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This work describes the attitude determination and the gyros drift estimation using the Regularized Particle Filter (RPF) with
Roughening and Unscented Kalman Filter (UKF) for nonlinear systems. The Particle Filter has some similarities with the Unscented
Kalman Filter which transforms a set of points (cloud) through known nonlinear equations and combines the results to estimate the
moments (mean and covariance) of the state. However, in the Particle Filter the points (particles cloud) are chosen randomly, whereas
in the Unscented Kalman Filter the points are carefully picked up based on a very specific criterion. In this way, the number of
points (particles) used in a Particle Filter generally needs to be much greater than the number of points (sigma-points) in an Unscented
Kalman Filter. The application of the Regularized Particle Filter in this work uses simulated measurements of a real satellite CBERS-2
(China Brazil Earth Resources Satellite 2) which was at a polar sun-synchronous orbit with an altitude of 778km, crossing Equator at
10:30am in descending direction, frozen eccentricity and perigee at 90 degrees, and provided global coverage of the world every 26
days. These simulated measurements were yielded by the package PROPAT, a Satellite Attitude and Orbit Toolbox for Matlab. The
attitude dynamical model for CBERS-2 is described by nonlinear equations involving the quaternions. The attitude sensors available
are two DSS (Digital Sun Sensors), two IRES (Infra-Red Earth Sensor), and one triad of mechanical gyros. In this work, attitude
dynamics as well as sensors measurements are simulated to reproduce realistic scenarios with low or high sampling rates, or different
levels of accuracy. .
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Nomenclature

f (.) : Process model
h(.) : Measurements model
h : Kernel bandwidth
k : Discret time
m : Measurements number
n : State number

p(xxx0) : Probability densit function
q : Quaternions
t : Time
vvvk : Measurement noise
xxxk : State vector
x̂xxk : Estimated state vector
wwwk : Process noise
yyyk : Measurements vector
ŷyyk : Estimated measurements vector
FFFk : Jacobian matrix of f (.)
HHHk : Jacobian matrix of f h(.)
PPPk : Covariance matrix of xxxk

QQQk : Covariance matrix of wwwk

RRRk : Covariance matrix of vvvk

Ψi : Likelihood
ΩΩΩω : Anti-symmetric matrix

1. Introduction

Many spacecraft missions require precise pointing of their
sensors and demand a real time precise attitude determination,

which involves estimating both sattelite attitude and gyros bias,
from output information of the attitude measurements system.
The importance of determining the attitude is related not only
to the performance of the attitude control system but also to the
precise usage of information obtained by payload experiments
performed by the satellite.

Attitude estimation is a process of determining the orienta-
tion of a satellite with respect to an inertial reference system by
processing data from attitude sensors. Given a reference vec-
tor, the attitude sensor measures the orientation of this vector
with respect to the satellite system. Then, it is possible to esti-
mate the orientation of the satellite processing computationally
these vectors using attitude estimation methods. The bias can
be defined as a output component not related to input to which
the sensor is subjected and its components have features deter-
ministic and stochastic. Therefore, you need to know and to
characterize it, consequently set the method for estimating.1)

The attitude stabilization here is done in three axes namely
geo-targeted, and can be described in relation to the orbital sys-
tem. In this frame, the movement around the direction of the or-
bital speed is named roll (φ), the movement around the normal
direction to the orbit is called pitch (θ), and finally the move-
ment around the Zenith/Nadir direction is called yaw (ψ). See
Fig. 1.

In this work, the attitude model is described by quaternions,
with state estimation performed by the Regularized Particle Fil-
ter (RPF) compared to the Unscented Kalman Filter (UKF),6)

used with reference. This methods is capable of estimating non-
linear systems states from data obtained from different sensors



Fig. 1. The orbital local system (xo, yo, zo) and the attitude system (x, y, z)

of attitude. It was considered real data supplied by gyroscopes,
infrared Earth sensors and digital solar sensors. These sensors
are on board the CBERS-2 satellite (China-Brazil Earth Re-
sources Satellite), and the measurements were recorded by the
Satellite Control Center of INPE (Brazilian National Institute
for Space Research).

2. ATTITUDE REPRESENTATION BY EULER AN-
GLES

The attitude of a satellite is defined by a set of parameters that
allow, uniquely correlating in an instant of time, a fixed coordi-
nate system of the satellite (which accompanies his movement
of rotation and translation) to another inertial system, which is
usually related to the Earth.2)

In general it is considered inertial or near-inertial, which
means that its movement in relation to the system truly inertial
is despicable, when compared with the movement of the body
itself.

The quaternion is a four dimensional vector that defines a unit
vector in space and the angle to rotate about that unit vector to
transform from one frame to another.3, 4) The quaternion can be
written as follows:

qqq =
[

q1 q2 q3 q4
]T

=
[

qqq∗ q4
]T

(1)

where, qqq∗ = eee sin
ζ

2
e q4 = cos

ζ

2
Here, eee =

[
e1 e2 e3

]T
is the unit vector and ζ is the

angle of rotation about unit vector eee. The quaternion satisfies
the following constraint:

qqqTqqq = q2
1 + q2

2 + q2
3 + q2

4 = 1 (2)

The state vector formed by the quaternion and the gyro bias
vector is given by:

xxx =
[

q1 q2 q3 q4 εx εy εz
]T

(3)

If the angular velocity vectorωωω =
[
ωx ωy ωz

]T
of body

frame is known with respect to another reference frame, the
differential equation of the quaternion system becomes3, 5)

q̇qq =
1
2

ΩΩΩωqqq
ε̇εε = 0

(4)

where, ΩΩΩω is an anti-symmetric matrix 4 × 4 given by:

ΩΩΩω =


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 (5)

Assuming that the working data is sampled at a fixed rate and
the angular velocity vector in the satellite system is constant
over the sampling interval, then a solution of the problem is:4)

qqq (tk+1) = ΦΦΦqqq (∆t, |ωωω|)qqq (tk) (6)

where, ∆t the sampling interval; qqq (tk) is the attitude quaternion
in time tk; qqq (tk+1) is the quaternion of propagated attitude to
time tk+1; and ΦΦΦqqq is the transition matrix carrying the system
time tk+1 for tk , given by:

ΦΦΦqqq (∆t, |ωωω|) = cos
(
|ωωω|∆t

2

)
III +

1
|ωωω|

sin
(
|ωωω|∆t

2

)
ΩΩΩω (7)

3. THE PARTICLE FILTER

The particle filter, which was invented for implementing a
numerical Bayesian estimator is a statistical approximation by
brute force,7, 8) for estimation problems that are difficult to solve
with the conventional Kalman filter, or highly nonlinear sys-
tems.9)

Suppose a non-linear system described by the equation

xxxk+1 = fk(xxxk,wwwk)
yyyk = hk(xxxk, υυυk) (8)

where k is the time index, xxxk is the state and wwwk is the pro-
cess noise, yyyk are the measures and υυυk is the noise measure.
The functions fk(.) and hk(.) is a nonlinear time-varying system
and the equation measures respectively. The noises wwwk and υυυk

are considered independent and whites with known probability
density function.

To start the estimation of the problem, we generate randomly
a given number N of vector states for the initial condition of the
probability density function p(xxx0), which is assumed known.
These vectors are called states of particles and are represented
as xxx+

0,i (i = 1, 2, ...,N).

xxx+
0,i ∼ p(xxx0,i) (i = 1, 2, ...,N) (9)

At each step k = 1, 2, ..., the particles propagate to the next
time step using the process dynamics of the equation f (.). This
step is known as sampling.

xxx−k,i = fk−1(xxx+
k−1,i,www

i
k−1) (i = 1, 2, ...,N) (10)

where, each noise vector wwwi
k−1 is generated randomly based on

the known probability density function of wwwk−1.
After getting all the measures in time k, we compute the con-

ditional relative likelihood of each particle xxx−k,i assessed by prob-
ability density function p(yyyk | xxx−k,i) obtained from equation mea-
sures h(.) and noise probability density function of the measure-
ments υυυk.1, 9)

Ψi = p(yyyk | xxx−k )

Ψi ∼
1

(2π)m/2 |RRR|1/2
exp

−(yyy∗ − h(xxx−k,i))
TRRR−1(yyy∗ − h(xxx−k,i))

2


(11)

Normalizing the relative likelihoods obtained by Eq. (11) as:



Ψ̃i =
Ψi∑N

j=1 Ψ j
(12)

this ensures that the sum of all the probability is equal to 1.
The next step is to find a new dataset of xxx+

k,i that is randomly
generated based on the probability relative Ψi,10) where it is
shown that the probability density function of new particle xxx+

k,i
tends to probability density function of p(xxxk | yyyk) with a number
of samples N next to infinity.

Thus, the resampling can be summarized as:

xxx+
k,i =

N∑
i=1

Ψ̃i xxx−k,i (13)

Thus, a set of particles xxx+
k,i can be distributed according to the

probability density function p(xxxk | yyyk) and you can compute any
desired statistical measure of this probability density function.

Finally, if we want to compute the expected value of
E(xxxk | yyyk) one can approximate it by averaging the algebraic
sum of the particles.

E(xxxk | yyyk) ≈
1
N

N∑
i=1

xxx+
k,i (14)

4. Sample improverishment

Sample improverishment occurs when the region of state
space in probability density function p(yyyk | xxxk) has significant
values that do not overlap with the p(xxxk | yyyk−1). This means
that if all of our a-priori particles are distributed according to
p(xxxk | yyyk−1), and we then use the computed probability density
function p(yyyk | xxxk) to resample the particles, only a few parti-
cles will be resampled to become a-posteriori particles. This is
because only a few of the a-priori particles will be in a region
of state space where the computed pdf p(yyyk | xxxk) has significant
value. This means that the resampling process will select only
a few distinct a-priori particles to become a a-posteriori par-
ticles. Eventually, all of the particle will collapse to the same
value1).

This problem will be exarcerbated if the measurements are
not consistent with the process model (modelling errors). This
can be overcome by a brute-force method of simply increasing
the number of particles N, but this can quickly lead to unrea-
sonable computational demands and often simply delays the in-
evitable sample impoverishment. Other more intelligent ways
of dealing with this problem can be used that are presented in
this research .11, 12)

4.1. Roughening
Roughening can be used to prevent sample improverishment,

as shown in.12) In this method, random noise is added to each
particle after the resampling process. This is similar to adding
artificial process noise to the Kalman Filter. In the roughening
approach, the a-posteriori particles are modified as follows:9)

1) This is called the black hole of particle filtering

xxx+
k,i(m) = xxx+

k,i(m) + ∆xxx(m) (m = 1, ..., n)
∆xxx(m) ∼ (0,KMMM(m)N−1/n) (15)

where ∆xxx(m) is a zero-mean random variable (usually Gaus-
sian). K is a scalar tuning parameter that specifies the amount
of jitter that is added to each particle, N is the number of par-
ticle, n is the dimension of the state space and MMM is a vector
containing the maximum difference between the particle ele-
ments before roughening. The mth element of the MMM vector is
given as

MMM(m) = maxi, j

∣∣∣∣xxx+
k,i(m) − xxx+

k, j(m)
∣∣∣∣ (m = 1, ..., n) (16)

where k is the time step, and i and j are particle numbers.
4.2. Regularized Particle Filter

Another way of preventing sample impoverishment is
through the use of the Regularized Particle Filter (RPF).9, 13, 14)

This performs resampling from a continuous approximation of
the pdf p(yyyk | xxx−k,i) rather than from he discrete probability den-
sity function samples used thus far. Recall in our resampling
step in Eq. (11) that we used the probability

Ψi = p((yyyk = yyy∗) | (xxxk = xxx−k,i)) (17)

to determine the likelihood of selecting an a-priori particle to
be an a-posteriori particle. Instead, we can use the pdf p(xxxk | yyyk)
to perform resampling. That is, the probability of selecting the
particle xxx−k,i to be an a-posteriori particle is proportional to the
pdf p(xxxk | yyyk) evaluted at xxxk = xxx−k,i. In the RPF, this probability
density function is approximated as

p̂(xxxk | yyyk) =

N∑
i=1

Ψk,iKh(xxxk − xxx−k,i) (18)

where qk,i are the weights that are used in the approximation.
Later on, we will see that these weights should be set equal to
the qi probabilities that were computed in Eq. (11). Thus, Kh(.)
is given as

Kh(xxx) = hnK(xxx/h) (19)

where h is the positive scalar Kernel bandwidth, and n is the
dimension of the state vector. K(.) is a kernel density that is a
symmetric probability density function that satisfies

∫
xxxK(xxx)dxxx = 0∫
‖xxx‖22 K(xxx)dxxx < ∞

(20)

The Kernel K(.) and the bandwidth h are chosen to mini-
mize a measure of the error between the assumed true density
p(xxxk | yyyk) and the approximate density p̂(xxxk | yyyk):

{K(xxx), h} = argmin
∫ [

p̂(xxxk | yyyk) − p(xxxk | yyyk)
]2 dxxx (21)

In the classic case of equal weights (qk,i = 1/N for i =

1, ...,N) the optimal kernel is given as



K(xxx) =


n + 2
2Vn

(
1 − ‖xxx‖22

)
i f ‖xxx‖22 < 1

0 otherwise
(22)

where Vn is the volume of the n-dimensional unit hypersphere.
K(xxx) is called the Epanechnikov Kernel.13)

An n-dimensional unit hypersphere is a volume in n dimen-
sions in which all points are one unit from the origin.15) In one
dimensions, the unit hypersphere is a line with a length of two
and volume V1 = 2. In two dimensions, the unit hypersphere is
a circle with a radius of one and volume V2 = π. In three dimen-
sions, the unit hypersphere is a sphere with a radius of one and
de volume V3 = 4π

3 . In the n dimensions the unit hypersphere
has a volume Vn = 2πVn−2

n .
If p(xxx | yyyk) is Gaussian with an identity covariance matrix

then the optimal bandwidth is given as

h∗ =
[
8V−1

n (n + 4)(2
√
π)n

] 1
n+4 N−

1
n+4 (23)

In order to handle the case of multimodal probability density
functions1), we should use h = h∗

2 .13, 16) These choice for the
Kernel and the bandwidth are optimal only for the case of equal
weights and a Gausian pdf, but they still are often used in other
situations for obtain good particle filtering results. Instead of se-
lecting a-priori particles to become a-posteriori particles using
the probabilities of Eq. (17), we instead select a-posteriori par-
ticles based in a pdf approximation given in Eq. (18). This al-
lows more diversity as we perform the update from the a-priori
particles to a a-posteriori particles. In general, we should set
the Ψk,i weights in Eq. (18) equal to the Ψi probabilities shown
in Eq. (17).

Since this procedure assumes that the true density p(xxx | yyyk)
has a unity covariance matrix, we numerically compute the co-
variance of the xxx−k,i at each time step. Suppose that this covari-
ance is computed as SSS (an n × n matrix). Then we compute the
matrix square root of SSS , denoted as A, such that AAAAAAT = SSS
(e.g., we can use Cholesky decomposition for this computa-
tion). Then we compute the kernel as

Kh(xxx) = (det AAA)−1h−nK
(
AAA−1xxx

h

)
(24)

5. THE UNSCENTED KALMAN FILTER

Consider again a non-linear system described by the Eq. (8).
An unscented transformation is based on two fundamental

principles. First, it is easy to perform a nonlinear transforma-
tion on a single point(rather than an entire probability density
function). Second, it is not too hard to find a set of individ-
ual points in space whose sample probability density function
approximate the true probability density function of a state vec-
tor.9, 17)

Taking these two ideas together, suppose that we know the
mean x̄xx and covariance PPP of a vector x̄xx. We then find a set of

1) A multimodal probability density functions have more than one local
maxima

deterministic vectors called sigma points whose ensemble mean
and covariance are equal to x̄xx and PPP. We next apply our known
nonlinear function yyy = h(xxx) to each deterministic vector to ob-
tain transformed vectors. The ensemble mean and covariance
of the transformed vectors will give a good estimative of the
true mean and covariance of yyy. This is the key to the unscented
transformation.

Suppose that xxx is a n × 1 vector that is transformed by a non-
linear function yyy = h(xxx). Choose 2n + 1 sigma points xxx(i) as
follows:

xxx(0) = xxx+
k−1

xxx(i)
k−1 = xxx+

k−1 + x̃xx(i) i = 1, . . . , 2n

x̃xx(i) =

(√
(n + κ) PPP+

k−1

)T

i
i = 1, . . . , n

x̃xx(n+i) = −

(√
(n + κ) PPP+

k−1

)T

i
i = 1, . . . , n

(25)

where κ ∈ < and
√

(n + κ) PPP is the matrix square
root of the (n + κ) PPP such that, the relationship is true(√

(n + κ) PPP
)T √

(n + κ) PPP = (n + κ) PPP, and
(√

(n + κ) PPP
)

i
is the

ith row of the
√

(n + κ) PPP.
Propagate from time step (k − 1) to k, the known nonlinear

system equation f (.) to transform the sigma points into xxx(i)
k vec-

tors as follows:

x̂xx(i)
k = f (x̂xx(i)

k−1, tk) i = 0, . . . , 2n (26)

Combine the x̂xx(i)
k vector to obtain the a-priori state estimate

at time k.

x̂xx−k =

2n∑
i=0

W (i)x̂xx(i)
k (27)

The (2n + 1) weighting coefficients is denoted as follows:

W (0) =
κ

n + κ

W (i) =
1

2 (n + κ)
i = 1, . . . , 2n

(28)

Estimate the a-priori error covariance. We should add QQQk−1

to the end of the equation to take the process noise into account:

PPP−k =

2n∑
i=0

W (i)
(
x̂xx(i)

k − x̂xx−k
) (

x̂xx(i)
k − x̂xx−k

)T
+ QQQk−1 (29)

Use the known nonlinear measurements equations h(.) to
transform the sigma points into ŷyy(i)

k vectors (predicted measurea-
ments):

ŷyy(i)
k = h(x̂xx(i)

k , tk) i = 0, . . . , 2n (30)

Combine the ŷyy(i)
k vectors to obtain the predicted measurement

at time k.

ŷyyk =

2n∑
i=0

W (i)ŷyy(i)
k (31)



Estimate the covariance of the predicted measurement. We
should add RRRk to the end of the equation to take the measure-
ment noise into account:

PPPy =

2n∑
i=0

W (i)
(
ŷyy(i)

k − ŷyyk

) (
ŷyy(i)

k − ŷyyk

)T
+ RRRk (32)

Estimate the cross covariance between x̂xx−k and ŷyyk as follows:

PPPxy =

2n∑
i=0

W (i)
(
x̂xx(i)

k − x̂xx−k
) (
ŷyy(i)

k − ŷyyk

)T
(33)

The measurement update of the state estimation can be per-
formed using the normal Kalman Filter equations 1) as fol-
lows:1, 9)

KKKk = PPPxyPPP−1
y

x̂xx+
k = x̂xx−k + KKKk

(
yyyk − ŷyyk

)
PPP+

k = PPP−k − KKKkPPPyKKKT
k

(34)

6. Computer Simulation and Results

The nonlinear system that represents the process and mea-
surements equations of the problem is given by:19)

[
q̇qq
ε̇εε

]
=


1
2

ΩΩΩω 03×3

03×3 03×3


[

qqq
εεε

]
+www (35)

yyyk =


arctan

(
−S y

S x cos 60◦ + S z cos 150◦
)

24◦ + arctan
(
S x
S z

)
φ
θ

 + υυυk (36)

where S x, S y and S x are the components of the unit vector as-
sociated to the sun vector in the satellite system.

Equation (35) represent the kinematic equations of the prob-
lem and the Eq. (36) represent the model measurements given
by two Digital Sun Sensor (DSS) and two Infrared Earth Sensor
(IRES), respectively.6, 18–20)

The initial conditions used in Euler angles were:
xxx0 =

[
0.0 0.0 0.0 5.76 4.83 2.68

]T
; the co-

variance matrix whichs weigh the initial conditions
PPP0 = diag (0.25; 0.25; 4.0; 1.0; 1.0; 1.0); the process error ma-
trix QQQ0 = diag

(
6.08; 5.47; 6.08; 4 × 10−3; 4 × 10−3; 4 × 10−3

)
×

10−3, which weighs the process noise, and the measurements
error matrix RRR0 = diag (0.36; 0.36; 0.0036; 0.0036), which
weighs the measurements noise. For the vector xxx0, the first
three elements are in deg and the others elements are in deg/h,
for the matrices PPP0, QQQ0 and P̄PP0 first three elements are in deg2

and the others elements are in deg2/h2, and finally, for the
matrix RRR0 all the elements are in deg2.

1) The Normal Kalman Filter is statistical derivation of the Kalman Filter

6.1. Simulated Data
The orbit and attitude simulations were made by propagator

PROPAT21) coded in MatLab software and presented here with
a sampling rate of the 0.5s for 10min of observation.

In the estimation states process using the UKF were used 2n+

1 sigma points, where n is the number of states. Already in the
estimation states process using the RPF were used N = 500
particles, respectively.

Figures 2 and 3 as follow, shows to the attitude and gyros bias
estimated states, respectively, the resampling of the a-posteriori
particle distribution for the RPF in the time step of t = 99s to
t = 124s using the measurements of DS S 1.

Fig. 2. Resampling of the a-posteriori particle distribution for attitude es-
timated using the RPF for the measurements of DS S 1, in the time step of
t = 99s to t = 124s.



Fig. 3. Resampling of the a-posteriori particle distribution for gyros bias
estimated using the RPF for the measurements of DS S 1, in the time step of
t = 99s to t = 124s.

Figures 4 and 5, present the attitude angles and gyros bias
estimation using the RPF for N = 500 particles comparated
with UKF.

Before analyzing the accuracy of the filters in question, it is
important to analyze their convergencedone through configura-
tion of residual for the two DSS and for the two IRES, in the
Fig. 6 shows the residual frequency for DSS and IRES for each
of the filters in the analysis (RPF and UKF), presenting charac-
teristics similar to a Gaussian distribution

It is said that a Filter is converging when your residual is
close to zero average and the Tab. 1 shows the average value
and the standard deviation of the DSS and IRES residuals for
each of the filters presented in Fig. 6.

Fig. 4. Attitude angles estimated (φ, θ, ψ)

Fig. 5. Gyros bias estimated (εx, εy, εz)

Fig. 6. Frequency Residuals for the DSS and IRES on board the CBERS-2
satellite



Table 1. Mean and standard deviation statistics of the DSS and IRES
Residuals

RPF UKF
DSS1 Res. (deg) 0.0481 ± 0.1918 0.0273 ± 0.9766
DSS2 Res. (deg) 0.0038 ± 0.1985 −0.0310 ± 1.0472
IRES1 Res. (deg) 0.0438 ± 0.0890 0.0026 ± 0.1065
IRES2 Res. (deg) 0.0060 ± 0.0918 −0.0334 ± 0.1693

The standard deviation of the Residuals is calculated by
Eq (37):

σ =

√√√
1
K̃

K̃∑
k=1

(
ỹyyk − ȳyy

)2 (37)

where ȳyy = 1
K̃

∑K̃K̃
k=1 ỹyyk and K̃ is the total number of estimation

residuals.
It is said that a Filter is converging when your residual is

close to zero average and it happens with the results presented
in Table 1. To analyze the accuracy of the filters studied, it is
presented, in Fig. 7, the error attitude estimation by the RPF and
the UKF.

Fig. 7. Error attitude estimation

Table 2 shows the average value and the standard deviation
of the error attitude estimation presented in Figure (7)

Table 2. Mean and standard deviation statistics of the error attitude esti-
mation

RPF UKF
φ Error (deg) 0.0441 ± 0.0648 0.0015 ± 0.0493
θ Error (deg) 0.0041 ± 0.0686 −0.0085 ± 0.0551
ψ Error (deg) −5.470 × 10−4 ± 0.0572 0.0507 ± 0.3679

With a small change, the standard deviation of the error state
estimation is calculated by Eq. (38):

σ =

√√√
1
K̃

K̃∑
k=1

(x̃xxk − x̄xx)2 (38)

where x̃xxk = xxxk − x̂xxk, x̄xx = 1
K̃

∑K̃
k=1 x̃xxk and K̃ is the total number of

estimation.
Analyzing the Table 2 it can be seen that, the average results

for the error attitude estimation in the RPF are better when com-
pared with the UKF, especially for the ψ Error angles.

The following, in Fig. (8) presented the error bias estimation
by the RPF and the UKF.

Fig. 8. Error gyros bias estimation

Table 3 shows the average value and the standard deviation
of the error bias estimation presented in Fig. (8).

Table 3. Mean and standard deviation statistics of the error bias estimation
RPF UKF

εx Error (deg/h) −1.9 × 10−4 ± 1.1 × 10−5 0.071 ± 0.001
εy Error (deg/h) −2.4 × 10−4 ± 1.3 × 10−5 0.725 ± 0.054
εz Error (deg/h) −2.3 × 10−4 ± 1.1 × 10−5 0.050 ± 0.008

Analyzing the Table 3 it can be seen that, the average results
for the error bias estimation in the RPF again are beter when
compared with the UKF.

7. Conclusions

The main objective of this study was to estimate the attitude
of a CBERS-2 like satellite, using real data provided by sensors
that are on board the satellite. To verify the consistency of the
estimator, the attitude was estimated by least squares method.
The usage of real data from on-board attitude sensors, poses dif-
ficulties like mismodelling, mismatch of sizes, misalignments,
unforeseen systematic errors and post-launch calibration errors.



In general terms, for nonlinear system, the Kalman filtering
can be used for state estimation, but the Particle filtering may
give better results at the price of additional computational effort.
In system that has non-Gaussian noise, the Kalman filtering is
optimal linear filter, but again the Particle filtering may perform
better. The Unscented Kalman Filter provides a balance be-
tween the low computational effort of te Kalmam filtering and
the high performance of the Particle filtering.9)

It should be added that there is some similarity between the
filters, the UKF transform a set of points via known nonlinear
equations and combines the results to estimate the mean and
covariance of the state. However, in the Particle Filtering (and
the RPF used in this work) the points (the cloud of particles) are
chosen randomly, whereas in the UKF the points (the cloud of
sigma points) are chosen on the basis of a specific algorithm.

Because of this, the number of points used in a Particle Filter
generally needs to be much greater than the number of points
in a Unscented Kalman Filter and, consequently, with this large
number of particles for the Particle Filtering the computational
effort will increase

Finally, this work provide a kinematic attitude solution be-
sides estimating biases (gyro drifts) and it can be concluded
that the algorithm of the RPF converges and the results are in
close agreement with the results in previou work,6) which used
the UKF for estimation of attitude and gyros bias.
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