
tional distance about 42 cm, the nut, after its apparent stable
and undisturbed flight, suddenly changed its axial orientation
by 180 degrees, simultaneously changing its direction of rotat-
ing to opposite in the body-axis coordinate system and contin-
ued its flight backwards. It was even more amazing for the dis-
coverer to realize, that this pattern of motion has been repeated
in the periodic sequence, without any apparent external force
applied. Using gymnastics terminology, it looked almost like
the nut was performing the “Roundoff Backflip”. This spectac-
ular behaviour in the weightless environment of “flipping” of
the rigid body on the axis of main rotation, later was named
the “Dzhanibekov’s effect” or “Dzhanibekov’s phenomenon”.
Attracting attention of scientists and engineers, this discovery
has even prompted a new hypothesis, that the Earth, similar
to the “wing nut” in Dzhanibekov’s phenomenon, is regularly
performing its flips, but with a period of approximately 12,000
years.3) In view of its potential importance, as a matter of pre-
caution, the Dzhanibekov’s discovery was classified by author-
ities for 10 years.4)

Later on, the Dzhanibekov’s phenomenon, which initially
was perceived by some as counter-intuitive or even mysteri-
ous, has been explained in various journal and on-line pub-
lications:5–7) the Euler’s equations have paved the theoretical
ground to its scientific manifestation. Various popular videos
and demonstrations became available to the wide audience.
On numerous occasions, Vladimir A. Dzhanibekov himself ex-
plained his discovery in various lectures, TV programs and in-
terviews.4,8)

1.2. Demonstrations of the Dzhanibekov’s phenomenon on
board of the International Space Station

Later on, the Dzhanibekov’s phenomenon has been repro-
duced and observed during numerous demonstrations on board
of International Space Station. Interested readers are referred to
multiple videos in the media.

A series of experiments with various rigid bodies, including
cylinders, cubes and right rectangular prisms was conducted on
board of the ISS by Dan Burbank and Anton Shkaplerov, mem-
bers of the 30-th expedition.9)

Japanese astronaut Koichi Wakata (JAXA), has also con-
ducted an experiment on board of ISS with spinning and tum-
bling pliers.10)

Another similar video is where astronaut Kevin Ford (NASA)
is conducting another experiment on board of ISS (34-th expe-
dition) with spinning and tumbling pliers.11)

Richard Garriott, pioneer in commercial space travel, has
also run a series of outreach program experiments on board of
the ISS and in the video12) demonstrates Dzhanibelkov’s effect,
using a deck of playing cards.

Another video on the topic shows a tumbling T-handle13) ex-
periment on board of the ISS and is a wonderful illustration of
the instability of rotation about an asymmetric object’s interme-
diate principal axis.

The Dzhanibekov’s phenomenon, and also so called “tennis
racket phenomenon” were explained using Euler’s equations for
an unconstrained rigid body.5) It has been realised that rotation
of the body about the axis with intermediate principal moment
of inertia becomes unstable, resulting in sudden change of its
attitude.

1.3. Historical perspectives: Euler’s equations
Leonhard Euler (April 15, 1707 - Sept. 18, 1783) was a fa-

mous Swiss physicist and mathematician (the most eminent of
the 18th century and one of the greatest in history), who made
key contributions to various fields of mathematics and mechan-
ics, leaving long-lasting heritage of more than 500 books and
papers. It has been computed that his publications during his
working life averaged about 800 pages a year. His portrait is
presented in Fig.2. Among numerous Euler’s works, where

Fig. 2. L.Euler’s portrait from the University of Tartu collection.14)

he developed rigid-body dynamics, very influential publication
15) has a very special place in history. It presented Euler’s equa-
tions for the dynamics of a rigid body, widely used in modern
engineering and science. In Fig.3 we show the title of the
publication, available from the Euler’s archive16) and the repro-
duced famous Euler’s equations, exactly as they appeared in the
original work.15) In the equations in Fig.3, M, accordingly to

(a) The title of the historic L.Euler’s work15), dated by 1758.

(b) Euler’s equations as they appeared in the original L.Euler’s work15).

Fig. 3. Famous Euler’s equations for the rigid body dynamics.16)

Euler, is the weight, and Euler emphasised thatMaa, Mbb and
Mcc are the inertia moments of the body along the three fixed



axes17) andP, Q andR are the moments of the forces along the
principal axes.

In modern language, the Euler’s equations in Fig.3(a) can be
written as follows:∑

Nx = Ixx ω̇x + (Izz− Iyy) ωyωz∑
Ny = Iyy ω̇y + (Ixx − Izz) ωzωx (1)∑
Nz = Izz ω̇z + (Iyy − Ixx) ωxωy

wherex, y, z are the principal axes of inertia fixed to the body;
the components of angular velocity in this system areω = (ωx,
ωy, ωz), the torque isN = (Nx, Ny, Nz) and the diagonal ele-
ments of the inertia tensor areIxx, Iyy andIzz.

The equations, known as “Euler’s equations” for a rigid body,
referred to as principal inertia axes, and with the angular veloc-
ity components in terms of the anglesα, β, γ, which are the
angles subtended by the rotation axes with the principal ones
fixed in the body. It could be said that these are the Euler an-
gles, although actually they are usually defined by applying the
rotation operator to the axes fixed on the body, so that each
angle is related to the angular velocities of rotation known as
precession, nutation and spin.

2. Numerical Simulation of the “Dzhanibekov’s Effect”

2.1. Equations of motion
Euler’s equations .(1), in the general case, can be applied for

moments summed about any pointP, whereP is a point on
the rigid body that is attached to a fixed pivot in the inertial
reference system. However, in this case the inertia properties
should be calculated relative to the pointP.

In our study we will apply the Euler’s equations for moments
summed about the center of massG of the rigid body, free from
any external torques (Nx = Ny = Nz = 0) and in the further
notations we will imply thatIxx, Iyy, Izz are principal moments
of inertia of the body with respect to theG:

Ixx ω̇x − (Iyy − Izz) ωyωz = 0

Iyy ω̇y − (Izz− Ixx) ωzωx = 0 (2)

Izzω̇z − (Ixx − Iyy) ωxωy = 0

The matrix form of the above is: Ixx 0 0
0 Iyy 0
0 0 Izz



ω̇x
ω̇y
ω̇z

 =


(Iyy − Izz) ωyωz
(Izz− Ixx) ωzωx
(Ixx − Iyy) ωxωy

 (3)

In order to be able to describe instantaneous orientation of a
rigid body with respect to a fixed coordinate system, we will
use the anglesψ, θ andϕ, the Euler angles18) :

ωx = ψ̇ sinθ sinϕ + θ̇ cosϕ

ωy = ψ̇ sinθ cosϕ − θ̇ sinϕ (4)

ωz = ψ̇ cosθ + ϕ̇

which can also be written in the matrix form: sinθ sinϕ cosϕ 0
sinθ cosϕ − sinϕ 0

cosθ 0 1



ψ̇
θ̇
ϕ̇

 =

ωx
ωy
ωz

 (5)

For solving the rigid body dynamics problems, using numerical
methods, we combine matrix equations (3) and (5) into a single
equation:

Ixx 0 0 0 0 0
0 Iyy 0 0 0 0
0 0 Izz 0 0 0
0 0 0 sinθ sinϕ cosϕ 0
0 0 0 sinθ cosϕ − sinϕ 0
0 0 0 cosθ 0 1





ω̇x
ω̇y
ω̇z

ψ̇
θ̇
ϕ̇


=



(Iyy − Izz) ωyωz
(Izz− Ixx) ωzωx
(Ixx − Iyy) ωxωy

ωx
ωy
ωz


(6)

2.2. Programming considerations
Ordinary differential equations can be efficiently solved using

Runge-Kutta methods. MATLABR⃝ has a set of specialised pro-
cedures, includingode45, ode23, ode113, ode15s, ode23s,
ode23t, ode23tb, ode15i, to deal with various tasks, for ex-
ample, described by the ordinary differential equation in the
classical form:{ẋ} = { f (t, x)}.

There is also a very useful option enabling solution of the
problems, involving so called “mass” matrixM:

[M(t, x)]{ẋ} = { f (t, x)} (7)

This option, accessible via theodeset, in some cases can im-
prove efficiency and can also handle cases when the mass ma-
trix is singular (non-invertible). As it can be seen, our Eqs.
(6) correspond to the format given with Eq. (7), therefore, we
use MATLAB R⃝ ode procedure in conjunction with the “mass
matrix” option to simulate dynamic behaviour of the morphing
spacecraft models.
2.3. Study Case-1: results

Let us consider a task of simulating the motion of the rigid
body with the following parameters:Ixx = 0.3, Iyy = 0.35,
Izz = 0.4 (all in kg*m2), with the initial conditionsiωx = 0.1,

iωy = 15, iωz = 0.1 (all in rad/s). Equations (6) were solved
numerically and main results are given in Fig.4. Their obser-
vation confirms periodical flipping of the system: indeed,ωx in
Fig. 4.(a) is periodically changing its sign. Fig.4(b) confirms
that during the “flipping” motion, the angular momentum in the
system is concerved. At last, Fig.4(c) shows that whileψ is
monotonically increasing, theϕ pattern is quite different: there
are evident “plateau” segments corresponding to small changes
in ϕ around 0◦, 180◦, 360◦, etc. However, the most important
observation in the context of this paper is presence of the mul-
tiple zero-crossings for various components of the angular ve-
locity, in particular, forωx andωy in the test case.

3. Proposing New Spacecraft Designs/Missions, Utilising
Dzhanibelov’s Phenomenon

3.1. Proposing Idea of ”Switching ON/OFF”
Dzhanibekov’s spacecraft flipping by controlled
morphing of the tumbling object

Flipping motion of the rigid body, during which the direc-
tion of the angular velocity of the main rotation, let say,ωy, is



t [s]
0 5 10 15 20

ω
x
,
ω
y
,
ω
z
[1
/
s]

-15

-10

-5

0

5

10

15
ω

x

ω
y

ω
z

(a) Time histories of the angular velocity components of the spacecraft.
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(b) Time histories of the angular momenta of the spacecraft.
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(c) Time histories of the angular momenta of the spacecraft.
Fig. 4. Dzhanibekov’s effect: simulation results for the study Case-1.

intermnittenly changing to opposite, is called “Dzhanibekov’s
effect”. It is a consequence of the momet of inertia, associated
with the main rotation, being between two other values of the
moments of inertia,Ixx andIzz, in other words, having an inter-
mediate value among principal moments of inertia.

What if there is a need to stop or suspend for some time the
flipping unstable motion of the object?

To solve this task, we are proposing to utilise the controllable
morphing of the rigid body (the spacecraft, in the context of
this paper). We are proposing for the purpose of stabilisation
of the object to purposely change the mass distribution within
the spacecraft, after which the intermediate moment of inertia
becomes the smallestor largest among all principal moments
of inertia. In the illustration case, where we selectedy axis to
be the axis of the main rotation, the condition for the unstable
”Dzhanibekov’s effect”-type motion can be written as:

Ixx < Iyy < Izz. (8)

However, if via special design of the spacecraft, enabling the
change of its principal moments of inertia (via mechanical or
other means), the targeted value ofIyy is in controllable way
forcefully ”moved” outside the embrace ofIxx andIzz, then the
condition of instability Eq. (8) would no longer be satisfied and
the unstable motion would be ”switched OFF”!

f Iyy < Ixx < i Iyy < Izz

Ixx < i Iyy < Izz < f Iyy

Solution-1: makeIyy smaller thanIxx andIzz

Solution-2: makeIyy larger thanIxx andIzz

Fig. 5. Possible conceptual solutions for stabilising an unstable spacecraft
with its main rotation abouty axis.

Conceptually, this proposition can be illustrated with the di-
agram in Fig.5, which presentstwo solutions. The first con-
ceptual solution involves reduction of initial value ofIyy (which
we denote asi Iyy) to its new (or final) valuef Iyy, being smaller
thanIxx value. And the second solution involves increase of the
initial value of Iyy (which we denote asi Iyy) to its new value

f Iyy, being larger thanIzz.
For the numerical verification of the concept, let us assume

the following demonstration values:Ixx = 0.3, Iyy = 0.35 and
Izz= 0.4 (all in kg*m2), which are conforming with the general
condition Eq.(8) of the flipping unstable motion, which would
result if the main rotation abouty axis is initiated. And in this
case, in order to test the concept of ”switching OFF” the flipping
motion, we will changei Iyy = 0.35 to its new value off Iyy = 0.2
(solution-1) orf Iyy = 0.5 (solution-2).

However, in order to proceed with the numerical simulations,
we need to expand the Euler equations, allowing variations in
the moments of inertia of the rigid body.
3.2. Equations of motion: extending Euler’s equations

In order to simulate the cases of the morphing spacecraft with
variable moments of inertia, we need to extend classic Euler’s
Eqs. (1). We note that the sum of the moments about the center
of mass of a rigid body due to external forces and couples equals
to the rate of change of the angular momentum about the center
of mass:18)

∑
N⃗ =

dH⃗
dt

∣∣∣∣∣∣∣
Inertial

=
dH⃗
dt

∣∣∣∣∣∣∣
Body

+ ω⃗ × H⃗



Also, the components of the angular momentum vector,H⃗(t),
with respect to the body-axis frame can be expressed by the
product between the principal moment of inertia matrixIG and
the components of the angular velocity vectors as follows:

H⃗(t) =

 Ixx 0 0
0 Iyy 0
0 0 Izz



ωx
ωy
ωz


Therefore, extended Euler’s equations can now be written as: İxx 0 0

0 İyy 0
0 0 İzz



ωx
ωy
ωz

 +
 Ixx 0 0

0 Iyy 0
0 0 Izz



ω̇x
ω̇y
ω̇z

 + 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


 Ixx 0 0

0 Iyy 0
0 0 Izz



ωx
ωy
ωz

 =


0
0
0


(9)

For solving themorphingrigid body dynamics problems, using
numerical methods, we combine matrix Eqs. (9) and (5) into a
single equation:

Ixx 0 0 0 0 0
0 Iyy 0 0 0 0
0 0 Izz 0 0 0
0 0 0 sinθ sinϕ cosϕ 0
0 0 0 sinθ cosϕ − sinϕ 0
0 0 0 cosθ 0 1





ω̇x
ω̇y
ω̇z

ψ̇
θ̇
ϕ̇


=



(Iyy − Izz) ωyωz − İxx ωx

(Izz− Ixx) ωzωx − İyy ωy
(Ixx − Iyy) ωxωy − İzz ωz

ωx
ωy
ωz


(10)

Equations (10) are the main equations, used in this paper and
solved usingode MATLAB R⃝ Runge-Kutta solver, with “mass
matrix” option, as per Eq. (7).

4. Proposing Geometric Morphing of spacecraft: Concep-
tual Considerations

To demonstrate the feasibility of the controllable behaviour
of the spacecraft, let us consider a simple conceptual model of
the morphing spacecraft, constructed as an axisymmetric set
of three orthogonal dumbbells, each of which has negligible
mass of the rod, connecting two equal concentrated masses at its
ends. Let us also assume, for conceptual simplicity, that three
dumbbells are connected at the middle points of their rods, and
the corresponding massesmx, my andmz are located at the dis-
tancesrx, ry andrz from the axes of rotationx, y andz, as shown
in Fig.(6). In the illustrated conceptual design, morphing of the
spacecraft is achieved via independent synchronised control of
the position coordinatesrx = rx(t), ry = ry(t) andrz = rz(t) of
the massesmx, my andmz.

The principal moments of inertia of the system can be calcu-
lated as follows:

Ixx = 2myr
2
y + 2mzr

2
z

Iyy = 2mzr
2
z + 2mxr

2
x (11)

Izz= 2mxr
2
x + 2myr

2
y

Fig. 6. Six-masses conceptual model of the morphing spacecraft.

(a) Solution-1, as per Fig.5.

(b) Solution-2, as per Fig.5.
Fig. 7. Conceptual 6-masses design of the morphing spacecraft, capable
of self-transfer from unstable “Dzhanibekov’s effect”-type flipping motion
to stable motion (and vice versa): white spheres - unstable configuration for
y main rotation, black spheres - stable configuration.

Then by adding all equations in (11), we can get:

1
2

(
Ixx + Iyy + Izz

)
= 2
(
mxr

2
x +myr

2
y +mzr

2
z

)
(12)

Then, subtracting from (12) consecutively each of Eq. (11), we



can get:

rx =

√
Iyy + Izz− Ixx

2mx

ry =

√
Izz+ Ixx − Iyy

2my
(13)

rz =

√
Ixx + Iyy − Izz

2mz

Let us assume, for the illustration purpose, thatmx = my =

mz = 1kg, Ixx = 0.3kg*m2, Ixx = 0.35kg*m2, Ixx = 0.4kg*m2.
Then, for the case of the tumbling spacecraft considered in Sec-
tion 2.3., we can find the initial radial positions of the spacecraft
masses, using Eqs.(13):

irx = 0.2500 m, iry = 0.2958 m, irz = 0.3354 m.(14)

These values for the unit masses would ensure, that the in-
ertial properties of the spacecraft areIxx = 0.3kg*m2, Iyy =
0.35kg*m2, Izz = 0.4kg*m2. Note that in our example hereIyy
has anintermediatevalue among all principal moments of iner-
tia: Ixx < Iyy < Izz, therefore if the spacecraft is provided with
the initial angular velocitiesωx = 0.1rad/s,ωy = 15rad/s and
ωz = 0.1rad/s, with the prevailing rotation abouty body axis,
then the spacecraft rotation about this axis would be unstable
and classical “Dzhanibekov’s effect” periodic flipping would be
observed.

It will be shown in Section5.2., that if during the ”flipping”
motion, at the instant, when the angular velocitiesωx = ωz

are close to zeros, the moment of inertiai Iyy = 0.35kg*m2 is
rapidly changed to its new value off Iyy = 0.2kg*m2, then the
nature of the followed motion of the system would change from
unstable “flipping” to stable. We call it “switching OFF” the
flipping motion.

This will be occurring because the moment of inertiaIyy stops
being the intermediate value and the rotation abouty body axis
is becoming stable, without changes in the direction ofωy.

The new values of the position radii, corresponding to the
“solution-1” in Fig.5, can be calculated using Eqs.(13):

f rx = 0.1581 m, f ry = 0.3536 m, f rz = 0.2739 m(15)

The spacecraft masses at these radius positions are shown in
Fig.7(a) with dark color.

The flipping motion can be also stopped, using “solution-2”,
shown in conceptual Fig.5. For the purpose of the illustration
of the concept, let us consider rapid increase of theIyy from
its initial value of i Iyy = 0.35kg*m2 to its new value off Iyy =
0.5kg*m2. The new values of the position radii, corresponding
to the “solution-2” in Fig.5, can be calculated using Eqs.(13):

f rx = 0.2500 m, f ry = 0.2958 m, f rz = 0.3354 m(16)

The spacecraft masses at these radius positions are shown in
Fig. 7(b) with dark color.

The morphing of the spacecraft from the initially unstable
configuration [as per Eq. (14)], associated with the ”flipping”
motion, to its final stable configuration [as per Eq. (15) or (16)
and Solution-1 or 2 in Fig.5], are shown in Fig.7, where masses
for the initial configuration are shown in white, whereas the
masses for the final configuration are shown in black color.
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Fig. 8. Time history of the controlled manipulation with the moment of
inertia Iyy to stop flipping motion of the system (Case-2).
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Fig. 9. Time history of the controlled manipulation with the moment of
inertia Iyy to stop flipping motion of the system (Case-3).

5. Motion of Spacecraft with Geometric Morphing

5.1. Study Case-2: ”Switching OFF” flipping motion of
the spacecraft after one flip (solution-1)

Figure4 shows that at the instantt = 6.77 s, the angular ve-
locity ωy has its highest value andωx changes its value from
negative to positive. It is believed that this instant, correspond-
ing to the most prominent rotation abouty-body axis, would be
the best time to apply morphing to the spacecraft. In our demo
case the moment of inertiaIyy is changed from 0.35 to 0.2, as
per Fig.8 within relatively short period of time of 0.2 s. Results
of the simulation are given with Fig.10. Figure 10(a) shows
that the simulated morphing led to the step-type increase of the
angular velocityω2 of the body and did not initiate significant
oscillations inωx andωz. In contrast to Case-1, whereω andH
plots had similar shapes, in the Case-2 these plots are different.
Figure10(b) shows that morphing did not change the angular
momentumHy and after the morphing was completed, the value
of Hy stayed almost unchanged, evidencing that attempt to stop
the “flipping” motion was successful. At last, note that as the
stabilised value ofϕ = 180◦, the stabilised spacecraft is flying
backwards, with its initial heading attitude changed by 180◦!
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(a) Time histories of the angular velocity components of the spacecraft.
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(b) Time histories of the angular momenta of the spacecraft.
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Fig. 10. Simulation results for the study Case-2: switching off the ”flip-
ping” motion of the spacecraft.Note: tOFF is an instant, at which the ”flip-
ping” motion of the spacecraft was stopped, or, in other words, ”switched
OFF”.

5.2. Study Case-3: ”Switching OFF” flipping motion of
the spacecraft after one flip (solution-2)

It is interesting to observe that stabilisation of the system,
illustrated with Figs.10 has been achieved with a controllable

change of the moment of inertiaIyy (associated with the main
rotation of the spacecraft), which initially had its value ofi Iyy =
0.35, being an intermediate value, surrounded by the smallest
Ixx = 0.2 and largestIzz= 0.4 moments of inertia:

Ixx < i Iyy < Izz (17)

While keeping values ofIxx andIzz unchanged, the value ofIyy
in the presented experiment was changed fromi Iyy = 0.35 to
the final value off Iyy = 0.5, as per Fig.8, after which it became
the largest principal moment of inertia:

Ixx < Izz< f Iyy (18)

Figure10shows that as one of the consequences of the increase
of Iyy, was a reduction from 15 to 10.5 rad/s of the associated
angular velocityωy of the spacecraft. This simulation result is
in perfect agreement with the conservation of the angular mo-
mentum of the system, suggesting that the rotational speed must
be reduced by the ratio of 15× (i Iyy/ f Iyy) = 15× (0.35/0.5) =
10.5 rad/s.

In contrast to Case-1, whereω and H plots had similar
shapes, in the Case-3 these plots are different. Figure11(b)
shows that morphing did not change the angular momentumHy

and after the morphing was completed, the value ofHy stayed
almost unchanged, evidencing that the stopping “flipping” mo-
tion has been successful.
5.3. Study Case-4: ”Switching OFF” flipping motion of

the spacecraft after two flips (solution-1)
We now demonstrate switching OFF the “flipping” motion

of the morphing spacecraft after it performs two flips. The time
history of morphing is similar to presented in Fig.8, but mor-
phing is starting att = 13.54 s. Results of this Case-4 are pre-
sented in Fig.12. Observed reduction of the angular velocityωy
is the same, as for the Case-2, however, in Case-2 after the mo-
tion is stabilised, the spacecraft continues its flight backwards,
whereas in the current case, the stabilised attitude of the space-
craft is the same as at the initial time.
5.4. Study Case-5: ”Switching ON” spacecraft flipping

motion
In a similar way as stabilisation, described in the Cases 2-

4 was achieved, we can initiate the “flipping” motion of the
spacecraft. For this, the axis of the major rotation of the system
(let say,y) initially should coincide with the axis of minimal or
maximal moments of inertia, i.e. one of the conditions should
be satisfied:Iyy < min(Ixx, Izz) or Iyy > max(Ixx, Izz). In this case
initiated rotation would be stable, without “flipping”. To acti-
vate the “flipping” motion, morphing of the system should be
performed, which should result inIyy becoming an intermediate
value betweenIxx and Izz. In the study Case-5, as illustration,
we use the following values:ωx = 0.1, ωy = 26.25,ωz = 0.1
(all - in rad/s), Ixx = 0.3, i Iyy = 0.2, f Iyy = 0.35, Izz = 0.4 (all
- in kg×m2). The time history of applied morphing is presented
in Fig. 13and the results of the simulation are shown in Fig.14.

5.5. Study Case-6: ”Switching ON” spacecraft flipping
motion with following ”Switching OFF”

Case-6 represents further development of the Case-5 by
switching OFF the “flipping” motion att = 9.89 s, instant of
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(b) Time histories of the angular momenta of the spacecraft.
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(c) Time histories of the angular momenta of the spacecraft.
Fig. 11. Simulation results for the study Case-3: switching off the ”flip-
ping” motion of the spacecraft.

the maximal value ofωy. The time history of applied morph-
ing is presented in Fig.15 and the results of the simulation are
shown in Fig.16.
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(b) Time histories of the angular momenta of the spacecraft.

0 5 10 15 20

ψ
[d
eg
]

×104

0.5
1

1.5
2

0 5 10 15 20

θ
[d
eg
]

40

60

80

t [s]
0 5 10 15 20

φ
[d
eg
]

-300

-200

-100

0

(c) Time histories of the angular momenta of the spacecraft.
Fig. 12. Simulation results for the study Case-4: switching off the ”flip-
ping” motion of the spacecraft.

6. Main Results and Conclusions

This paper is dedicated to the numerical simulation and anal-
ysis of the “Dzhanibekov’s Effect” - non-stable “flipping” mo-
tion of the rigid body with periodic change by 180◦ of the di-
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(b) Time histories of the angular momenta of the spacecraft.

0 5 10 15 20

ψ
[d
eg
]

×104

0.5

1

1.5

2

0 5 10 15 20

θ
[d
eg
]

40

80

120

t [s]
0 5 10 15 20

φ
[d
eg
]

0
50

100
150

(c) Time histories of the angular momenta of the spacecraft.
Fig. 14. Simulation results for the study Case-5: activation of the ”flip-
ping” motion of the spacecraft.

0 5 10 15 20

I
y
y
[k
g
*
m

2
]

0.2

0.25

0.3

0.35

t [s]
0 5 10 15 20

İ
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Fig. 13. Time history of the controlled manipulation with the moment of
inertia Iyy to stop flipping motion of the system.

rection of the main axis of its rotation, always occurring when
the body is provided with the main rotation about its axis with
intermediate principal moment of inertia.

In this work we proposed and developed a new concept of uti-
lizing “Dhanibekov’s Effect” for changing attitude of the space-
craft via its inertial morphing, without employing classical gy-
roscopes. Moreover, we proposed and tested a new method of
switching OFF the “flipping” motion on the main axis of rota-
tion by transferring motion to the stable (i.e. “non-flipping”)
mode. For the implementation of this transformation, we pro-
posed two main conceptual solutions, involving changes to the
system, resulting in the intermediate moment of inertia becom-
ing the smallest or largest principal moment of inertia of the
body. A conceptual model of the 6-mass model of the spacecraft
enabling controllable switching OFF of the “Dzhanibekov’s Ef-
fect” flipping is presented.

Furthermore, implementation of the transfer of the stable mo-
tion of the spacecraft to the unstable (i.e. “switching ON” the
“flipping” mode) has also been successfully completed.

These “flipping” mode “switching ON” and “switching OFF”
capabilities and their combinations have been successfully
demonstrated on the representative study cases.

To achieve the main objectives in the study, we first devel-
oped a model of the tumbling spacecraft, based on the non-
linear Euler’s equations of rigid body motion and successfully
simulated classical “Dzhanibekov’s Effects” for the rigid bod-
ies with constant inertia properties. As main further develop-
ment we enhanced the analytical and numerical models, which
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Fig. 15. Time history of the controlled manipulation with the moment of
inertia Iyy to activate flipping motion of the system and then to turn it off.
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(b) Time histories of the angular momenta of the spacecraft.
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Fig. 16. Simulation results for the study Case-6: activation of the ”flip-
ping” motion of the spacecraft.

enabled us to simulate wide class of systems with inertial mor-
phing (i.e. systems withvariable moments of inertia). It has
been proven that the conservation of angular momentum in the
morphing system is observed.

It has been demonstrated that time of activation of the space-
craft controllable morphing and its duration are critical factors
in the quality of stabilisation and “flipping” de-stabilisation pro-
cesses. Based on the simulated tests, we proposed recommen-
dations on morphing of the spacecraft.

At last, a new graphical interpretation of the transfer of
the proposed morphed spacecraft from stable mode to the
“Dzhanibekov’s Effect” “flipping” mode and vice versa, have
been presented.
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Gómez, J.J.: Leonhard Euler and the mechanics of rigid bodies.Eu-
ropean Journal of Physics, October 2016,38(2017), No.1, 015001
(11pp), doi:10.1088/0143-0807/38/1/015001.

18) Marsden, J. E. and Ratiu, T. S.: Introduction to Mechanics and Sym-
metry. A Basic Exposition of Classical Mechanical Systems. Springer,
1999. - 693pp. (ISBN-13: 978-0387986432, ISBN-10: 038798643X).

https://commons.wikimedia.org/wiki/File:USSR_stamp_Soyuz-27_1978_4k.jpg
https://commons.wikimedia.org/wiki/File:USSR_stamp_Soyuz-27_1978_4k.jpg
https://ru.wikipedia.org/wiki/%D0%94%D0%B6%D0%B0%D0%BD%D0%B8%D0%B1%D0%B5%D0%BA%D0%BE%D0%B2,_%D0%92%D0%BB%D0%B0%D0%B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B2%D0%B8%D1%87
https://ru.wikipedia.org/wiki/%D0%94%D0%B6%D0%B0%D0%BD%D0%B8%D0%B1%D0%B5%D0%BA%D0%BE%D0%B2,_%D0%92%D0%BB%D0%B0%D0%B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B2%D0%B8%D1%87
https://ru.wikipedia.org/wiki/%D0%94%D0%B6%D0%B0%D0%BD%D0%B8%D0%B1%D0%B5%D0%BA%D0%BE%D0%B2,_%D0%92%D0%BB%D0%B0%D0%B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B2%D0%B8%D1%87
https://ru.wikipedia.org/wiki/%D0%94%D0%B6%D0%B0%D0%BD%D0%B8%D0%B1%D0%B5%D0%BA%D0%BE%D0%B2,_%D0%92%D0%BB%D0%B0%D0%B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B2%D0%B8%D1%87
https://ru.wikipedia.org/wiki/%D0%94%D0%B6%D0%B0%D0%BD%D0%B8%D0%B1%D0%B5%D0%BA%D0%BE%D0%B2,_%D0%92%D0%BB%D0%B0%D0%B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B2%D0%B8%D1%87
https://youtu.be/dL6Pt1O_gSE
https://youtu.be/6ozUSgBjeaQ
https://youtu.be/6ozUSgBjeaQ
http://dx.doi.org/10.1115/1.4034318
http://rotations.berkeley.edu/?page_id=2472
http://rotations.berkeley.edu/?page_id=2472
https://drive.google.com/drive/u/1/folders/0B3MWZcYwMLYoRkVOMXdsdDAxS0E
https://drive.google.com/drive/u/1/folders/0B3MWZcYwMLYoRkVOMXdsdDAxS0E
https://youtu.be/cy30_6m1jPc?t=901
https://youtu.be/cy30_6m1jPc?t=901
https://youtu.be/LzVItPwiQyI
https://youtu.be/LzVItPwiQyI
https://youtu.be/QhSN2eua14I?t=309
https://youtu.be/QhSN2eua14I?t=309
https://youtu.be/dsXOxcDSBLQ?t=108
https://youtu.be/fPI-rSwAQNg
https://youtu.be/fPI-rSwAQNg
https://youtu.be/1n-HMSCDYtM
http://dspace.ut.ee/handle/10062/22581?locale-attribute=en
http://dspace.ut.ee/handle/10062/22581?locale-attribute=en
http://eulerarchive.maa.org/
http://dx.doi.org/10.1088/0143-0807/38/1/015001

	Introduction
	Discovery of the phenomenon in space
	Demonstrations of the Dzhanibekov's phenomenon on board of the International Space Station
	Historical perspectives: Euler's equations

	Numerical Simulation of the ``Dzhanibekov's Effect''
	Equations of motion
	Programming considerations
	Study Case-1: results

	Proposing New Spacecraft Designs/Missions, Utilising Dzhanibelov's Phenomenon
	Proposing Idea of "Switching ON/OFF" Dzhanibekov's spacecraft flipping by controlled morphing of the tumbling object
	Equations of motion: extending Euler's equations

	Proposing Geometric Morphing of spacecraft: Conceptual Considerations
	Motion of Spacecraft with Geometric Morphing
	Study Case-2: "Switching OFF" flipping motion of the spacecraft after one flip (solution-1)
	Study Case-3: "Switching OFF" flipping motion of the spacecraft after one flip (solution-2)
	Study Case-4: "Switching OFF" flipping motion of the spacecraft after two flips (solution-1)
	Study Case-5: "Switching ON" spacecraft flipping motion
	Study Case-6: "Switching ON" spacecraft flipping motion with following "Switching OFF"

	Main Results and Conclusions

	ISTSProgramNumber: 
	0: 
	33114468871910596: ISTS-2017-d-047／ISSFD-2017-047




