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    This paper presents an efficient algorithm to compute the force and torque exerted by the Solar Radiation Pressure on 
a generic spacecraft. Operational methods used so far either oversimplify the problem, thus computing only a rough 
approximation of the total effect, or disregard the geometrical structure of the spacecraft yielding slow performances. The 
current approach aims at taking advantage of all the geometrical information available from the beginning in order to 
reduce the number of computations to be performed. The problem is provided with geometrical structure by means of 
Binary Space Partitioning based on the mechanical units of the spacecraft. This structure is fully generic and allows 
obtaining a visibility ordering of the scene for any possible configuration at computational cost linear in the number of 
units. The shadows are then computed by means of a polygon Boolean operations algorithm in order to maximize 
performance. The obtained algorithm requires a much smaller processing time than the existing operational software used 
for previous missions like Venus Express or Rosetta. 
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S/C :  Spacecraft 
BSP :  Binary Space Partitioning 
SRP :  Solar Radiation Pressure 

 
1.   Introduction 

  The proper computation of the force and torque exerted by 
the SRP on a spacecraft is important for properly planning the 
spacecraft operations. On the one hand, the estimation of the 
acceleration produced by the SRP is important for the accurate 
navigation of the spacecraft. On the other hand, the torque 
exerted by the SRP is one of the main drivers for the angular 
momentum management strategy in missions with reaction 
wheels.  
  The computation of the SRP force and torque on the 
spacecraft depends on its surface optical properties and its 
geometrical configuration with respect to the Sun direction. An 
accurate estimation of the aforementioned quantities requires 
an evaluation of this relative geometry with a frequency driven 
by the spacecraft attitude rate and the rate of its articulations. 
Even for the case of idealized attitude profiles, this still requires 
the usage of a reasonably small time step. The situation is even 
worse in attitude simulators where the close-loop control of the 
attitude dynamics is simulated. Thus, the selection of a 
computation-time-efficient algorithm is of great importance to 
reduce the impact on the time required for the flight dynamics 
ground operations. 
  In the past, work on this sort of operational software has been 
performed following two different approaches. The first 

consists in using oversimplified S/C geometrical models 
allowing for a straightforward computation of the main SRP 
effect (e.g., flat plate model, cannonball model). This approach, 
when calibrated properly, can provide meaningful results in the 
force estimation, but is in general not enough to obtain a proper 
estimation of the SRP torque. The second approaches the 
problem in a numerical way by discretizing the scene, without 
taking into account any prior knowledge about the S/C 
geometry.3) The purpose of this paper is to present the 
possibility of introducing a technique from the field of 
computational geometry, Binary Space Partitioning trees, that 
allows providing global geometrical structure to the problem 
resulting in a more efficient algorithm. 
  The paper is structured as follows. In Section 2 a description 
of the geometrical modelling of a S/C is provided. Section 3 
presents a high level formulation of the problem. Section 4 
describes the two different methods that have been analysed 
and qualitatively compared. In particular, the newly developed 
method is described in detail. Section 5 performs a comparison 
of the presented methods. Finally, Section 6 brings conclusions 
and identifies future steps. 
 
2.   Geometrical representation of a spacecraft 
 
  The geometrical representation of the S/C is structured into 
different units which represent the different spacecraft 
mechanical elements (e.g. central body, solar arrays, ejectable 
elements, etc.). Each of these units is modeled by a polygonal 
mesh (or polymesh), 1) i.e., a finite collection of vertices, edges 
and faces that fulfill the following three conditions (see Ref. 
1) ): 
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• No isolated vertices exist (every vertex belongs to, at least, 
one edge) 

• No isolated edges exist (every edge belongs to, at least, 
one face) 

• No interpenetration of faces is allowed (an edge of one 
face cannot live in the interior of another face) 

  This representation is advantageous because it can be easily 
stored and parsed from ASCII configuration files and it 
provides an easy intuition of the shape of the S/C at first glance. 
Its main limitation is that it only allows the existence of planar 
polygonal surfaces. The restriction to planar elements is 
however a very useful simplification when dealing with 
visibility problems, as will be explained below, so it is not 
considered an issue. Even though non-planar elements are 
common (e.g., antenna dishes), they can be sufficiently 
approximated by a set of planar shapes for the precision 
required here. The same applies to non-polygonal planar shapes 
(e.g. circles), where the original shape can be approximated 
using a sufficient number of edges.   
  Each face is represented by a simple polygon (i.e., one which 
is topologically equivalent to a circle) and is oriented 
counterclockwise as seen from the semispace defined by its 
positive normal, thus defining its interior. Given a scene and a 
Sun direction, a face is said to be active when it is facing the 
Sun, i.e., when 

𝑠𝑠 ∙ 𝑛𝑛�⃗ > 0               (1) 
𝑠𝑠 being the Sun direction as seen from the spacecraft (i.e., the 
opposite to the SRP flow direction). 

3.   Problem statement 

  Assuming multiple scattering can be neglected, the core of 
the problem of computing the SRP effects on a S/C is 
determining which parts of the S/C are subject to the SRP flow. 
Only the parts facing the flow (Sun) and not shadowed by other 
S/C parts will contribute to the total SRP effect. This problem, 
which will be here referred to as the Visibility Problem, can be 
stated as follows:  
 
Given a set of polygons in 3-D space, determine which parts of 
the set are visible from a given direction in space. 
 
  The problem is equivalent to the usually called Hidden 
Surface Removal problem of the field of computer graphics that 
deals with the determination of the visible parts of a scene for 
the sake of graphics rendering.2) 
  The previous is a narrowed down definition of the general 
visibility problem in two ways: only planar surfaces are 
allowed (polygons) and the viewpoint is considered to be 
represented by a single direction (unit vector), i.e., the viewer is 
supposed to be infinitely far from the scene and, thus, only the 
scene orientation and not its position is relevant to the problem. 
The internal faces of the spacecraft can be completely ignored.  
  The solution to the visibility problem can be applied to other 

than the SRP effects computation. In particular, any problem 
requiring shadow computation will be facing the same issue, 
and thus can be solved by the same means. This is the case, 
for example, in the determination of drag forces and torques in 
the free-molecular approximation. The same methods can also 
be applied for 3-D visualization of the spacecraft geometry 
from a given viewpoint.  
  The result of solving the visibility problem is a set of face 
fragments extracted from the original set of 3-D polygons. 
Once a certain fragment of a given active face (i.e.  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: =
𝑠𝑠 ∙ 𝑛𝑛�⃗ > 0) has been determined to be subject to the flow, its 
effect on the spacecraft can be computed as follows (see Ref. 
6) ): 

𝐹⃗𝐹𝑒𝑒𝑒𝑒 = −𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �(1 − 𝐶𝐶𝑠𝑠)𝑠𝑠 + 2�𝐶𝐶𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1
3� 𝐶𝐶𝑑𝑑�𝑛𝑛�⃗ � (2) 

where 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆 is the value of the Solar Radiation Pressure, which 
is modelled as an inverse quadratic function of the distance to 
the Sun, 𝐴𝐴𝑒𝑒𝑒𝑒 is the area of the face element, 𝑠𝑠 is the S/C to Sun 
direction unit vector, 𝑛𝑛�⃗  is the face element normal unit vector 
and 𝐶𝐶𝑠𝑠  and 𝐶𝐶𝑑𝑑  are coefficients that depend on the optical 
properties of the material. The force is applied in the centroid of 
the face element, which can be easily computed in-plane for 
any simple polygon as follows: 
 

𝑐𝑐𝑒𝑒𝑒𝑒 =
∑ (𝑣𝑣�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑣𝑣�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒)�(𝑣𝑣�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×𝑣𝑣�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒)∙𝑛𝑛�⃗ �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

6𝐴𝐴𝑒𝑒𝑒𝑒
            (3) 

 
  The final force and torque exerted on the origin of the 
spacecraft mechanical frame can be computed by simply 
adding the contributions from all the visible elements: 
 

𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝐹⃗𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                       (4) 

𝑇𝑇�⃗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑐𝑐𝑒𝑒𝑒𝑒 × 𝐹⃗𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                   (5) 

 
  The previous is applicable to the computation of the drag 
effects on the S/C by simply replacing the force model (see Ref. 
7) ): 
 

𝐹⃗𝐹𝑒𝑒𝑒𝑒 = −𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝑒𝑒𝑒𝑒𝐶𝐶𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣�⃗ + 2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(1 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎)𝑛𝑛�⃗ )   (6) 

 
where 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 is now the value of the drag dynamic pressure, 𝑣⃗𝑣 
is spacecraft velocity direction unit vector, and 𝐶𝐶𝐷𝐷 and 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 
are the drag and accommodation coefficients. 
  Thus the complexity of the problem lies in determining the 
solution to the Visibility Problem, i.e., the vertices of all the 
visible elements that contribute to the final solution. This is 
what will be addressed in the rest of the paper. 

4.   Review of methods 
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  This section begins with a description of the operational 
method that has been used at ESOC for all interplanetary SC. 
For calculation of Rosetta drag forces and torques due to the 
comet coma, a numerically efficient Rosetta-tailored 
algorithm was developed, which was found to be a special 
case of the Binary Space Partitioning technique. Because of 
the operational advantages gained by that algorithm in the 
scope of Rosetta, a generic algorithm based on the technique 
of Binary Space Partitioning was developed. This technique is 
presented in the second part of this section and a discussion on 
its applicability to the current problem is performed together 
with a description of the newly developed algorithm. 
4.1.   Ray tracing: the current method 
  The idea behind ray tracing is to use the intersection points 
of rays shot from a projection plane perpendicular to the Sun 
direction and lying behind the scene to determine the visibility 
ordering of the active faces. A projection plane π 
perpendicular to the flow direction is introduced behind the 
S/C and an orthogonal equidistant adaptive grid is constructed 
in π, with a given initial cell size. All the active faces of the 
problem are then projected on π, leaving each grid cell in one 
of three possible states: 
 
1. The cell is fully covered by one of the projected faces. 
2. The cell doesn't contain any part of any projected face. 
3. The cell partly overlaps with one or several projected 

faces. 
3.1. Two visible intersections from the same edge. 
3.2. Other configuration. 

 
 

 

Fig. 1.  Ray tracing algorithm. 

  Figure 1 shows a geometrical configuration that illustrates 
all the possible situations. When the cell is in state 1 or 2, the 
visibility ordering for that particular prismatic section of the 
problem can be solved directly as follows. A ray is shot from 
the centre of the cell towards the viewpoint. If this ray doesn't 
intersect any active face, then the cell is in state 2 and 

provides no contribution. If intersections do exist, then the 
intersection points are computed and sorted by distance to π. 
The point with highest distance determines the face which is 
visible in that particular section of the scene. The fragment of 
the face enclosed by the prismatic section determined by the 
cell is visible and its contribution can be added to the total 
result. Such is the case of the cell marked as 1 in Fig. 1, where 
the contribution of the 3D polygon A’ can be added to the 
result straightaway. 
  If the cell is in state 3, the intersection points of the 
projected edges with the cell's borders are computed. From 
each intersection point, a ray is shot in the direction of the 
viewpoint and the intersections of the ray with all the active 
faces are computed and ordered by distance to the projection 
plane. If the farthest intersection point is not on the original 
edge, then the cell intersection point is being hidden by 
another face and can be discarded. This is the case of the point 
I2D in Fig. 1, which belongs to an edge in face A, but is being 
hidden by face C. Once all the visible cell intersection points 
have been determined, two situations can arise: either the cell 
is being intersected twice by the same projected edge or the 
situation is more complex. In the first case (cell in state 3.1), 
the computation is equivalent to the one in state 1, but the ray 
is in this case shot from the barycentre of the covered part of 
the cell instead of the cell centre. The fragment of the face 
enclosed by the prismatic section determined by the cell is 
visible and its contribution can be added to the total result. 
This is the case for the element 3-1 in Fig. 1. 
  If, however, the number of intersections is bigger (cell in 
state 3.2), the cell is subdivided evenly into four smaller 
subcells for which the process is repeated. A maximum depth 
level is specified to prevent this refinement from going on 
endlessly. If the final depth level is reached and the cell is still 
in state 3.2, the cell is considered to be in state 1 and its 
contribution is added to the final result. An example of this 
subdivision process is shown in Fig. 1 by the cells marked as 
3-2. This illustrates one of the weaknesses of the algorithm: 
even for a simple layout in which the projection of a vertex is 
in the middle of a grid-cell, at least three extra subdivisions 
are needed in order to resolve the situation. 
  Another weakness of this algorithm is the great number of 
operations it requires. For each cell (or subcell), a ray needs to 
be shot and its intersection with all the existing planes 
containing active faces computed and checked against the 
interior of the polygons. In addition, a sorting algorithm needs 
to be invoked for every ray in order to sort the intersection 
points by their distance to the projection plane. 
4.2.   Introducing BSP trees 
  The previous method is conceptually very simple and, by 
dealing with each cell independently, it can cope with 
complex geometrical configurations since no assumptions are 
made about the geometrical arrangement of the 3D scene. 
However, the geometrical structure of the problem is totally 
ignored and therefore the method doesn't take advantage of a 
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big amount of information that can be used to simplify the 
process and improve the performance. 
  The following assumption is the key point that allows 
introducing some a priori geometrical knowledge to simplify 
the problem structure: Given any two faces A and B, for any 
given scene configuration, either A shadows B or B shadows A 
(or both are fully visible). The previous follows from the fact 
that no interpenetrating faces are allowed, which implies that a 
plane π exists that separates both faces. With this assumption 
in mind, given two planar surfaces A and B (with faces on 
both sides), plane π can be used to divide the space in two 
different regions as shown in Fig. 2. When the viewer is in 
region I, A is said to be in front of B, and it is possible for A 
to shadow B but not the other way around. When the viewer is 
in region II, the opposite situation occurs. This split of the 
space allows to very simply check, for a given viewpoint 
direction, which of the faces is in front, by using a simple 
scalar product. The final information can be encoded into a 
binary tree, in which a simple computation at the root node 
based on the viewpoint direction provides the ordering of the 
faces. 
  The previous is the essential idea behind Binary Space 
Partitioning. When more surfaces are added to the problem, 
the partitioning can continue recursively in each of the 
subspaces defined by the previous level until each of the 
regions contains only one surface. All this information can be 
encoded in a binary tree, so called BSP tree, of which the 
height will depend on the number of divisions performed. As 
long as the configuration of the scene does not change, this 
tree is invariant and can be used to retrieve a face ordering 
with a simple traversal based on a sequence of scalar products.  
 
 

 

Fig. 2.  Simple space partitioning with two faces. 

 
4.3.   Unit based BSP trees 
  The application of Binary Space Partitioning to the current 
problem can be approached in two different ways. The first is 

to use a face-based Binary Space Partitioning: the algorithm 
could recursively divide the scene using the planes defined by 
the different active polygons. This implies computing the 
intersection of each plane containing an active face with the 
rest of the active faces in order to obtain a consistent binary 
partition. The final result is a full ordering of all the obtained 
active face fragments. This is the approach usually followed in 
computer graphics for the rendering of static scenes by 
applying the Painter’s Algorithm, since a one-time 
computation of the tree allows for a full representation of the 
scene as long as only the viewer’s position changes.2)  
However, in the context of S/C problems, the scenes are 
usually not static due to the movement of the articulated units. 
  The previous approach is however not taking advantage of 
the geometrical structure of the S/C. An extra fact can be 
considered in order to simplify the problem further: each of 
the spacecraft units is either a convex polyhedron or can be 
easily split into convex polyhedrons. The convexity of a unit 
ensures that faces belonging to the same unit cannot cast 
shadows on one another, since only the external faces of each 
unit need to be considered. Thus, a visibility ordering of the 
units is enough to obtain a full visibility ordering of the scene, 
since active faces belonging to the same unit can be 
considered to lie on the same visibility layer.  

 

Fig. 3.  Unit based BSP tree. 

  Figure 3 shows an example of unit based BSP tree in 2-D 
space (where units are represented by convex polygons and 
planes by lines). A visibility ordering can be generated by 
dividing the plane in different regions using specific lines. 
Lines π1 and π2 are used in this case, yielding the shown 
binary tree. For a Sun direction like the one shown, the 
obtained visibility ordering is C, B, A, which indicates that C 
is in front of the scene, not shadowed by anything, B can 
potentially be shadowed by C, and A can be shadowed by 
both C and B. Notice that, once the unit visibility ordering is 
determined, only the active faces (highlighted in orange) of 
each unit are considered in the following steps. The number of 
shadowing computations has been reduced to computing the 
shadows of the active faces of C on the active faces of A and 
B and the shadows of the active faces of B on the active faces 
of A. 
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  Figure 3 also shows the representation of a unit based BSP 
tree: the internal nodes of the tree store their orientation (the 
positive normal of the division plane, where the criterion to 
define the positive semispace is arbitrary), whereas the leaves 
store pointers to the geometrical units lying in the 
corresponding subspace. 
  From the previous example, the conditions the scene must 
fulfill so that the desired unit based BSP tree exists can be 
inferred: 
1. A plane must exist separating each pair of objects. This 

is ensured if all the bodies are convex. If a spacecraft 
unit is not convex it can always be split into convex 
parts. 

2. The binary recursive division must be possible, i.e., a 
plane must exist dividing the whole scene in two regions, 
then a plane must exist dividing each subspace in two, 
and so on. These planes will necessarily be part of the 
set of planes that fulfill the first condition. However, the 
fulfillment of the condition 1 doesn't guarantee the 
fulfillment of condition 2. Figure 4 shows an example of 
such a case, where all possible two-body separation 
planes intersect at least one of the other bodies. This 
problem can be overcome by dividing C into two 
separate parts: C’ and C’’. 

3. The bodies must be steady, i.e., if a body moves, the tree 
could potentially become invalid. 

 

 

Fig. 4.  Situation in which a unit split is required. 

  Conditions 1 and 2 are usually fulfilled by most spacecraft 
geometries, since privileged directions exist. In any case, a 
preprocessing of the unit partitioning is enough to ensure the 
compatibility with these two conditions if complex spacecraft 
are being analyzed (e.g. Bepi-Colombo). 
  The third condition however requires a special treatment. In 
many cases, the spacecraft have articulated units that modify 
the scene configuration while moving and can, in the worst 
case, invalidate a given BSP tree. This will happen only if the 
articulation can reach a position in which it intersects any of 
the current planes defining its subspace. To overcome this 
difficulty, it is enough to replace the initially unique BSP tree 

with a discrete set of BSP trees each of them valid for a 
specific range of articulation angles. When an articulated unit 
reaches a position where the current BSP tree is no longer 
valid, a different BSP tree consistent with the new scene is 
used. Usually, a valid BSP tree will exist for big intervals of 
the articulated unit positions. The problem can be minimized 
if the articulated units are pushed as down as possible in the 
tree, i.e., their separation from the rest of the scene is kept for 
the end of the process. Thus, the number of changing elements 
is usually limited to the close neighbors of the articulated unit. 
  The full geometrical structure of the problem can thus be 
provided by means of a set of BSP trees valid for different 
ranges of articulation angle combinations. These trees are 
static and can be encoded in a configuration file, thus 
requiring some configuration effort for each different 
spacecraft but reducing significantly the computational cost of 
the rest of the process. The following examples show the 
implementation of this technique for some ESA interplanetary 
missions. Figure 5 shows an example of unit based 
partitioning for Mars Express. In that case, even though the 
solar arrays are articulated, their motion can never lead them 
to intersect the separation planes, so a single BSP tree is 
enough to encode the geometrical structure of the spacecraft.  
 

 

Fig. 5.  Mars Express partitioning. 

  Figure 6 shows the same for the ExoMars TGO mission, 
with two different positions of the High Gain Antenna dish. In 
this case, the movement of the HGA requires the definition of 
two different BSP trees. The first one uses plane π2 to separate 
the antenna dish from the central body when the elevation 
angle is between -24° and 185° degrees. Beyond 185° plane π3 
is used instead.  
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Fig. 6.  ExoMars plane separation. 

Finally, Fig. 7 shows the geometrical model of the 
Bepi-Colombo spacecraft, which violates conditions 1 and 2 
and requires some unit splitting in order to define the 
corresponding BSP tree, which, however, can be unique in 
this case. 

 

Fig. 7.  Bepi-Colombo geometrical model. 

4.4.   Adding polygon Boolean operations 
  Once a visibility ordering is available as provided by the 
BSP tree, the scene structure turns into a set of layers of active 
faces, that can be represented by an array of sets of faces, the 
first element representing the layer that lies in front of the 
scene and the last element representing the layer that lies in 
the back. Figure 8 shows how such an array is obtained for a 
particular flight configuration of the ExoMars TGO. 
  

 

Fig. 8.  Visibility layers. 

  The remaining part of the process requires determining 
which parts of the layers in the back are being shadowed by 
the layers in front. This can be computed very efficiently 
without discretizing the problem by performing polygon 
Boolean operations. The following is an outline of the 
algorithm: 
 
1. Project all the faces in the layers onto a 2D plane 

perpendicular to the flow direction. All the following 
operations are performed on that projection plane. 

2. For all the layers but the one in the back, compute the 
union of all the faces contained in the layer. This 
generates a shadowing layer for each of the visibility 
levels in the problem. Notice that, because of the way 
they are constructed, shadowing layers can consist in 
general of more than one polygon. 

3. For each visibility layer but the one in the back, perform 
the union of the corresponding shadowing layer with all 
the shadowing layers in front of it. This modifies the 
shadowing layers computed in the previous step. 

4. For each face in each visibility layer, starting from the 
back layer, compute the Boolean difference between the 
face and the shadowing layer in the level directly in front 
of it. The resulting polygons are visible. 

5. Project the resulting visible polygons back to their 
original 3D planes. 

6. Compute the SRP force and torque as described in 3. 
 
  Polygon Boolean operations are performed by means of a 
modified version of the Greiner-Hormann algorithm that can 
cope with any kind of polygon.4,5) This is a well-known 
sweep-line algorithm for the computation of the overlay of 
planar subdivisions.2) The previous process takes advantage of 
the capability of the algorithm to perform any type of Boolean 
operation (and not only polygon intersection), in order to 
minimize the number of operations to be performed by 
computing and merging the shadowing layers affecting each 
of the visibility levels of the scene. This is possible because 
the algorithm can deal with sets of simple polygons as 
operands (some of which can represent holes in a parent 
polygon), since they are all considered part of a single planar 
subdivision. 
   

 

Fig. 9.  Visibility layers before the processing. 

  Figure 9 shows the layered arrangement of the active faces 
of the ExoMars TGO for a given Sun direction. This 
arrangement is then processed as described above producing 
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the result shown in Fig. 10, where only the visible face 
elements are now present. The processed layers are then 
projected back to their original 3D planes and their 
contributions are added to the final result. 
 

 

Fig. 10.  Visibility layers after the processing. 

  Figure 11 shows an example of a merged shadowing layer 
for the previous scene, corresponding to the shadowing layer 
number 4, generated by the union of all faces in layers 1, 2, 3 
and 4, which is then used to shadow the elements in layer 5. 

 

Fig. 11.  Merged shadowing layer. 

 
  Figure 12 shows an example of a clipping computation that 
takes place during the scene processing. In this case, the 
shadow of shadowing layer 3 on the front panel of the central 
body is being computed. The final visible parts are shown in 
Fig. 13. 

 

Fig. 12.  Difference computation. 

 

Fig. 13.  Shadowing computation result. 

 
5. Method comparison 
 
  In this section both methods described above are compared in 
terms of different relevant characteristics. For the sake of 
clarity, the algorithm based on ray tracing will be referred to as 
algorithm 1 and the new algorithm based on BSP trees as 
algorithm 2. 
  The performance of both methods has been compared by 
performing a one month reaction wheel propagation for a slow 
varying attitude and articulation profile with a time step of 5 
minutes, which corresponds to the computation of 8642 steps. 
The main driver of the execution time of such a propagation is 
the computation of the SRP torque at each propagation step. 
The test has been performed for both the ExoMars TGO and 
the Bepi-Colombo spacecraft and Table 1 shows the obtained 
results. It can be seen that the time improvement obtained 
from using algorithm 2 is in the order of a factor of 20, which 
results in a relevant operational advantage. 

Table 1.  Performance comparison. 

   
  Both methods require a significant amount of configuration 
effort in order to define the S/C geometrical model. The setup 
is usually based on models obtained from the industry 
manufacturer. The increase in performance of algorithm 2 is 
mostly accomplished thanks to the extra information available 
to the algorithm encoded in the BSP trees. Since this 
information needs to be provided by the user, the new 
algorithm requires some additional configuration effort 
compared to the existing one, in order to ensure the model 
fulfills the conditions described in 4.3. This effort is 
proportional to the geometrical complexity of the spacecraft 
and the existing number of articulations. Notice, however, that 
this is a one-time effort for each spacecraft that can be 
performed in the preparation phase and will provide a drastic 
performance improvement over the operational life of the 
mission. 

Mission Algorithm 1 Algorithm 2 
EXM TGO with EDM 450 s 20 s 
EXM TGO without EDM 200 s 10 s 
Bepi-Colombo 883 s 53 s 
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  In terms of accuracy and robustness, it has been shown that 
algorithm 1 can easily need a high amount of cell subdivisions 
even in simple geometrical configurations. The consequence 
of such situations is, not only a decrease in performance, but 
also the insertion of inaccuracies in the result that depend on 
the maximum depth of subdivisions allowed. The minimum 
cell size is typically configured to have a side length in the 
order of 1 cm, which means errors introduced by face 
fragments of 1cm2 can be systematically inserted by the 
algorithm. It can thus be concluded that algorithm 2 is in 
general more accurate, even though the differences will hardly 
be noticeable. A comparison of the results obtained with both 
methods for 700 different scene configurations of the 
ExoMars TGO (with EDM attached) is shown in Figs. 14 and 
15 in terms of magnitude and angular errors of the obtained 
force and torque vectors. It can be seen that the difference 
between the results is below the typical precision of the model 
compared to reality, which is estimated to be around 10% due 
to the uncertainty on the knowledge of the S/C optical 
properties.  
 

 

Fig. 14.  Relative magnitude error. 

 

Fig. 15.  Angular error. 

  In terms of complexity, algorithm 1 could be deemed to be 
simpler in the sense that it relies on a smaller number of 
assumptions. Thus, a general understanding of the method can 
be obtained in little time and the implementation of the 
method requires less effort. Algorithm 2 on the other hand is 
much more specialized and requires both higher analytical and 
implementation efforts. This again shows that, in a sense, 
algorithm 2 draws its power from shifting some of the effort 

from the operational phase of the mission to the development 
one. 
 
6.   Conclusion and future steps 
   
  It has been shown that the new algorithm based on Binary 
Space Partitioning trees and polygon Boolean operations 
increases greatly the performance of the SRP related 
computations, thus significantly reducing the time required for 
the flight dynamics ground operations. The algorithm is 
already operationally in place for the ExoMars TGO and is 
being used in the preparation of the Bepi-Colombo mission.  
  In the process, some future steps have been identified and 
will be explored in order to contribute further to a fully 
generic and multi-purpose method: 
• Further exploration of the applicability of BSP trees to 

the problem, in particular analyzing the automation of 
the BSP tree generation process. 

• Extension of the number of applications that make use of 
the algorithm, in particular making it easily available for 
analysis requiring visibility computations. 

• Comparison of the performance of the shadowing 
computation approach (based on polygon Boolean 
operations) with a simpler one, to properly understand 
how much of the performance gain comes from each of 
the parts of the process. 

• For performing numerical integrations robustly, the 
integration may need to be split at times when 
derivatives of the integrand are dis-continuous.  
Derivatives of SRP forces and torques can only become 
dis-continuous at times when the scene structure changes. 
The BSP method could be extended in order to identify 
these times. 
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