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    The exploration of NEA (Near Earth Asteroids) is characterized by many problematics such as collision risks, irregular 
gravity fields and, in case of binary systems, multibody gravity perturbations, whose negative effects on mission design could 
be mitigated by the exploitation of multiple spacecraft in formation, with lower weights, dimensions and costs. Nanosatellite 
fully meet these needs, however, the poor control capabilities, and the strict requirements on relative dynamics to ensure the 
same performances of a single heavy spacecraft, request an efficient strategy to determine the suitable trajectories in this 
chaotic environment. The paper proposes a simple technique, based on orbit sampling and local optimization, to define a set 
of suitable configurations for a two-nanosatellite formation. After a quick review on the orbits determination and combination 
in binary asteroid environments, and the presentation of the objectives derived from the conceptual mission AIM (Asteroid 
Impact Mission), the local optimization algorithm is explained, paying attention to the selection of the method and its 
modification to best adapt to the specific problem. Then, results are presented, showing the strength and weakness points of 
the overall procedure, for the definition of future improvements. 
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Nomenclature 
 

 Circular restricted three-body  : ܲܤ3ܴܥ
   problem 

MCR3BP :  Modified CR3BP 
L1 :  Lagrangian point 1 
L2 :  Lagrangian point 2 
L4 :  Lagrangian point 4 
DRO :  Distant retrograde orbits 
HNL1 :  Northern Halo orbit around L1 
HSL1 :  Southern Halo orbit around L1 
HSL2 :  Southern Halo orbit around L2 
ොܽ, ෠ܾ , ܿ̂ :  Ellipsoid semi-axes 
ܿ :  Constraint equations vector 
 Objective functions vector  : ܨ
݃ :  Dynamics equations vector 
 Cost  : ܬ
஼ܬ  :  Overall constrained cost function 
 ெ :  Jacobian matrixܬ
ܰ :  Number of nodes 

஼ܰ  :  Number of active constraints 
ܴ :  Maximum radius of primary 

   asteroid 
 Residual of the objective  : ݎ

   functions 
ܶ :  Formation period 
ܺ :  State vector of all nodes 
,ݔ ,ݕ  Position coordinates  : ݖ
ሶݔ , ሶݕ ,  ሶ :  Velocity coordinatesݖ
 State vector of single node  : ߟ
 Lagrange multipliers  : ߣ

 ௥ :  Numerical damping parameterߣ
  
Subscripts 

1 :  First satellite 
2 :  Second satellite 
p :  Generic projected point 
p1 :  First projected point 
p2 :  Second projected point 
path :  Trajectory length 
prj :  Trajectory projection 
rel :  Relative motion 

 
1.  Introduction 
  The optimization of a formation flying configuration, in a 
chaotic environment such as binary systems, hides its 
complexity in the presence of very small regions in the state 
space where periodicity of the solution can be found. The 
definition of the orbits in this environment, require specific 
techniques of “correction and continuation”, based on 
numerical approaches and evaluation of state’s eigenvalues.1) 

  The presence of irregular gravity fields further aggravates 
the mentioned drawbacks, removing symmetry properties with 
respect to the planes of the system. Furthermore, to correctly 
represent the asteroid’s environment, specific modeling 
techniques are required, with a consequent increment in the 
equations complexity, and in the computational costs and 
time.2) 
The most straightforward way to overcome these problems is 
characterized by the exploitation of targeted strategies, where 
some pre-existent knowledge is used to reduce the solutions 
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search region. This can be obtained through a hybridization of 
search methods, exploiting first a sampling based on 
background knowledge of periodic orbits in these systems, then 
adopting continuous local optimization algorithms to find the 
final solution. 
  Background knowledge of periodic orbits is available when 
dealing with point mass approximations, in the CR3BP frame, 
but does not consider the presence of irregular gravity fields. 
The issue is resolved by a sampling of orbits in the CR3BP, and 
the subsequent correction into the new gravitational 
environment through a Newton based multiple shooting 
scheme. The families of orbits in the asteroid environment are 
combined to generate a group of suitable configurations, and to 
select among them the best ones from the evaluation of an 
overall cost function (derived from mission objectives). 
The limitation of this approach lies in the discretization of the 
search space, which generally leads to sub-optimal solutions. 
On the other hand, the discretization provides a wide set that 
can be used as guesse for local optimization process. The 
advantage of this strategy is due also to the exploitation of the 
same cost function, that can be directly implemented in the 
process. The local optimization can be based on a variety of 
different techniques. In the present work, the Levenberg-
Marquardt algorithm has proved to be a very suitable algorithm, 
since it represents a trade-off between stability (from steepest-
descent method) and rate of convergence (from Newton 
method), provided that the initial guess is sufficiently close to 
the final solution. Few modifications in the algorithm are 
applied, to best suit to the intrinsic complexity of the specific 
problem discussed in the paper, and to enhance the 
effectiveness of the optimization process. Analytical Jacobian 
matrix has been computed to significantly speed up the 
algorithm, from the mathematical computation of derivatives 
of the single objectives from the cost function.  
  The results of the optimization are presented and critically 
discussed, to underline the benefits of the aforementioned 
approach and propose improvements to overcome the detected 
drawbacks and issues. 
 
2.  Process description 
 
2.1.  Objectives definition and model assumptions 
  In the present work, target objects and objectives from 
Asteroid Impact Mission concept are considered. The study is 
limited to a formation of two nanosatellites, in free-dynamics 
and strictly periodic, non-proximity trajectories. 
The asteroid binary system “65803 Didymos” is modeled as 
follows:  

 Main asteroid (“Didymain”) built through polyhedral 
shaping techniques,3) from real shape observations 
data. 

 Secondary asteroid (“Didymoon”) built as a triaxial 
ellipsoid,4) (in absence of precise shape 
measurements). 

 Revolution period of Didymoon around Didymain of 
~12 hours, according to observation. 

 Tidal locking of Didymoon with respect to Didymain. 
 Rotation period of Didymain assumed equal to 

revolution period (time invariant binary system in the 
synodic frame). 

Figure 1 shows the appearance of the binary system model. 
 

 

Fig. 1.  65803 Didymos binary system. Didymain (on the left) is modeled 

as a polyhedral object, while Didymoon (on the right) is represented as an 

ellipsoid. 

 
The mission objectives considered for the optimization are: 

 Relative motion minimization (formation shape 
maintenance). 

 Orbits dimension maximization (gravimetric 
measurements). 

 Maximization of motion around Didymoon (mapping 
of the internal structure). 

The objectives are expressed in dynamic terms to be evaluated 
by the algorithm. Relative displacement of the satellites is 
implemented as the integral of squared relative velocity 
modulus, so that approaching and departure motions are 
equally reduced. 
 

௥௘௟ܬ = ׬ ሾ(ݔሶଶ − ሶଵ)ଶݔ + ሶଶݕ) − ሶଵ)ଶݕ + ሶଶݖ) − ݐሶଵ)ଶሿ݀ݖ
்

଴
     (1) 

 
Orbits’ dimension is maximized through the extension of the 
trajectory within the formation period, expressed as the integral 
of squared velocity modulus of both spacecraft. 
 

௣௔௧௛ܬ = − ׬ ሾ(ݔሶଵ + ሶଵݕ + ሶଵ)ଶݖ + ሶଶݔ) + ሶଶݕ + ݐሶଶ)ଶሿ݀ݖ
்

଴
     (2) 

 
The motion around Didymoon can be measured in 

geometrical terms. At each time step, the segment connecting 
the two spacecraft is traced, and possible intersection with the 
ellipsoid is searched. In case intersection is present, the two 
projection points on asteroid’s surface are evaluated in position, 
velocity and acceleration, according to analytical formulas 
derived from the equations of tridimensional straight line and 
triaxial ellipsoid. 

With reference to Fig. 2, the system reads: 
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Fig. 2.  Representation of the satellites projections on asteroid’s surface. 

 
The two solutions derived from Eq. (3) are then included in the 
cost function in terms of integral of the squared mean velocity 
norm between the two intersection points. 
 

௣௥௝ܬ = − ׬
ଵ

ସ
ቂ൫ݔሶ௣ଵ + ሶ௣ଶ൯ݔ

ଶ
+ ൫ݕሶ௣ଵ + ሶ௣ଶ൯ݕ

ଶ
+

்

଴

                          
     

+൫ݖሶ௣ଵ + ሶ௣ଶ൯ݖ
ଶ

ቃ (4)    ݐ݀
   

   
2.2.  Guess definition and optimization 
  To initialize the optimization, a set of possible initial guesses, 
based on the background knowledge of the problem, is built. It 
is known how irregular shape objects affect the geometrical 
properties of trajectories, especially if dealing with binary 
systems, therefore already known solutions are recovered from 
the simpler point masses model, in the CR3BP frame. A further 
step is introduced to move from the point mass model to the 
asteroids model: gradual shape modification process allows to 
transform point masses (or spheres) into the real shape of 
considered objects, while correcting the orbits to fit the new 
gravitational field,5) as shown in Figs. 3 and 4. 
The full set of orbits in the asteroids environment is exploited 
in a preliminary combinatorial optimization. The single 
dynamical objectives described in Eq. (1), (2) and (4) are 
combined to form an overall cost function (multi-objective 
scalarization), as expressed in Eq. (5). 
 

ܬ = ௥௘௟ܬ + ௣௔௧௛ܬ  +  ௣௥௝                (5)ܬ 
 

 

Fig. 3.  Representation of DRO family in the point masses binary system. 

Real shape of asteroids has been introduced to give a better understanding 

of orbits dimensions. 

 

 
Fig. 4.  Representation of DRO family in the asteroids binary system. The 

gravitational field is coherent with the real shape of the objects. 

 
  All possible combinations among the orbits database are 
generated and evaluated according to the value given by Eq. (5). 
An initial screening removes solutions involving proximity 
flight, hence all couples with orbits belonging to the same 
equilibrium points of the binary system. The remaining couples 
are mapped in terms of the cost value, and a best couple for 
each orbit family combination is identified and saved (see Fig. 
5 and 6). A last step in the selection process is introduced 
through the generation of a 3D Pareto front, where axes 
correspond to the single objectives from Eq. (1), (2) and (4) 
(shown in Fig. 7), and non-dominant solutions can be 
discarded.6) 

  The main drawback related with the direct exploitation of the 
combined couples is the non-multiplicity (within reasonable 
times) of the periods of the two orbits forming the couple: the 
values of the objective costs will be true for the first period of 
the orbit with longest duration, then a shifting phase causes the 
loss of the initial configuration until it is restored again after a 
certain time (which could be very large). The local optimization 
process allows to restore periodicity in the formation, while 
trying to reduce to minimal values the costs of the function. 
 



 

 

 

4

 

Fig. 5.  Overall cost map for couples of families HSL1 and HSL2. Axes 

represent the numbering of orbits in each family, from the smallest to the 

widest. The red circle identifies the combination of the two families with 

the lowest cost. 

 

 

Fig. 6.  Representation of HSL1-HSL2 best configuration. Grey lines 

inside Didymoon represent the mapping directions during the natural 

orbital motion of the two spacecraft. 

 

Thanks to the scalar nature of the overall cost function, the 
classical optimization scheme based on Lagrange multipliers 
can be exploited, 
 

ቐ
஼ܬ = ܬ − ׬ ቀߣ୘݃ቁ ݐ݀

்

଴
 

஼ܬߜ = 0
              (5) 

 

  from which a boundary value problem, composed by a set of 
24 first order ODE and relative boundary conditions (the 
continuity between initial and final state, to ensure periodicity), 
is obtained.7) 

 

ቐ
ሶߟ = (ߟ)݂

 
(ܶ)ߟ − (0)ߟ = 0

                  (6) 

 
 

 

Fig. 7.  Pareto front of the best configurations group. Red surface connects 

all the dominant solution, while black dots represent the non-dominant 

couples. 

 
  The system accounts for the satisfaction of the objectives, 
while keeping the dynamics coherent with the MCR3BP (with 
the real shape of the attractors), however, in the current form, 
it is not capable of detecting collision trajectories with the 
attractors. To work around the problem, the set of equations is 
augmented with 4 inequality constraints (2 per satellite), stating 
the violation of the non-collision condition. For each satellite, 
the 2 constraints read: 
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ቁ
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ቁ
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       (7) 

 
Eq. 7 states that satellite number “j” shall have a norm of the 
distance from main attractor higher that the maximum radius of 
the asteroid, and a norm of the distance from secondary 
attractor outside the surface of the ellipsoid. If at least one of 
the 4 inequalities is not satisfied, it is converted into an equality 
relationship (to be included in the system of Eq. 6). 
 

ܿ ቀߟቁ = 0                   (8) 

 
  Letting the formation period free to vary, the solution of the 
system composed by Eq. 6 and 8 will keep the periodicity 
property, while moving outside the initial search space. The 
obtained DAE system is characterized by discontinuities 
introduced by collision constraints, therefore techniques like 
multiple shooting are particularly suitable for this purpose. 
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  In the specific problem under study, the Newton method 
(which is preferred due to its high rate of convergence) causes 
overshooting problems and consequent failures in finding the 
optimized solutions, therefore a Levenberg-Marquardt scheme 
is used.8) Along the guess orbits, discrete nodes are generated 
and their state is saved and compared with the one propagated 
from the previous node: the difference of the two state values 
represents the objective function to be nulled. Together with all 
the nodes connections, boundary conditions and “active” non-
collision constraints (referred only to colliding nodes) are 
added to the set. 
 

ܨ =

ۏ
ێ
ێ
൫ఎ೛ିఎ೙ۍ

 ൯
ೕ

ఎಿିఎభ
 

൬௖ቀఎቁ൰
ೖ ے

ۑ
ۑ
ې
 , ݆ = 1: ܰ , ݇ = 1: ௖ܰ      (9) 

 
  For each iteration “i”, the update in the state of the nodes 
reads: 
 

௜ܺାଵ = ௜ܺ − ቆܬெ
୘ ெܬ + ݃ܽ݅ܦ௥ߣ ൬ܬெ

୘ ெ൰ቇܬ
ିଵ

ெܬ
୘  ௜   (10)ܨ

 
and the residual to be brought to zero is evaluated as: 
 

ݎ =
ଵ

ଶ
 (11)                     ܨ୘ܨ 

 
  The damping parameter λr is updated at each iteration 
according to the new value of the residual with respect to the 
previous one. 
  The dimensions of the problem will be variable due to the 
activation and deactivation of collision constraints: when a 
node falls into asteroids surface, a row presenting the 
constraint of Eq. 8 is added, and remains in the system until 
the non-collision condition is satisfied again. 
  The reduced convergence rate of the LM algorithm is 
partially restored through some modifications in the method. In 
particular, the “uphill” and the “delayed gratification” 
techniques,9) are introduced. The first relaxes the comparison 
of the new residual with the old one, allowing local increment 
if the following conditions are satisfied: 
 

൞

݀ ௜ܺ = ௜ܺାଵ − ௜ܺ

௜ߚ =
ௗ௑೔∙ௗ௑೔షభ

ฮௗ௑೔ฮ∙ฮௗ௑೔షభฮ

(1 − ௜ݎ(௜ߚ < ௝ݎ  , ݆ = 1: ݅ − 1

           (12) 

 
  The approach allows to move faster in zones of the function 
where “canyon-like” shapes are present, and to avoid the 
algorithm to get stuck. In the present work, the term (1-β) is 
evaluated under square root, to make the procedure more robust 
and avoid convergence failures 

  The second technique focuses on the update of parameter λ: 
 If Eq. 12 is satisfied, λ is decreased of a quantity “a” 
 If Eq. 12 is not satisfied, λ is increased of a quantity 

“b” such that b< a 
  The difference on the increasing/decreasing step reduces the 
overall number of jumps on λ values, potentially speeding up 
the convergence rate near the solution. 
 
3.  Results 
  This section presents the most significant results of the 
optimization, through a comparison with the initial guesses and 
an analysis of the possible reasons behind the phenomena 
observed in the overall process. 
  The complete set of orbit families considered is composed 
by: 

 Lyapunov families (around L1 and L2) 
 Northern and southern Halo families (around L1 and 

L2) 
 DRO family (around Didymoon) 
 SPO family (around L4) 

 
  The preliminary combinatorial process and dominance 
search lead to the definition of 20 sub-optimal couples, 
characterized by a significant variety in the single objectives 
satisfaction: consequently, a specific couple may show a low 
overall cost through a single objective minimization, while 
keeping the other contributions nearly unchanged or even 
worsened. This effect can be observed directly from the Pareto 
front displayed in Fig. 7. The advantage of this behavior resides 
in the different choices available, depending on the user’s 
preferences.  
  The optimization causes, as first effect, a uniformation of the 
single objectives toward a common mean value (in most cases), 
with consequent reduction/increment of the overall cost and the 
creation of a more balanced and less diversified set, which 
becomes more interesting if all the objectives need to be 
satisfied at the same time. Among the optimized solutions, 3 
results groups could be identified: 

 3 “Failed” solutions, where the algorithm failed to 
converge or got stuck during the process. 

 10 “Trivial” solutions, representing physically valid 
solutions, but related to configurations known a priori 
(spacecraft located at equilibrium points). 

 7 “Good” solutions, where physically coherent and 
non-trivial configurations are found. 

  With the only exception of failed solutions, the distribution 
of the configurations in the space of the objectives defines the 
new Pareto front, as shown in Fig. 8. 
  From the comparison with Fig. 7, it is observed a 
conservation of the planar shape of the front. Most initial 
configurations fall into the upper left region, where best relative 
motion values and worst mapping and path length properties 
are present: here lie all the solutions involving the equilibrium 
points, that is the “trivial” group. The superposition of many 
configurations in the same region causes also the generation of 
many non-dominant solutions. 
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Fig. 8.  Pareto front for the set of optimal configurations. 

 
  The cause of the accumulation of solutions in the 
neighborhood of the trivial region may reside in the flat shape 
of the Pareto front: the absence of a marked convexity in the 
front’s shape generates difficulties in the search of scattered 
solutions through weighted sum scalarization methods.10) To 
improve the number and the variety of acceptable solutions, 
further improvements in the local search method shall be 
introduced. 
  In the next paragraphs, the three most meaningful solutions 
from the “good” set are analyzed, represented by DRO-HSL2, 
HNL1-DRO and HSL1-DRO. 
 
3.1.  DRO-HSL2 
  The optimization of DRO-HSL2 leads to a decrement of the 
overall cost, with improvements in relative motion reduction 
and mapping maximization, at the cost of lower lengths (see 
Table 1).  
 
Table 1.  Objectives and overall costs for DRO-HSL2 guess and 

optimized configurations. 

 ࡶ ࢐࢘࢖ࡶ ࢎ࢚ࢇ࢖ࡶ ࢒ࢋ࢘ࡶ 

Guess 1.1685 -0.7371 -0.0422 0.3892 
Optimal 0.7661 -0.6564 -0.0460 0.0637 

 
Trajectories appear closer to each other and to Didymoon’s 
surface. The smallest dimensions and the vicinity to the 
attractor allow longer mapping times, lower relative 
oscillations and a lower formation period. The visual 
representation of the orbits before and after the optimization is 
provided in Fig. 9 and 10. 
 

 

Fig. 9.  Guess configuration for DRO-HSL2 couple. 

 

 

 
Fig. 10.  Optimal configuration for DRO-HSL2 couple. 

 

It is observed that the modification of the orbits maintained 
their original shape and out-of-plane properties, fact that can be 
attributed to the quasi-periodicity of the initial guess (see Fig. 
11): without the need of relevant modifications to find perfect 
periodicity, the optimization becomes more effective on the 
cost reduction task. 
  Furthermore, the activation of non-collision constraints 
prevents the orbits from shrinking too much and loosing 
mapping and path properties. 
  A final observation regards the mapping of the asteroid: 
while the covered surface in the optimal configuration appears 
lower than the one of the guess, in the former case a second 
passage above the same area (within the formation period) is 
measured, therefore the effect on the objective is doubled. To 
make the algorithm distinguish passages on the same areas, the 
objective expression shall be further modified. 
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Fig. 11.  Relative distance between spacecraft for the guess and optimal 

configuration of DRO-HSL2 couple. The guess configuration show a very 

small shift between initial and final displacement (quasi-periodicity). The 

optimized solution is characterized by a nearly constant distance and a 

shorter period.  

 
3.2.  HNL1-DRO 
  The optimization process causes, in contrast with the 
previous solution, an overall increment of the total cost (see 
Table 2). 
 
Table 2.  Objectives and overall costs for HNL1-DRO guess and 

optimized configurations. 

 ࡶ ࢐࢘࢖ࡶ ࢎ࢚ࢇ࢖ࡶ ࢒ࢋ࢘ࡶ 

Guess 4.7298 -4.7780 -0.0332 -0.0814 
Optimal 2.8912 -1.6515 -0.0272 1.2126 

 
  Significant modifications of the single objectives are 
measured: the halved value of the optimal relative displacement 
is counterbalanced by an even greater reduction of the 
trajectories path and a small reduction of mapping area, thus 
making the overall cost grow up. 
  As a result, the optimized orbits are shrunk and modified 
towards planarity (in the Didymain-Didymoon orbital plane), 
so that Halo orbit is transformed to a Lyapunov. The 
comparison between the configurations is depicted in Fig. 12 
and 13. 
  The out-of-plane component is not conserved during the 
optimization, despite the presence of the mapping, highlighting 
another drawback of this contribution: the mathematical 
expression adopted does not distinguish the in-plane 
component from the out-of-plane component (which may be 
fundamental in terms of scientific return), thus requiring future 
improvements for this purpose. 
  Figure 14 shows the trend of relative displacements and the 
effects of the optimization process. 
 
 

 

Fig. 12.  Guess configuration for HNL1-DRO couple. 

 

 

Fig. 13.  Optimal configuration for HNL1-DRO couple. 

   

Fig. 14.  Relative distance between spacecraft for the guess and optimal 

configuration of HNL1-DRO couple. The guess configuration shows a 

significant shift between initial and final displacement. The optimized 

solution is characterized by lower (but still present) displacements and a 

slightly shorter period. 

 
  The increment of the overall cost may be related to the 
marked non-periodicity of the guess couple: the process is 
forced to ensure connection between initial and final state, thus 
making the cost change (possibly towards higher values) before 
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the real optimization begins, and affecting negatively the final 
(optimal) value. 
 
3.3.  HSL1-DRO 
  The couple HSL1-DRO shows tendentially opposite 
behaviors with respect to other solutions. As in the previous 
cases, an initial non-periodicity leads to higher overall costs in 
the optimized solution, however, the trend of the single 
objectives is inverted: an improvement on the mapping is 
counterbalanced by worse values in terms of both path length 
and relative motion, as shown in Table 3. 
 
Table 3.  Objectives and overall costs for HSL1-DRO guess and 

optimized configurations. 

 ࡶ ࢐࢘࢖ࡶ ࢎ࢚ࢇ࢖ࡶ ࢒ࢋ࢘ࡶ 

Guess 6.7063 -3.8927 -0.0899 2.7237 
Optimal 7.2949 -3.7274 -0.0972 3.4703 

 
  The path and relative motion worsening are explained 
looking at the geometrical modifications that the algorithms 
applies to the orbits. From the comparison between the couple 
before and after the optimization process (see Fig. 15 and 16), 
it is noticed that Halo orbit is shrunk in the direction of its 
equilibrium point (coherently with the other configurations), 
while the DRO is enlarged (with increments both in dimensions 
and period). Consequently, although the final overall path 
results slightly lower (due to the HSL1 shrinkage, which nulls 
the effect from the larger DRO), the augmented distance 
between orbits makes relative oscillations more relevant (as 
shown in Fig. 17). 
 

 

Fig. 15.  Guess configuration for HSL1-DRO couple. 

 

  The resulting configuration is again characterized by planar 
trajectories, and the mapping of the asteroid will be limited to 
Dydimoon’s equatorial disc. 

 

Fig. 16.  Optimal configuration for HSL1-DRO couple. 

 

 

Fig. 17.  Relative distance between spacecraft for the guess and optimal 

configuration of HSL1-DRO couple. Differently from the other 

configurations, the optimal solution is characterized by higher 

displacements and a longer period. 

 
4.  Conclusions 
  The application of an optimization algorithm based on 
combinatorial process of already known, discrete solutions, and 
a subsequent local optimization through analytical expressions, 
demonstrated to be a suitable approach to deal with chaotic and 
complex problems as the one faced in this paper. The strategy, 
although derived from simple and basic optimization processes, 
was capable of dealing with a multiple objective, complex 
problem, providing a set of suitable solutions for a two-
nanosatellite formation, and laid the foundations for many 
improvements in various aspects faced in the development of 
the algorithm. 
  Besides that, few drawbacks have been encountered in the 
application of this strategy, in terms of mission objectives and 
optimization behaviors. From them, new directions for the 
development of the present project could be identified.   
  Together with a review of the already defined mission 
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objectives, and their extension to more complete expressions 
(in particular for the mapping contribution), the cost function 
shall be augmented with more objectives, to be added or 
removed selectively by the user, to best adapt to various 
mission designs: particularly of interest are constraints on 
orbital stability and propellant costs for maneuvers (to reach the 
formation configuration). 
  Secondly, enhancements on the algorithm shall be 
introduced, in terms of: 

 Dynamics propagation: selective reduction of 
polyhedron’s faces (Didymain model) to speed up the 
integration without affecting the precision of the 
trajectory. 

 Algebraic constraint management: restatement of the 
introduction of algebraic constraints to avoid 
blockings in the algorithm when large orbit segments 
fall into asteroids’ surface. 

 Multiple objectives scalarization: improvements in 
the management of objectives, to avoid accumulation 
points (caused by low convexity of the Pareto 
frontier) and favor higher spreading of the solutions 
in the objectives’ space. 

  Finally, for a more realistic representation of binary systems, 
extension to elliptical three-body problem, and the introduction 
of independent rotations of the attractors, together with external 

perturbation sources, will be included in the analysis.   
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