

1

An Efficient Algorithm to Compute the SRP Force and Torque on Spacecraft

 By Juan Manuel GARCÍA,1),2)

1) European Space Operations Center, ESA, Darmstadt, Germany

2) Flight Dynamics and Operations, GMV-Insyen AG, Darmstadt, Germany

 This paper presents an efficient algorithm to compute the force and torque exerted by the Solar Radiation Pressure on
a generic spacecraft. Operational methods used so far either oversimplify the problem, thus computing only a rough
approximation of the total effect, or disregard the geometrical structure of the spacecraft yielding slow performances. The
current approach aims at taking advantage of all the geometrical information available from the beginning in order to
reduce the number of computations to be performed. The problem is provided with geometrical structure by means of
Binary Space Partitioning based on the mechanical units of the spacecraft. This structure is fully generic and allows
obtaining a visibility ordering of the scene for any possible configuration at computational cost linear in the number of
units. The shadows are then computed by means of a polygon Boolean operations algorithm in order to maximize
performance. The obtained algorithm requires a much smaller processing time than the existing operational software used
for previous missions like Venus Express or Rosetta.

Key Words: Solar Radiation Pressure, Binary Space Partitioning, Visibility Problem

Nomenclature

S/C : Spacecraft
BSP : Binary Space Partitioning
SRP : Solar Radiation Pressure

1. Introduction

 The proper computation of the force and torque exerted by
the SRP on a spacecraft is important for properly planning the
spacecraft operations. On the one hand, the estimation of the
acceleration produced by the SRP is important for the accurate
navigation of the spacecraft. On the other hand, the torque
exerted by the SRP is one of the main drivers for the angular
momentum management strategy in missions with reaction
wheels.
 The computation of the SRP force and torque on the
spacecraft depends on its surface optical properties and its
geometrical configuration with respect to the Sun direction. An
accurate estimation of the aforementioned quantities requires
an evaluation of this relative geometry with a frequency driven
by the spacecraft attitude rate and the rate of its articulations.
Even for the case of idealized attitude profiles, this still requires
the usage of a reasonably small time step. The situation is even
worse in attitude simulators where the close-loop control of the
attitude dynamics is simulated. Thus, the selection of a
computation-time-efficient algorithm is of great importance to
reduce the impact on the time required for the flight dynamics
ground operations.
 In the past, work on this sort of operational software has been
performed following two different approaches. The first

consists in using oversimplified S/C geometrical models
allowing for a straightforward computation of the main SRP
effect (e.g., flat plate model, cannonball model). This approach,
when calibrated properly, can provide meaningful results in the
force estimation, but is in general not enough to obtain a proper
estimation of the SRP torque. The second approaches the
problem in a numerical way by discretizing the scene, without
taking into account any prior knowledge about the S/C
geometry.3) The purpose of this paper is to present the
possibility of introducing a technique from the field of
computational geometry, Binary Space Partitioning trees, that
allows providing global geometrical structure to the problem
resulting in a more efficient algorithm.
 The paper is structured as follows. In Section 2 a description
of the geometrical modelling of a S/C is provided. Section 3
presents a high level formulation of the problem. Section 4
describes the two different methods that have been analysed
and qualitatively compared. In particular, the newly developed
method is described in detail. Section 5 performs a comparison
of the presented methods. Finally, Section 6 brings conclusions
and identifies future steps.

2. Geometrical representation of a spacecraft

 The geometrical representation of the S/C is structured into
different units which represent the different spacecraft
mechanical elements (e.g. central body, solar arrays, ejectable
elements, etc.). Each of these units is modeled by a polygonal
mesh (or polymesh), 1) i.e., a finite collection of vertices, edges
and faces that fulfill the following three conditions (see Ref.
1)):

2

• No isolated vertices exist (every vertex belongs to, at least,
one edge)

• No isolated edges exist (every edge belongs to, at least,
one face)

• No interpenetration of faces is allowed (an edge of one
face cannot live in the interior of another face)

 This representation is advantageous because it can be easily
stored and parsed from ASCII configuration files and it
provides an easy intuition of the shape of the S/C at first glance.
Its main limitation is that it only allows the existence of planar
polygonal surfaces. The restriction to planar elements is
however a very useful simplification when dealing with
visibility problems, as will be explained below, so it is not
considered an issue. Even though non-planar elements are
common (e.g., antenna dishes), they can be sufficiently
approximated by a set of planar shapes for the precision
required here. The same applies to non-polygonal planar shapes
(e.g. circles), where the original shape can be approximated
using a sufficient number of edges.
 Each face is represented by a simple polygon (i.e., one which
is topologically equivalent to a circle) and is oriented
counterclockwise as seen from the semispace defined by its
positive normal, thus defining its interior. Given a scene and a
Sun direction, a face is said to be active when it is facing the
Sun, i.e., when

𝑠𝑠 ∙ 𝑛𝑛�⃗ > 0 (1)
𝑠𝑠 being the Sun direction as seen from the spacecraft (i.e., the
opposite to the SRP flow direction).

3. Problem statement

 Assuming multiple scattering can be neglected, the core of
the problem of computing the SRP effects on a S/C is
determining which parts of the S/C are subject to the SRP flow.
Only the parts facing the flow (Sun) and not shadowed by other
S/C parts will contribute to the total SRP effect. This problem,
which will be here referred to as the Visibility Problem, can be
stated as follows:

Given a set of polygons in 3-D space, determine which parts of
the set are visible from a given direction in space.

 The problem is equivalent to the usually called Hidden
Surface Removal problem of the field of computer graphics that
deals with the determination of the visible parts of a scene for
the sake of graphics rendering.2)
 The previous is a narrowed down definition of the general
visibility problem in two ways: only planar surfaces are
allowed (polygons) and the viewpoint is considered to be
represented by a single direction (unit vector), i.e., the viewer is
supposed to be infinitely far from the scene and, thus, only the
scene orientation and not its position is relevant to the problem.
The internal faces of the spacecraft can be completely ignored.
 The solution to the visibility problem can be applied to other

than the SRP effects computation. In particular, any problem
requiring shadow computation will be facing the same issue,
and thus can be solved by the same means. This is the case,
for example, in the determination of drag forces and torques in
the free-molecular approximation. The same methods can also
be applied for 3-D visualization of the spacecraft geometry
from a given viewpoint.
 The result of solving the visibility problem is a set of face
fragments extracted from the original set of 3-D polygons.
Once a certain fragment of a given active face (i.e. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: =
𝑠𝑠 ∙ 𝑛𝑛�⃗ > 0) has been determined to be subject to the flow, its
effect on the spacecraft can be computed as follows (see Ref.
6)):

𝐹⃗𝐹𝑒𝑒𝑒𝑒 = −𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �(1 − 𝐶𝐶𝑠𝑠)𝑠𝑠 + 2�𝐶𝐶𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1
3� 𝐶𝐶𝑑𝑑�𝑛𝑛�⃗ � (2)

where 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆 is the value of the Solar Radiation Pressure, which
is modelled as an inverse quadratic function of the distance to
the Sun, 𝐴𝐴𝑒𝑒𝑒𝑒 is the area of the face element, 𝑠𝑠 is the S/C to Sun
direction unit vector, 𝑛𝑛�⃗ is the face element normal unit vector
and 𝐶𝐶𝑠𝑠 and 𝐶𝐶𝑑𝑑 are coefficients that depend on the optical
properties of the material. The force is applied in the centroid of
the face element, which can be easily computed in-plane for
any simple polygon as follows:

𝑐𝑐𝑒𝑒𝑒𝑒 =
∑ (𝑣𝑣�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑣𝑣�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒)�(𝑣𝑣�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×𝑣𝑣�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒)∙𝑛𝑛�⃗ �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

6𝐴𝐴𝑒𝑒𝑒𝑒
 (3)

 The final force and torque exerted on the origin of the
spacecraft mechanical frame can be computed by simply
adding the contributions from all the visible elements:

𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝐹⃗𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (4)

𝑇𝑇�⃗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑐𝑐𝑒𝑒𝑒𝑒 × 𝐹⃗𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (5)

 The previous is applicable to the computation of the drag
effects on the S/C by simply replacing the force model (see Ref.
7)):

𝐹⃗𝐹𝑒𝑒𝑒𝑒 = −𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝑒𝑒𝑒𝑒𝐶𝐶𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣�⃗ + 2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(1 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎)𝑛𝑛�⃗) (6)

where 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 is now the value of the drag dynamic pressure, 𝑣⃗𝑣
is spacecraft velocity direction unit vector, and 𝐶𝐶𝐷𝐷 and 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎
are the drag and accommodation coefficients.
 Thus the complexity of the problem lies in determining the
solution to the Visibility Problem, i.e., the vertices of all the
visible elements that contribute to the final solution. This is
what will be addressed in the rest of the paper.

4. Review of methods

3

 This section begins with a description of the operational
method that has been used at ESOC for all interplanetary SC.
For calculation of Rosetta drag forces and torques due to the
comet coma, a numerically efficient Rosetta-tailored
algorithm was developed, which was found to be a special
case of the Binary Space Partitioning technique. Because of
the operational advantages gained by that algorithm in the
scope of Rosetta, a generic algorithm based on the technique
of Binary Space Partitioning was developed. This technique is
presented in the second part of this section and a discussion on
its applicability to the current problem is performed together
with a description of the newly developed algorithm.
4.1. Ray tracing: the current method
 The idea behind ray tracing is to use the intersection points
of rays shot from a projection plane perpendicular to the Sun
direction and lying behind the scene to determine the visibility
ordering of the active faces. A projection plane π
perpendicular to the flow direction is introduced behind the
S/C and an orthogonal equidistant adaptive grid is constructed
in π, with a given initial cell size. All the active faces of the
problem are then projected on π, leaving each grid cell in one
of three possible states:

1. The cell is fully covered by one of the projected faces.
2. The cell doesn't contain any part of any projected face.
3. The cell partly overlaps with one or several projected

faces.
3.1. Two visible intersections from the same edge.
3.2. Other configuration.

Fig. 1. Ray tracing algorithm.

 Figure 1 shows a geometrical configuration that illustrates
all the possible situations. When the cell is in state 1 or 2, the
visibility ordering for that particular prismatic section of the
problem can be solved directly as follows. A ray is shot from
the centre of the cell towards the viewpoint. If this ray doesn't
intersect any active face, then the cell is in state 2 and

provides no contribution. If intersections do exist, then the
intersection points are computed and sorted by distance to π.
The point with highest distance determines the face which is
visible in that particular section of the scene. The fragment of
the face enclosed by the prismatic section determined by the
cell is visible and its contribution can be added to the total
result. Such is the case of the cell marked as 1 in Fig. 1, where
the contribution of the 3D polygon A’ can be added to the
result straightaway.
 If the cell is in state 3, the intersection points of the
projected edges with the cell's borders are computed. From
each intersection point, a ray is shot in the direction of the
viewpoint and the intersections of the ray with all the active
faces are computed and ordered by distance to the projection
plane. If the farthest intersection point is not on the original
edge, then the cell intersection point is being hidden by
another face and can be discarded. This is the case of the point
I2D in Fig. 1, which belongs to an edge in face A, but is being
hidden by face C. Once all the visible cell intersection points
have been determined, two situations can arise: either the cell
is being intersected twice by the same projected edge or the
situation is more complex. In the first case (cell in state 3.1),
the computation is equivalent to the one in state 1, but the ray
is in this case shot from the barycentre of the covered part of
the cell instead of the cell centre. The fragment of the face
enclosed by the prismatic section determined by the cell is
visible and its contribution can be added to the total result.
This is the case for the element 3-1 in Fig. 1.
 If, however, the number of intersections is bigger (cell in
state 3.2), the cell is subdivided evenly into four smaller
subcells for which the process is repeated. A maximum depth
level is specified to prevent this refinement from going on
endlessly. If the final depth level is reached and the cell is still
in state 3.2, the cell is considered to be in state 1 and its
contribution is added to the final result. An example of this
subdivision process is shown in Fig. 1 by the cells marked as
3-2. This illustrates one of the weaknesses of the algorithm:
even for a simple layout in which the projection of a vertex is
in the middle of a grid-cell, at least three extra subdivisions
are needed in order to resolve the situation.
 Another weakness of this algorithm is the great number of
operations it requires. For each cell (or subcell), a ray needs to
be shot and its intersection with all the existing planes
containing active faces computed and checked against the
interior of the polygons. In addition, a sorting algorithm needs
to be invoked for every ray in order to sort the intersection
points by their distance to the projection plane.
4.2. Introducing BSP trees
 The previous method is conceptually very simple and, by
dealing with each cell independently, it can cope with
complex geometrical configurations since no assumptions are
made about the geometrical arrangement of the 3D scene.
However, the geometrical structure of the problem is totally
ignored and therefore the method doesn't take advantage of a

4

big amount of information that can be used to simplify the
process and improve the performance.
 The following assumption is the key point that allows
introducing some a priori geometrical knowledge to simplify
the problem structure: Given any two faces A and B, for any
given scene configuration, either A shadows B or B shadows A
(or both are fully visible). The previous follows from the fact
that no interpenetrating faces are allowed, which implies that a
plane π exists that separates both faces. With this assumption
in mind, given two planar surfaces A and B (with faces on
both sides), plane π can be used to divide the space in two
different regions as shown in Fig. 2. When the viewer is in
region I, A is said to be in front of B, and it is possible for A
to shadow B but not the other way around. When the viewer is
in region II, the opposite situation occurs. This split of the
space allows to very simply check, for a given viewpoint
direction, which of the faces is in front, by using a simple
scalar product. The final information can be encoded into a
binary tree, in which a simple computation at the root node
based on the viewpoint direction provides the ordering of the
faces.
 The previous is the essential idea behind Binary Space
Partitioning. When more surfaces are added to the problem,
the partitioning can continue recursively in each of the
subspaces defined by the previous level until each of the
regions contains only one surface. All this information can be
encoded in a binary tree, so called BSP tree, of which the
height will depend on the number of divisions performed. As
long as the configuration of the scene does not change, this
tree is invariant and can be used to retrieve a face ordering
with a simple traversal based on a sequence of scalar products.

Fig. 2. Simple space partitioning with two faces.

4.3. Unit based BSP trees
 The application of Binary Space Partitioning to the current
problem can be approached in two different ways. The first is

to use a face-based Binary Space Partitioning: the algorithm
could recursively divide the scene using the planes defined by
the different active polygons. This implies computing the
intersection of each plane containing an active face with the
rest of the active faces in order to obtain a consistent binary
partition. The final result is a full ordering of all the obtained
active face fragments. This is the approach usually followed in
computer graphics for the rendering of static scenes by
applying the Painter’s Algorithm, since a one-time
computation of the tree allows for a full representation of the
scene as long as only the viewer’s position changes.2)
However, in the context of S/C problems, the scenes are
usually not static due to the movement of the articulated units.
 The previous approach is however not taking advantage of
the geometrical structure of the S/C. An extra fact can be
considered in order to simplify the problem further: each of
the spacecraft units is either a convex polyhedron or can be
easily split into convex polyhedrons. The convexity of a unit
ensures that faces belonging to the same unit cannot cast
shadows on one another, since only the external faces of each
unit need to be considered. Thus, a visibility ordering of the
units is enough to obtain a full visibility ordering of the scene,
since active faces belonging to the same unit can be
considered to lie on the same visibility layer.

Fig. 3. Unit based BSP tree.

 Figure 3 shows an example of unit based BSP tree in 2-D
space (where units are represented by convex polygons and
planes by lines). A visibility ordering can be generated by
dividing the plane in different regions using specific lines.
Lines π1 and π2 are used in this case, yielding the shown
binary tree. For a Sun direction like the one shown, the
obtained visibility ordering is C, B, A, which indicates that C
is in front of the scene, not shadowed by anything, B can
potentially be shadowed by C, and A can be shadowed by
both C and B. Notice that, once the unit visibility ordering is
determined, only the active faces (highlighted in orange) of
each unit are considered in the following steps. The number of
shadowing computations has been reduced to computing the
shadows of the active faces of C on the active faces of A and
B and the shadows of the active faces of B on the active faces
of A.

5

 Figure 3 also shows the representation of a unit based BSP
tree: the internal nodes of the tree store their orientation (the
positive normal of the division plane, where the criterion to
define the positive semispace is arbitrary), whereas the leaves
store pointers to the geometrical units lying in the
corresponding subspace.
 From the previous example, the conditions the scene must
fulfill so that the desired unit based BSP tree exists can be
inferred:
1. A plane must exist separating each pair of objects. This

is ensured if all the bodies are convex. If a spacecraft
unit is not convex it can always be split into convex
parts.

2. The binary recursive division must be possible, i.e., a
plane must exist dividing the whole scene in two regions,
then a plane must exist dividing each subspace in two,
and so on. These planes will necessarily be part of the
set of planes that fulfill the first condition. However, the
fulfillment of the condition 1 doesn't guarantee the
fulfillment of condition 2. Figure 4 shows an example of
such a case, where all possible two-body separation
planes intersect at least one of the other bodies. This
problem can be overcome by dividing C into two
separate parts: C’ and C’’.

3. The bodies must be steady, i.e., if a body moves, the tree
could potentially become invalid.

Fig. 4. Situation in which a unit split is required.

 Conditions 1 and 2 are usually fulfilled by most spacecraft
geometries, since privileged directions exist. In any case, a
preprocessing of the unit partitioning is enough to ensure the
compatibility with these two conditions if complex spacecraft
are being analyzed (e.g. Bepi-Colombo).
 The third condition however requires a special treatment. In
many cases, the spacecraft have articulated units that modify
the scene configuration while moving and can, in the worst
case, invalidate a given BSP tree. This will happen only if the
articulation can reach a position in which it intersects any of
the current planes defining its subspace. To overcome this
difficulty, it is enough to replace the initially unique BSP tree

with a discrete set of BSP trees each of them valid for a
specific range of articulation angles. When an articulated unit
reaches a position where the current BSP tree is no longer
valid, a different BSP tree consistent with the new scene is
used. Usually, a valid BSP tree will exist for big intervals of
the articulated unit positions. The problem can be minimized
if the articulated units are pushed as down as possible in the
tree, i.e., their separation from the rest of the scene is kept for
the end of the process. Thus, the number of changing elements
is usually limited to the close neighbors of the articulated unit.
 The full geometrical structure of the problem can thus be
provided by means of a set of BSP trees valid for different
ranges of articulation angle combinations. These trees are
static and can be encoded in a configuration file, thus
requiring some configuration effort for each different
spacecraft but reducing significantly the computational cost of
the rest of the process. The following examples show the
implementation of this technique for some ESA interplanetary
missions. Figure 5 shows an example of unit based
partitioning for Mars Express. In that case, even though the
solar arrays are articulated, their motion can never lead them
to intersect the separation planes, so a single BSP tree is
enough to encode the geometrical structure of the spacecraft.

Fig. 5. Mars Express partitioning.

 Figure 6 shows the same for the ExoMars TGO mission,
with two different positions of the High Gain Antenna dish. In
this case, the movement of the HGA requires the definition of
two different BSP trees. The first one uses plane π2 to separate
the antenna dish from the central body when the elevation
angle is between -24° and 185° degrees. Beyond 185° plane π3
is used instead.

6

Fig. 6. ExoMars plane separation.

Finally, Fig. 7 shows the geometrical model of the
Bepi-Colombo spacecraft, which violates conditions 1 and 2
and requires some unit splitting in order to define the
corresponding BSP tree, which, however, can be unique in
this case.

Fig. 7. Bepi-Colombo geometrical model.

4.4. Adding polygon Boolean operations
 Once a visibility ordering is available as provided by the
BSP tree, the scene structure turns into a set of layers of active
faces, that can be represented by an array of sets of faces, the
first element representing the layer that lies in front of the
scene and the last element representing the layer that lies in
the back. Figure 8 shows how such an array is obtained for a
particular flight configuration of the ExoMars TGO.

Fig. 8. Visibility layers.

 The remaining part of the process requires determining
which parts of the layers in the back are being shadowed by
the layers in front. This can be computed very efficiently
without discretizing the problem by performing polygon
Boolean operations. The following is an outline of the
algorithm:

1. Project all the faces in the layers onto a 2D plane

perpendicular to the flow direction. All the following
operations are performed on that projection plane.

2. For all the layers but the one in the back, compute the
union of all the faces contained in the layer. This
generates a shadowing layer for each of the visibility
levels in the problem. Notice that, because of the way
they are constructed, shadowing layers can consist in
general of more than one polygon.

3. For each visibility layer but the one in the back, perform
the union of the corresponding shadowing layer with all
the shadowing layers in front of it. This modifies the
shadowing layers computed in the previous step.

4. For each face in each visibility layer, starting from the
back layer, compute the Boolean difference between the
face and the shadowing layer in the level directly in front
of it. The resulting polygons are visible.

5. Project the resulting visible polygons back to their
original 3D planes.

6. Compute the SRP force and torque as described in 3.

 Polygon Boolean operations are performed by means of a
modified version of the Greiner-Hormann algorithm that can
cope with any kind of polygon.4,5) This is a well-known
sweep-line algorithm for the computation of the overlay of
planar subdivisions.2) The previous process takes advantage of
the capability of the algorithm to perform any type of Boolean
operation (and not only polygon intersection), in order to
minimize the number of operations to be performed by
computing and merging the shadowing layers affecting each
of the visibility levels of the scene. This is possible because
the algorithm can deal with sets of simple polygons as
operands (some of which can represent holes in a parent
polygon), since they are all considered part of a single planar
subdivision.

Fig. 9. Visibility layers before the processing.

 Figure 9 shows the layered arrangement of the active faces
of the ExoMars TGO for a given Sun direction. This
arrangement is then processed as described above producing

7

the result shown in Fig. 10, where only the visible face
elements are now present. The processed layers are then
projected back to their original 3D planes and their
contributions are added to the final result.

Fig. 10. Visibility layers after the processing.

 Figure 11 shows an example of a merged shadowing layer
for the previous scene, corresponding to the shadowing layer
number 4, generated by the union of all faces in layers 1, 2, 3
and 4, which is then used to shadow the elements in layer 5.

Fig. 11. Merged shadowing layer.

 Figure 12 shows an example of a clipping computation that
takes place during the scene processing. In this case, the
shadow of shadowing layer 3 on the front panel of the central
body is being computed. The final visible parts are shown in
Fig. 13.

Fig. 12. Difference computation.

Fig. 13. Shadowing computation result.

5. Method comparison

 In this section both methods described above are compared in
terms of different relevant characteristics. For the sake of
clarity, the algorithm based on ray tracing will be referred to as
algorithm 1 and the new algorithm based on BSP trees as
algorithm 2.
 The performance of both methods has been compared by
performing a one month reaction wheel propagation for a slow
varying attitude and articulation profile with a time step of 5
minutes, which corresponds to the computation of 8642 steps.
The main driver of the execution time of such a propagation is
the computation of the SRP torque at each propagation step.
The test has been performed for both the ExoMars TGO and
the Bepi-Colombo spacecraft and Table 1 shows the obtained
results. It can be seen that the time improvement obtained
from using algorithm 2 is in the order of a factor of 20, which
results in a relevant operational advantage.

Table 1. Performance comparison.

 Both methods require a significant amount of configuration
effort in order to define the S/C geometrical model. The setup
is usually based on models obtained from the industry
manufacturer. The increase in performance of algorithm 2 is
mostly accomplished thanks to the extra information available
to the algorithm encoded in the BSP trees. Since this
information needs to be provided by the user, the new
algorithm requires some additional configuration effort
compared to the existing one, in order to ensure the model
fulfills the conditions described in 4.3. This effort is
proportional to the geometrical complexity of the spacecraft
and the existing number of articulations. Notice, however, that
this is a one-time effort for each spacecraft that can be
performed in the preparation phase and will provide a drastic
performance improvement over the operational life of the
mission.

Mission Algorithm 1 Algorithm 2
EXM TGO with EDM 450 s 20 s
EXM TGO without EDM 200 s 10 s
Bepi-Colombo 883 s 53 s

8

 In terms of accuracy and robustness, it has been shown that
algorithm 1 can easily need a high amount of cell subdivisions
even in simple geometrical configurations. The consequence
of such situations is, not only a decrease in performance, but
also the insertion of inaccuracies in the result that depend on
the maximum depth of subdivisions allowed. The minimum
cell size is typically configured to have a side length in the
order of 1 cm, which means errors introduced by face
fragments of 1cm2 can be systematically inserted by the
algorithm. It can thus be concluded that algorithm 2 is in
general more accurate, even though the differences will hardly
be noticeable. A comparison of the results obtained with both
methods for 700 different scene configurations of the
ExoMars TGO (with EDM attached) is shown in Figs. 14 and
15 in terms of magnitude and angular errors of the obtained
force and torque vectors. It can be seen that the difference
between the results is below the typical precision of the model
compared to reality, which is estimated to be around 10% due
to the uncertainty on the knowledge of the S/C optical
properties.

Fig. 14. Relative magnitude error.

Fig. 15. Angular error.

 In terms of complexity, algorithm 1 could be deemed to be
simpler in the sense that it relies on a smaller number of
assumptions. Thus, a general understanding of the method can
be obtained in little time and the implementation of the
method requires less effort. Algorithm 2 on the other hand is
much more specialized and requires both higher analytical and
implementation efforts. This again shows that, in a sense,
algorithm 2 draws its power from shifting some of the effort

from the operational phase of the mission to the development
one.

6. Conclusion and future steps

 It has been shown that the new algorithm based on Binary
Space Partitioning trees and polygon Boolean operations
increases greatly the performance of the SRP related
computations, thus significantly reducing the time required for
the flight dynamics ground operations. The algorithm is
already operationally in place for the ExoMars TGO and is
being used in the preparation of the Bepi-Colombo mission.
 In the process, some future steps have been identified and
will be explored in order to contribute further to a fully
generic and multi-purpose method:
• Further exploration of the applicability of BSP trees to

the problem, in particular analyzing the automation of
the BSP tree generation process.

• Extension of the number of applications that make use of
the algorithm, in particular making it easily available for
analysis requiring visibility computations.

• Comparison of the performance of the shadowing
computation approach (based on polygon Boolean
operations) with a simpler one, to properly understand
how much of the performance gain comes from each of
the parts of the process.

• For performing numerical integrations robustly, the
integration may need to be split at times when
derivatives of the integrand are dis-continuous.
Derivatives of SRP forces and torques can only become
dis-continuous at times when the scene structure changes.
The BSP method could be extended in order to identify
these times.

References

1) Schneider, Philip J., Eberly, David H.: Geometric Tools for

Computer Graphics, Morgan Kaufmann Publishers, San Francisco,
2003.

2) de Berg, Mark, Cheong, Otfried, van Kreveld, Marc and Overmars
Mark: Computational Geometry, Algorithms and Applications,
Springer, 2008.

3) Fainberg, J., Herfort, U.: Rosetta Solar Radiation Pressure Force
and Torque (RO-ESC-TN-5529), ESOC, 2001.

4) Martinez, Francisco, Rueda, Antonio J., Feito, Francisco R.: A new
algorithm for computing Boolean operations on polygons,
Computer & Geosciences, Volume 35, Issue 6, June 2009, pages
1177-1185.

5) Martinez, Francisco, Ogayar Carlos, Jiménez, Juan R., Rueda,
Antonio J.: A simple algorithm for Boolean operations on
polygons, Advances in Engineering Software, Volume 64, October
2013, pages 11-19.

6) Wertz, James R.: Spacecraft Attitude Determination and Control,
D. Reidel Publishing Company, 1986.

7) Budnik F., Damiani S., Flegel M., Lauer M., Mueller M.: VEX
Atmospheric Drag Measurements.

	ISTSProgramNumber:
	0:
	4283074427728546: ISTS-2017-d-060／ISSFD-2017-060

