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    In this study, the minimum time orbit raising problem of geostationary spacecraft by the low propulsion thrusters is 
considered. This problem is equivalent to how to determine an appropriate thrust direction during the orbit raising. This study 
proposes a closed loop thruster steering-law that determines the thrust direction based on the optimal feedback gains and the 
control errors of each orbital element. The feedback gains of the steering-law are assumed to be the functions of orbital 
elements, and they are optimized by the meta-heuristic method such as a particle swarm optimization. As an independent 
variable for expressing the gains, the orbital semi-major axis, eccentricity, and inclination are considered. Numerical 
simulations show that whichever orbital element of these is selected for the independent variable, the same performances are 
obtained. This guarantees that regardless of the initial orbital elements, by selecting the independent variable appropriately, 
the minimum time orbit transfer problem can always be solved by the proposed method. 
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Nomenclature 
 

ܽ : semi-major axis 
݁ : eccentricity 
݅ : inclination 
߱ : argument of perigee 
Ω : right ascension of ascending node 
 true anomaly : ߥ
 eccentric anomaly : ܧ
=)semi-latus rectum : ݌ ܽ(1 − ݁ଶ)) 
ℎ : orbit angular momentum(= ඥ݌ߤ) 
݊ : mean angular motion 
=)true longitude : ܮ Ω + ߱ +  (ߥ

(݁௫, ݁௬) : eccentricity vector 
(݅௫, ݅௬) : inclination vector 

x :  6 × 1  vector which consists of slow 
equinoctial elements and mass 
(= [ܽ ݁௫ ݁௬ ݅௫ ݅௬ ݉]்) 

ܶ : orbital period(=  ( ݊/ߨ2
 distance from center of Earth to spacecraft : ݎ

ܴ௘ : equatorial radius of Earth 
 gravitational constant of Earth : ߤ
g : gravitational acceleration of Earth at sea 

level 
 time : ݐ
ܶ : orbital period(=  ( ݊/ߨ2

 ௦௣ : specific impulse of thrusterܫ
  magnitude of thruster force : ்ܨ
݉ : spacecraft mass  
  in-plane thruster steering angle : ߙ
 out-of-plane thruster steering angle : ߚ

 

 
 Subscripts 

0 : initial 
݂ : final 
 radial direction in LVLH coordinates : ݎ
 transversal direction in LVLH coordinates : ߠ
ℎ : normal direction in LVLH coordinates 

 
1.  Introduction 
 
  In recent years, a low propulsion thruster such as an ion-
thruster or a hall thruster is becoming a hopeful propulsion 
system for a spacecraft transferring from a low earth orbit 
(LEO), a geostationary transfer orbit (GTO), or a 
supersynchronous orbit (SSTO) to a geostationary orbit 
(GEO).1-3) Conventionally, a geostationary spacecraft is just 
putted in the GTO by a launcher and in order to complete the 
orbit transfer, the spacecraft employs an on-board high 
chemical propulsion thruster called apogee kick motor at the 
apogee of GTO so that the orbit semi-major axis, eccentricity, 
and inclination correspond with those of GEO.4) Although GEO 
insertion by the chemical propulsion thruster completes in a 
short period of time (generally less than one week, including 
initial check-out operation time), a low specific impulse of the 
thruster results in much fuel consumption (almost half of the 
wet mass is occupied by the fuel). In order to overcome this 
disadvantage, a spiral orbit raising by the low propulsion 
electric thruster, which has almost ten times larger specific 
impulse than the chemical propulsion, is getting a lot of 
attention as an alternative transfer orbit5). In the case of the 
spiral orbit raising, it takes several months to complete the orbit 
transfer but it can save a lot of fuel. 
  In the past, a lot of works that aim to optimize the orbit 
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transfer with the low propulsion have been conducted. Sackett 
et al. 6) utilized the averaging method and solved the problem 
by the classical indirect optimization. Kluever et al.7,13) solved 
the optimal control problem by a direct optimization approach 
where the costate variables or the weighting variables are the 
optimization variables of the nonlinear programming problem. 
Graham et al.10) posed the minimum-time trajectory 
optimization as a multiple-phase optimal control problem and 
solved it by a pseud-spectral method. Ruggiero et al.11) 
proposed a closed loop steering-law which determines the 
thrust direction based on the difference between the current 
orbital elements and the target ones.  
  In this study, the minimum time orbit transfer problem by the 
low propulsion thrusters is considered. This problem is 
equivalent to how to determine the appropriate thrust direction 
during the orbit raising. In order to obtain the optimal direction, 
the closed loop thruster steering-law given by Ref. 11) is 
improved in this paper. In detail, the feedback gains for the 
steering-law are introduced to obtain the optimal thruster 
direction. The feedback gains are expressed as the functions of 
a monotonically increasing or decreasing orbital element, and 
they are optimized by the meta-heuristic method such as a 
particle swarm optimization. As an independent variable for 
expressing the gains, the orbital semi-major axis, eccentricity, 
or inclination is chosen. Numerical simulations show that 
whichever orbital element of these is selected for the 
independent variable, almost the same performances are 
obtained. 
 
2.  Dynamics of Osculating and Mean Orbital Elements 
 

In this paper, the following equinoctial orbital elements 
(ܽ, ݁௫ , ݁௬, ݅௫ , ݅௬, (ܮ  which are defined by Eqs. (1)-(4) are 
utilized for describing the orbital motion. 14) 

݁௫ = ݁ cos(Ω + ߱) 

݁௬ = ݁ sin(Ω + ߱) 

݅௫ = tan(݅/2) cos Ω 

݅௬ = tan(݅/2) sin Ω 

ܮ = Ω + ߱ +  ߥ 

(1) 

(2) 

(3) 

(4) 

where (݁௫, ݁௬), (݅௫ , ݅௬), and ܮ are called an eccentricity vector, 
an inclination vector, and true longitude, respectively. 
2.1.  Dynamics of osculating equinoctial elements 

The equinoctial elements have the merit of singularity-
freeness, and these equations of motion are written as follows:  

  
݀ܽ
ݐ݀

=
2

݊√1 − ݁ଶ
ቀ݁ sin ߥ ௥ݑ +

݌
ݎ

 ఏቁ (5)ݑ

݀݁௫

ݐ݀
= ݍ sin ܮ ௥ݑ +

ݍ
ݓ

ݓ)] + 1) cos ܮ + ݁௫]ݑఏ

−
ݖݍ
ݓ

݁௬ݑ௛  
(6) 

݀݁௬

ݐ݀
= ݍ− cos ܮ ௥ݑ +

ݍ
ݓ

ݓ)ൣ + 1) sin ܮ + ݁௬൧ݑఏ

+
ݖݍ
ݓ

݁௫ݑ௛  
(7) 

݀݅௫

ݐ݀
=

ଶݏݍ

ݓ2
cos ܮ ௛ݑ  (8) 

݀݅௬

ݐ݀
=

ଶݏݍ

ݓ2
sin ܮ ௛ݑ  (9) 

ܮ݀
ݐ݀

= ඥ݌ߤ ൬
ݓ
݌

൰
ଶ

+
ݖݍ
ݓ

 ௛ (10)ݑ

where ݍ, ,ݓ ,ݖ and ݏ are defined as follows: 

ݍ = ඥߤ/݌ 

ݓ = 1 + ݁௫ cos ܮ + ݁௬ sin  ܮ

ݖ = ݅௫ sin ܮ − ݅௬ cos  ܮ

ଶݏ = 1 + ݅௫
ଶ + ݅௬

ଶ 

(11) 

(12) 

(13) 

(14) 

In Eqs. (5)-(10), ݑ௥ , ,ఏݑ and ݑ௛ are the perturbing acceleration 
on spacecraft expressed in a local vertical local horizontal 
(LVLH) coordinate, whose ݎ  axis points to the spacecraft 
from the center of the Earth, ℎ axis is perpendicular to the 
orbital plane, and ߠ axis is chosen to complete the right hand 
system. The spacecraft mass flow rate due to the thruster 
operation is expressed as follows: 

݀݉
ݐ݀

= −
்ܨ

௦௣ܫ݃
 (15) 

2.1.  Dynamics of mean equinoctial elements 
  Generally, an orbit transfer by a low-propulsion thruster 
requires several months, and it takes rather long time to 
numerically integrate the osculating equinoctial elements. This 
can lead to the long convergence time in the numerical 
optimization process where the iterative integration is required. 
In order to reduce the integration time, we utilize the following 
averaged dynamics of equinoctial elements as was done by 
Kluever7) and Utashima8): 

ഥ࢞݀

ݐ݀
=

1
ܶ

න
࢞݀
ݐ݀

ݐ݀
ா೐

ா್

=
1

ߨ2
න

࢞݀
ݐ݀

(1 − ݁ cos ܧ݀(ܧ
ா೐

ா್

 (16) 

where ࢞  is a vector composed of slow-variables of the 
equinoctial elements and spacecraft mass. In Eq. (16), the 
relation of ݀ݐ݀/ܧ = ݊/(1 − ݁ cos  is used. The eccentric (ܧ
anomaly ܧ௕ and ܧ௘ represent the begging and ending of the 
thruster arc in one orbit revolution, respectively. In the Earth 
eclipse (shadow), it is assumed that the power cannot be 
generated and that the thruster is turned off. Therefore, ܧ௕ and 
 ௘ correspond to the exit and entry point of Earth eclipse inܧ
one orbit revolution, respectively. If there are no coasting arc, 
 respectively. The model of ,ߨ௘ can be set to 0 and 2ܧ ௕ andܧ
the Earth eclipse is briefly described in the next section. 
2.3.  Model of Earth eclipse 
  The earth shadow related to the satellite orbiting the Earth is 
composed of two regions. One is a penumbra and the other is 
an umbra. In the penumbra, the sun light is partially obscured 
by the Earth, while in the umbra, the light is completely blocked. 
In this paper, ܧ௕ and ܧ௘ are determined based on the exit and 
entry point of penumbra, respectively, by using a manner 
similar to Ref. 9). 

 
Fig. 1.  The geometry of Earth shadow. 
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3.  Steering-law 
 

In this section, we describe the proposed thruster steering-
law for the low-thrust orbit transfer. This is the improvement 
of the one studied by Ruggiero11). We first briefly review the 
conventional method, and then describe the improved steering-
law of this study. 
3.1.  Conventional steering law 
  In this study, we assume that the thruster force ்ܨ keeps a 
constant value, and that the thruster direction is controlled. By 
introducing a pitch angle ߙ and a yaw angle ߚ (Fig. 2), the 
thruster force vector can be expressed in the LVLH coordinate 
as follows: 

௥ݑ = ்ܽ sin ߙ cos  ߚ
ఏݑ = ்ܽ cos ߙ cos  ߚ
௛ݑ = ்ܽ sin  ߚ

(17) 
(18) 
(19) 

where ்ܽ  is a thruster acceleration, defined by ்ܨ/݉ . 
Substituting Eqs. (17)-(19) into the gauss-planetary equations 
of the semi-major axis, eccentricity, and inclination, following 
equations are obtained: 

݀ܽ
ݐ݀

=
2ܽଶ

ℎ
cos ߚ ቀ݁ sin ߥ sin ߙ +

݌
ݎ

cos ቁߙ ்ܽ (20) 

݀݁
ݐ݀

=
1
ℎ

cos ߚ ݌] sin ߥ sin ߙ

+ ൫(݌ + (ݎ cos ߥ + ൯݁ݎ cos  ்ܽ[ߙ
(21) 

݀݅
ݐ݀

=
ݎ
ℎ

cos(߱ + (ߥ sin ߚ ்ܽ (22) 

By setting the first derivative of Eqs. (20)-(22) with respect to  
 equal to zero and solving them, the optimal pitch and ߚ and ߙ
yaw angles to maximize the rate of change of these three orbital 
elements are obtained as shown in Table 1. 
 

 
Fig. 2.  Geometry of LVLH coordinates and thruster direction. 

 
Table 1.  Optimal steering angle for maximum rate of change of semi-

major axis, eccentricity, and inclination 

 Pitch angle Yaw angle 

semi-major 

axis 
tanିଵ ൬

݁ sin ߥ
1 + ݁ cos ߥ

൰ 0 

eccentricity tanିଵ ൬
sin ߥ

cos ߥ + cos ܧ
൰ 0 

inclination any sign(cos(߱ + ((ߥ
ߨ
2

 

 
Let us define the optimal pitch and yaw angle for changing 

semi-major axis, eccentricity, and inclination as ߙ௝
∗, ௝ߚ

∗ (݆ =
ܽ, ݁, ݅) . The associating optimal thrust direction ࢛ෝ௝

∗  (݆ =
ܽ, ݁, ݅) is expressed as follows: 

ෝ௝࢛
∗ = [sin ௝ߙ

∗ cos ௝ߚ
∗ cos ௝ߙ

∗ cos ௝ߚ
∗ sin ௝ߚ

∗]் (23) 

Ref. 11) proposed calculating the thrusting vector as a weighted 
linear sum of ࢛ෝ௔

∗ , ෝ௘࢛
∗ , and ࢛ෝ௜

∗ where the weights are 
determined by the difference between the osculating value of 
the specific orbital element and the target one of the same 
element. This calculation is given as follows: 

ෝ࢛ =
࢛

|࢛|
 (24) 

࢛ = ቆ ௙ܽ − ܽ

௙ܽ − ܽ଴
ቇ ෝ௔࢛

∗ + ቆ ௙݁ − ݁

௙݁ − ݁଴
ቇ ෝ௘࢛

∗ + ቆ ௙݅ − ݅

௙݅ − ݅଴
ቇ ෝ௜࢛

∗ (25) 

where subscript 0 and ݂ represent the initial and final (target ) 
value of each orbital element, respectively. 
3.2.  Proposed steering-law 
  The conventional method in the previous section introduces 
self-adaptive weights and blends each optimal direction ࢛ෝ௝

∗ in 
accordance with the weights. By using this steering-law, it can 
be expected that the all orbital elements will converge to the 
desired values with the lapse of time. However, these self-
adaptive weights are not necessarily optimal, and we propose 
to improve the steering-law as follows: 

ෝ࢛ =
࢛

|࢛|
, ࢛ = ෝ௔࢛௔ݓ

∗ + ෝ௘࢛௘ݓ
∗ + ෝ௜࢛௜ݓ

∗ (26) 

where the improved weighs ݓ௔,ݓ௘, and ݓ௜  are given as: 

௔ݓ = (ߛ)௔ܭ ௙ܽ − ܽ

ห ௙ܽ − ܽ଴ห
 (27) 

௘ݓ = (ߛ)௘ܭ ௙݁ − ݁

ห ௙݁ − ݁଴ห
 (28) 

௜ݓ = (ߛ)௜ܭ ௙݅ − ݅

ห ௙݅ − ݅଴ห
∙ cos (߱ +  (29) (ߥ

In the above equations, ܭ௔(ߛ), ,(ߛ)௘ܭ and (ߛ)௜ܭ  are the 
feedback gains of the each self-adaptive weight, and they are 
the functions of monotonically increasing or decreasing orbital 
element ߛ. In the case of the coplanar GTO to GEO transfer, 
the semi-major axis or eccentricity can be chosen to be ߛ , 
while if the initial semi-major axis is equal to that of GEO (the 
case of SSTO to GEO), the eccentricity or inclination can be 
chosen, for example. Because the relative values of the weighs 
are important, one of the gains can be set one (ex. ܤ௘(ߛ) = 1 
in the case of GTO to GEO). In the following section, the 
method to obtain the optimal gains ܭ௔(ߛ),  (ߛ)௜ܭ and ,(ߛ)௘ܭ
is described in detail. Also, we explain the reason why 
monotonically increasing orbital element ߛ  is used as an 
independent variable instead of time. 
 
4.  Optimization of Feedback Gain for Minimum-time 
Orbit transfer 
 
  In this section, we describe the method to calculate the 
optimal feedback gains for the minimum-time orbit transfer. In 
section 4.1., the minimum-time transfer problem (an objective 
function and search variables) are defined, and in the 
succeeding section, the way of solving the optimization 
problem is described. 
4.1.  Problem of minimum-time transfer to GEO 
4.1.1.  Objective function 
  In order to complete the orbit transfer to GEO, all of the 
semi-major axis, eccentricity, and inclination have to 
correspond to those of GEO. Because the steering-law given by 

Earth

 ෝ࢛
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Eqs. (26)-(29) does not assure that the three orbital elements 
simultaneously achieve target values, a time when each orbital 
element gets its target value should be explicitly distinguished 
from each other as ݐ௙௔ , ௙௘ݐ , and ݐ௙௜  (Fig. 3). Therefore, the 
objective function of the minimum-time transfer to GEO is 
defined by the following min-max problem: 

min.  ܬ = max(ݐ௙௔ , ௙௘ݐ  ,  ௙௜) (30)ݐ 

 

 
Fig. 3.  Conceptual diagram of the time difference of each orbital 

element achieving the target value. 

 
4.1.2.  Optimization variable 

Our goal is to obtain the optimal feedback gains ܭ௔(ߛ) , 
 In .ܬ which minimize the objective function (ߛ)௜ܭ and ,(ߛ)௘ܭ
order to achieve this, the feedback gains are discretized within 
the interval of [ߛ଴,  .௙], and the nodal values are optimizedߛ
  By dividing the interval [ߛ଴, ܰ) ௙] intoߛ − 1)  segments, 

the ݇-th node ߛ௞ is given as follows (݇ = 0, ⋯ , ܰ − 1): 

௞ߛ = ଴ߛ +
݇

ܰ − 1
௙ߛ) −  ଴) (31)ߛ

The arbitrary ܭ௝(ߛ)  between the nodes ߛ௞  and ߛ௞ାଵ  is 
calculated by a linear interpolation of ܭ௝(ߛ௞) and ܭ௝(ߛ௞ାଵ) 

as follows (݇ = 0, ⋯ , ܰ − 2): 

(ߛ)௝ܭ = (௞ߛ)௝ܭ +
(௞ାଵߛ)௝ܭ − (௞ߛ)௝ܭ

௞ାଵߛ − ௞ߛ
ߛ) −  ௞) (32)ߛ

 

 
Fig. 4.  Discretization of feedback gain through ߛ. 

 
Because ߛ଴  and ߛ௙  are given from the initial and final 
condition, the objective is to obtain the optimal nodal values 
(௞ߛ)௝ܭ  (݆ = ܽ, ݁, ݅;  ݇ = 0, ⋯ , ܰ − 1)  which minimize the 
objective function. If all of the nodal values are given, the 
thruster vector can be calculated from Eq. (26) and it is possible 
to propagate the orbital elements forward. The Propagation 
ends when all of the semi-major axis, eccentricity, and 
inclination get to the target values. Therefore, the time 
௙௔ݐ , ௙௘ݐ , and ݐ௙௜ , as well as objective function ܬ  are easily 
obtained by just forward propagating the equation of motion. 

Note that if the time is chosen to be an independent variable 
instead of ߛ, it is impossible to propagate the orbital elements. 
This is because the final time ݐ௙ is an unknown variable, and 

the feedback gain cannot be interpolated in the time domain. 
4.2.  Solving optimal feedback gain by particle swarm 
optimization 
  The objective function given in Eq. (29) is a min-max 
function and it is difficult to define its gradient. This means that 
the gradient-based solving methods for a nonlinear 
programming problem such as an interiour-point method or a 
sequential quadratic programming method are not suitable for 
this min-max problem. In order to solve this problem and to get 
the optimal nodal values, we propose to utilize the particle 
swarm optimization (PSO). PSO is a meta-heuristic 
optimization method invented by Kennedy and Eberhart12), and 
does not require any gradient information. In the following, the 
PSO algorithm used in this paper is briefly described. 
  Let us assume that we have total ܯ particles in the search 
space, and that the position of the ݉-th particle at the ݇-th 
generation is defined as ࢟௞

௠ , where ࢟  denotes a vector 
composed of all of the optimization variables (nodal values of 
feedback gains). The personal best of the ݉-th particle at the 
݇-th generation ࢖௞

௠ is defined as follows: 

௞࢖
௠ = ∗௝࢟

௠ , ݆∗ = argmin
଴ஸ௝ஸ௞

݂൫࢟௝
௠൯ (33) 

where ݂൫࢟௝
௠൯ represents evaluating the objective function at 

௝࢟
௠. Furthermore, the optimal particle at the ݇-th generation is 

defined as the global best ࢍ௞ as follows: 

௞ࢍ = ௞࢟
௠∗

, ݉∗ = argmin
ଵஸ௠ஸெ

௞࢟)݂
௠) (34) 

By using the personal best and global best, the state of each 
particle at the (݇ + 1)-th generation is updated as follows: 

௞ାଵ࢜
௠ = ௞࢜௞ݓ

௠ + ܿ௣ ௞ܲ(࢖௞
௠ − ௞࢟

௠)
+ ܿ௚ܩ௞(ࢍ௞ − ௞࢟

௠) 
(35) 

௞ାଵ࢟
௠ = ௞࢟

௠ + ௞ାଵ࢟
௠  (36) 

where ݓ௞ is a positive parameter that represents the inertia of 
particles at the ݇-th generation. The parameters ܿ௣  and ܿ௚ 

determine how strongly each particle is attracted to the particle 
best and global best, respectively. The parameter ௞ܲ and ܩ௞ 
are ܯ✕ܯ  diagonal matrices, whose components are 
randomly sampled from a interval [0,1] at every generations. 
In this paper, it is assumed that the attracting factor ܿ௣ and ܿ௚ 
are constant for the every generation, and that the inertia 
parameter ݓ௞  monotonically decreases with the lapse of 
generation. By defining the number of finial generation as ܩ, 
݇)௞ is given as followsݓ = 0, ⋯ ,  :(ܩ

௞ݓ = ଴ݓ +
݇
ܩ

ீݓ) −  ଴) (37)ݓ

where ݓ଴  and ீݓ  represent the inertia parameter at the 
initial and final generation, respectively. By gradually 
decreasing the inertia parameter, each particle can 
independently move in the search space at the beginning, and 
can easily converge to the global best at the end. 
 
 

time

Orbital Elements

0
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5. Numerical Examples 
 

In this section, numerical examples of the proposed 
optimization method are presented. By assuming GTO 
parameters, the initial orbital elements and mass are set as 
follows: 

ܽ଴ = 24,771km, ݁଴ = 0.702, ݅଴ = 28.5°,  
Ω଴ = 30°, ߱଴ = 0°, ݉଴ = 1500kg 

The thruster force ்ܨ  and specific impulse ܫ௦௣  are set as 
623.2mN and 1800sec, respectively. This ܽ଴  and ݁଴ 
represent a perigee altitude of 1000km and an apogee of 
35,786km. The target orbital elements of GEO are ௙ܽ =
42,164km, ௙݁ = 0, and ௙݅ = 0°. The departure date is set at 
21st June, 2017. As for the independent variable ߛ, the 
following three cases are considered: 
 

Table 2.  Independent variable ߛ for each case 

case1 case2 case3 

semi-major axis eccentricity inclination 

 
The number of the nodes are set at three for each case. With 
respect to the parameters of PSO, the following values are 
chosen: the particle population ܯ = 75, the initial inertia 
଴ݓ = 0.9,  the final inertia ீݓ = 0.4,  the final generation 
ܩ = 100, the particle best attraction ܿ௣ = 0.5, and the global 
best attraction ܿ௚ = 1.25 . In this numerical examples, no 
perturbations except thruster force are considered and in the 
evaluation of each particle’s score, the averaged equation of 
motion Eq. (16) is utilized for accelerating the propagation 
speed of orbital elements. 
  The summary of the transfer time of three cases as well as 
the conventional method is shown in Table 3. In three cases, 
௙௔ݐ , ௙௘ݐ , and ݐ௙௜  have almost the same values and the transfer 
time is about 70.3day. On the other hand, as for the result of the 
conventional method, ݐ௙௔ , ௙௘ݐ , and ݐ௙௜ are different from each 
other by several days and transfer time is 83.6day, which is 
about 13days longer than that of the proposed method. 
  Figures 6-8 compare the time histories of the osculating 
semi-major axis, eccentricity, and inclination obtained by the 
conventional and proposed steering-laws. Note that these 
results are obtained by numerically propagating the osculating 
orbital elements by the optimized feedback gains. These figures 
show that no matter which orbital element among ܽ, ݁, and ݅ 
is chosen as an independent variable, almost the same histories 
of orbital elements are obtained. 
  Figure 8 shows the 3D view of the transfer orbit of case1 in 
the inertial coordinate. Figure 9 compares the transfer orbit of 
case1 with that of the conventional method. It is clear that the 
maximum apogee altitude of case1 is much higher than the 
conventional method. This means that the proposed method 
prioritizes increasing the semi-major axis than decreasing the 
eccentricity at the initial phase of the transfer, which is also 
indicated by Figs. 5 and 6. 
  Figures 10-12 show the feedback gains obtained as the 
function of the semi-major axis, eccentricity, and inclination, 
respectively. Because the relative value of the gains is 
important, ܭ௘ is set at one for all cases. Note that in Figs. 11 

and 12, the horizontal axes are reversed for the comparison with 
Fig. 10. These figures show the same trend that ܭ௔  and ܭ௜ 
are decreasing with the lapse of time. Although the three cases 
have the different values of the feedback gains, they share the 
same transfer time. This implies that the shape of ߛ −  ௝ curveܭ
is rather important than the absolute value of ܭ௝ 
 

Table 3.  Comparison of transfer time 

 
case1 

(γ = ܽ) 
case2 

(γ = ݁) 
case3 

(γ = ݅) 
conventional 

 ௙௔ 68.7 69.6 69.8 73.0ݐ

 ௙௘ 70.2 70.3 70.2 77.5ݐ

 ௙௜ 69.9 70.3 70.2 83.6ݐ

 ௙ 70.2 70.3 70.2 83.6ݐ

 

Fig. 5.  Comparison of semi-major axis time history. The dashed line 
indicates the semi-major axis of GEO (42,164km) 

 

Fig. 6.  Comparison of eccentricity time history 

 

Fig. 7.  Comparison of inclination time history 
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Fig. 8.  3D view of GTO to GEO transfer trajectory of obtained by 
proposed method (case1). A green area represents eclipse. 

 

   
(a) Proposed method (case1) (b) Conventional method 

Fig. 9.  Comparison of GTO to GEO transfer trajectory obtained by 
the proposed method (a) and the conventional one (b). A green area 
represents eclipse. The view point is above the Earth north-pole. 

 

Fig. 10.  Optimal gains as the functions of semi-major axis (case1) 

Fig. 11.  Optimal gains as the functions of eccentricity (case2) 

Fig. 12.  Optimal gains as the functions of inclination (case3) 

 

6.  Conclusion 
 
  In this paper, we proposed a closed-loop thruster steering- 
law that determines the thrust direction based of the difference 
between the current orbital elements and the target ones. The 
feedback gains of the steering-law are assumed to be the 
functions of orbital elements, and they are optimized by a 
particle swarm optimization. In order to show the validity of 
the proposed method, some numerical simulations of the orbit 
transfer from GTO to GEO are conducted. The results disclosed 
that the proposed method can reduce the transfer time by 15% 
compared to the conventional steering-law, and that whichever 
orbital element that monotonically increase or decrease is 
selected for an independent variable, almost the same 
performances are obtained. This guarantees that regardless of 
the initial orbital elements, by selecting the independent 
variable appropriately, the minimum time orbit transfer 
problem can always be solved by the proposed method. 
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