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    This work introduces a novel approach to formation flying by extending shape-based continuous thrust trajectory design 

methods to the relative motion of two spacecraft. The expanding capabilities of high specific impulse electric propulsion 

systems and multi-satellite formations pose challenges for mission planners which are hereby addressed with a geometrically 

intuitive, semi-analytical solution to the low-thrust problem. Beginning with the equations of relative motion of two 

spacecraft, an unperturbed chief and a continuously-thrusting deputy, a thrust profile is constructed which transforms the 

equations into a form that is solved analytically. The resulting relative trajectories are the family of sinusoidal spirals, which 

provide diversity for design and optimization based upon a single thrust parameter. Closed-form expressions are derived for 

the trajectory shape and time-of-flight corresponding to two prescribed relative velocity behaviors. A novel patched-spirals 

trajectory design and optimization method is developed and applied to the example of a servicer mission to geostationary 

earth orbit for direct cost comparison of low-thrust and impulsive-thrust architectures. 
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Nomenclature 

 

Vectors 

𝐫 :  Position from central body 

𝐮 :  Thrust per unit mass 

𝐯 :  Velocity in inertial frame IJK 

𝛅𝐫 :  Position of deputy from chief 

𝛅𝐯 :  Relative velocity in rotating RTN frame 

𝛅𝛄̂ :  𝛚̂×𝛅𝐯̂ 

𝛅𝛉̂ :  𝛅𝐫̂×𝛚̂ 

𝛉̂ :  𝛚̂×𝐫̂ 

𝛚 :  Angular velocity of RTN frame in IJK 

Parameters 

𝑛 :  Chief mean motion 

𝑟 :  Radial distance to central body 

𝑅 :  Projection of 𝛅𝐫 onto 𝐫̂ of chief 

𝑡 :  Time 

𝑇 :  Projection of 𝛅𝐫 onto 𝛉̂ of chief  

𝑣 :  Speed in inertial frame 

TOF :  Time of flight 

𝛿𝑟 :  Deputy separation from chief 

𝛿𝑣 :  Deputy speed relative to chief in RTN 

𝛿𝛾 :  Deputy flight path angle in RTN 

𝛿𝜃 :  Deputy azimuth from chief radial 

Δ𝑉 :  Change in inertial velocity due to thrust 

𝜇 :  Gravity parameter of central body 

𝜉 :  Thrust parameter 

Subscripts and superscripts 

0 :  Initial 

c :  Chief 

𝑑 :  Deputy 

𝐸 :  Passive ellipse in RTN frame 

𝑓 :  Final 

𝐼𝐽𝐾 :  Derivative in inertial reference frame 

𝑚 :  Minimum or maximum 

𝑟 :  Radial measure of vector 

𝑅𝑇𝑁 :  Derivative in chief’s rotating RTN frame 

𝑡 :  Transverse measure of vector 

+ :  After patch 

− :  Before patch 

 

1.  Introduction 

 

  The next generation of spacecraft architectures will be 

characterized by its increased utilization of distributed space 

systems and low-thrust, electric propulsion systems. To date 

these concepts have seen limited, but remarkable, service. The 

successful demonstration of autonomous formation flying in 

missions such as GRACE,1) TanDEM-X,2) and PRISMA3) has 

opened the door to advanced mission concepts including 

distributed occulter/telescopes and on-orbit satellite servicing.4) 

Meanwhile, the development of continuous low-thrust 

propulsion systems for interplanetary probes such as Deep 

Space 15) and Dawn6) has stimulated the widespread adoption 

of ion and hall thrusters for satellite station-keeping.7) The 

intersection of these trends creates a problem for mission 

planners that has received little attention to date: continuous, 

low-thrust control of spacecraft relative motion. To address the 

issue, this work adapts and applies shape-based trajectory 

design methods to the relative motion of two spacecraft. 

  Missions involving formation flying and rendezvous have 

historically employed chemical rockets and cold-gas thrusters 

for maneuvering. For satellite applications, these propulsion 

systems can produce up to 100 N of thrust and achieve the 

required maneuver Δ𝑉  over a span of a few seconds.8) 

 



 

 

 

2 

Because it is much shorter than the orbital period, this finite 

timespan may be neglected and the maneuver approximated as 

impulsive for design purposes. Electric propulsion systems, on 

the other hand, produce thrusts on the order of 10 μN to 1 N 

and must operate continuously for a large portion of the orbit 

to achieve the required Δ𝑉.9) The tradeoff is that the specific 

impulse (Isp) realized by electric propulsion systems can range 

from 1500 to 5000 s, an order of magnitude improvement over 

the 150 to 300 s attainable with chemical rockets. For this fuel 

efficiency and their compact nature, electric propulsion 

systems are particularly valuable to the growing field of micro- 

and nanosatellites. 

  The study of low-thrust relative motion began with 

investigations in optimal rendezvous by Lembeck and 

Prussing,10) Carter,11) and Guelman and Aleshin.12) Based on the 

primer vector theory of Lawden,13) their studies examine 

rendezvous with unbounded thrust, bounded thrust, and 

constrained approach direction, respectively. Low-thrust 

formation control laws based on Lyapunov theory were 

introduced by de Queiroz et al.14) and Schaub et al.,15) based on 

cartesian and mean orbit element state representations, 

respectively. These control laws drive the formation toward a 

prescribed relative trajectory, obtained through a separate 

treatment of the guidance problem. The NetSat demonstration 

mission, which consists of a formation of four nanosatellites 

using electric propulsion, has prompted new research in this 

area.16) In particular, Steindorf et al. developed a controller for 

this formation using a reference governor based on relative 

orbit elements.17) In the latter approach, the guidance and 

control problems are merged into a path-planning problem in 

the relative orbit elements space. Bevilacqua and Lovell present 

an analytical approach to spacecraft relative guidance with 

constant thrust based on relative orbit elements and input 

shaping, a concept adapted from flexible structure control 

theory.18) 

  Due to the many degrees of freedom introduced by 

continuous thrust, low-thrust trajectory design is generally 

formulated as a nonlinear optimization problem. Numerical 

solvers may be highly sensitive to the search parameters and 

having a good initial guess is therefore crucial. Shape-based 

methods provide one route to finding an initial guess, by 

analytically studying the thrust profile required to follow a 

prescribed trajectory. The first instance of this method was the 

study of the logarithmic spiral as a low-thrust, absolute 

trajectory by Bacon in 1959.19) Other authors extended the 

method for the absolute motion of a single spacecraft with more 

general and useful shapes, such as the exponential sinusoid 

with variable flight path angle.20) More recently, Roa showed 

that the thrust required by the logarithmic spiral trajectory can 

be extended to a family of generalized logarithmic spirals.21) 

  As a first application of shape-based methods to formation 

flying, this work begins with a development of the equations of 

relative motion that parallels the classical Hill-Clohessy-

Wiltshire (HCW) theory.22) The dynamics of the relative 

motion problem differ from those of the absolute motion such 

that one may treat the trajectory shape and velocity separately. 

A sinusoidal spiral shape is adopted and two simple strategies 

for controlling relative velocity are presented. 

  This paper is organized into three parts. Section 2 presents 

theoretical developments, starting with the equations of relative 

motion and derivation of the sinusoidal spirals. Explicit 

expressions for time of flight are presented for each of the 

relative velocity control schemes considered. Next, two 

strategies for patching together relative spiral trajectories are 

described in section 3. Finally, these strategies are applied to 

the example problem of a servicer spacecraft visiting a target in 

geostationary earth orbit (GEO) in section 4. 

 

2.  Theoretical Development 

 

2.1.  Equations of Relative Motion 

  The relative motion of two spacecraft orbiting a central body 

is governed by the difference of their respective fundamental 

orbital differential equations as 

 𝐼𝐽𝐾𝑑2

𝑑𝑡2
(𝐫𝐝 − 𝐫𝐜) =

𝜇

𝑟𝑑
3 𝐫𝐜 −

𝜇

𝑟𝑐
3
𝐫𝐝 + 𝐮𝐝 − 𝐮𝐜 (1) 

where 𝐫𝐜  and 𝐫𝐝  are the chief and deputy position vectors 

from the central body, respectively, and 𝐮𝐜 and 𝐮𝐝 are their 

thrust vectors. The difference in absolute position vectors of 

chief and deputy in Eq. (1) is equal to the relative position 

vector 𝛅𝐫, illustrated in Fig. 1. Making the substitution 𝐫𝐝 =

𝐫𝐜 + 𝛅𝐫 in the above equation leads to 

 𝐼𝐽𝐾𝑑2

𝑑𝑡2
𝛅𝐫 = 𝜇 (

𝐫𝐜

𝑟𝑐
3
−

𝐫𝐜 + 𝛅𝐫

‖𝐫𝐜 + 𝛅𝐫‖
3
) + 𝐮𝐝 − 𝐮𝐜 (2) 

The relative velocity in Fig. 1 is defined as the time derivative 

of the relative position vector 𝛅𝐫 with respect to the rotating 

RTN frame of the chief, which may be expressed 

mathematically as 

 𝑅𝑇𝑁𝑑

𝑑𝑡
𝛅𝐫 ≡ 𝛅𝐯 (3) 

By converting the derivatives in Eq. (2) from IJK to RTN using 

the angular velocity 𝛚 and applying the definition of relative 

velocity, the second-order ordinary differential equation (ODE) 

in Eq. (2) becomes a system of first-order ODEs given by Eq. 

(3) and  

Fig. 1.  Geometry of relative motion and definition of polar coordinate 

systems used to describe the motion of a deputy spacecraft (red) relative 

to a chief (green). 
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 𝑅𝑇𝑁𝑑

𝑑𝑡
𝛅𝐯 +

 𝑅𝑇𝑁𝑑𝛚

𝑑𝑡
×𝛅𝐫 + 2𝝎×𝛅𝐯 + 𝛚×(𝛚×𝛅𝐫)

= 𝜇 (
𝐫𝐜

𝑟𝑐
3
−

𝐫𝐜 + 𝛅𝐫

‖𝐫𝐜 + 𝛅𝐫‖
3
) + 𝐮𝐝 − 𝐮𝐜 

(4) 

Equations (3) and (4) provide the most general description of 

the relative motion of the deputy with respect to the chief, 

without explicit dependence on the deputy’s absolute state or 

an inertial reference frame. If the chief is in an unperturbed 

circular orbit, the direction of 𝛚 is constant, its magnitude is 

𝑛 , and 𝐮𝐜 = 𝟎 . After adopting this assumption there is no 

further need to distinguish between chief and deputy thrusts, so 

the deputy’s thrust will be referred to as 𝐮 henceforth. 

  To convert Eqs. (3) and (4) from vector form to a scalar form 

suitable for shape-based analysis, the polar coordinate 

representations of the relative state illustrated in Fig. 1 are 

introduced. The deputy’s relative position is characterized by 

𝛿𝑟 = ‖𝛅𝐫‖ and the angle 𝛿𝜃, which is measured from 𝐫̂ to 

𝛅𝐫  with sense opposite to the chief’s orbital angular 

momentum vector. The relative velocity is characterized by 

𝛿𝑣 = ‖𝛅𝐯‖  and the relative flight path angle 𝛿𝛾 , which is 

measured from 𝛅𝛉̂ to 𝛅𝐯 with sense parallel to the chief’s 

angular velocity vector. To handle motion out of the plane of 

the chief’s orbit, an additional pair of angles or position and 

velocity measures could be introduced. For the purposes of this 

discussion, only motion in the chief’s orbit plane is considered.  

  Taking the 𝛅𝐫̂ and 𝛅𝛉̂ components of Eq. (3) leads to the 

scalar differential equations that govern the time-evolution of 

the relative position variables as 

𝛿𝑟̇ = 𝛿𝑣 sin 𝛿𝛾 (5) 

𝛿𝜃̇ =
𝛿𝑣

𝛿𝑟
cos 𝛿𝛾 (6) 

Next, taking the 𝛅𝐯̂  and 𝛅𝛄̂  components of Eq. (4), 

expanding ‖𝐫𝐜 + 𝛅𝐫‖
−3  in powers of 𝛿𝑟/𝑟𝑐 , and dropping 

higher-order terms for small separations leads to the equations  

𝛿𝑣̇ = 3 𝑛2 𝛿𝑟 sin(𝛿𝛾 − 𝛿𝜃) cos 𝛿𝜃 + 𝐮 ⋅ 𝛅𝐯̂ 
 

(7) 

𝛿𝑣(𝛿𝛾̇ − 𝛿𝜃̇) =  3 𝑛2 𝛿𝑟 cos(𝛿𝛾 − 𝛿𝜃) cos 𝛿𝜃

− 2 𝑛 𝛿𝑣 + 𝐮 ⋅ 𝛅𝛄̂ 
 

(8) 

governing the relative velocity variables. The system of ODEs 

in Eqs. (5) through (8) is mathematically equivalent to the 

HCW equations in the chief’s orbital plane. 

  The relative state is often described in terms of a cartesian 

system centered on the chief, with R, T, and N coordinate axes 

in the chief’s radial, transverse, and out-of-plane directions, 

respectively. Such a representation is used throughout the 

discussion to visualize relative trajectories. The 𝑅  and 𝑇 

coordinates of this system are related to the polar coordinates 

of Fig. 1 by 

𝑅 = 𝛅𝐫 ⋅ 𝐫̂ = 𝛿𝑟 cos 𝛿𝜃 (9) 

𝑇 = 𝛅𝐫 ⋅ 𝛉̂ = −𝛿𝑟 sin 𝛿𝜃 (10) 

A similar set of axes can be attached to the deputy and used to 

describe its inertial velocity in terms of components along basis 

vectors aligned with the radial and transverse coordinate axes. 

This representation is useful for describing the deputy’s 

absolute state without explicit dependence on either the state of 

the chief or an inertially-fixed basis.  

2.2.  Relative Spiral Geometry 

  By prescribing the deputy’s control thrust profile 𝐮 in such 

a way that Eqs. (5) through (8) may be combined to eliminate 

functional dependencies, one may obtain a closed-form 

solution for the trajectory in the chief’s RTN frame. Due to the 

choice of state representation, the trajectory shape is controlled 

by Eq. (8) with explicit dependence only on the 𝛅𝛄̂ 

component of thrust. The motion of the deputy spacecraft on 

this trajectory is dictated by Eq. (7) with explicit dependence 

on the 𝛅𝐯̂ component of thrust.  

  In principle, a thrust profile could be derived to satisfy any 

desired trajectory shape. This investigation follows the inverse 

approach, prescribing a thrust profile that renders the governing 

equations in solvable form while retaining solution diversity for 

design and optimization. The thrust profile was chosen to 

impose a proportionality between  𝛿𝛾̇ and  𝛿𝜃̇, controlled by 

the thrust parameter 𝜉 . Examination of Eq. (8) leads to the 

required thrust profile  

𝐮 ⋅ 𝛅𝛄̂ = 𝛿𝑣 [(𝜉 − 1)
𝛿𝑣

𝛿𝑟
cos 𝛿𝛾 + 2𝑛]

−  3 𝑛2 𝛿𝑟 cos 𝛿𝜃 cos(𝛿𝛾 − 𝛿𝜃) 
(11) 

Equation (11) describes a sliding mode control law, with one 

part canceling the plant and another imposing the desired 

dynamics. Because all terms in Eq. (11) scale as 𝑛2𝛿𝑟 , the 

maximum control thrust with separations smaller than 10 km 

will vary from mN/kg in low earth orbit to µN/kg in GEO. This 

thrust range overlaps with that achievable by current electric 

propulsion systems, so the control law selected is realizable. 

  Using the thrust profile from Eq. (11) in Eq. (8), one obtains 

an expression for 𝛿𝛾 in terms of 𝛿𝜃 and initial conditions. 

Combining this relationship with Eqs. (5) and (6) leads to the 

closed form solution for the trajectory shape 

𝛿𝑟 = {

 𝛿𝑟0exp[(𝛿𝜃 − 𝛿𝜃0) tan 𝛿𝛾]  𝜉 = 0
𝛿𝑟𝑚

cos1/𝜉[𝜉(𝛿𝜃 − 𝛿𝜃𝑚)]
 𝜉 ≠ 0

 (12) 

The geometric parameters 𝛿𝑟𝑚  and 𝛿𝜃𝑚  have been 

introduced to eliminate explicit dependence on the initial 

conditions. These quantities may be obtained from the state 

variables at any point on the trajectory using 

𝛿𝑟𝑚 = 𝛿𝑟 cos
1/ξ 𝛿𝛾 (13) 

𝛿𝜃𝑚 = 𝛿𝜃 −
𝛿𝛾

𝜉
 (14) 

  Equation (12) describes the family of sinusoidal spirals, 

whose diversity is sampled in Fig. 2. For 𝜉 = 0, the relative 

flight path angle is constant and the deputy follows either a 

logarithmic spiral or a circular arc centered on the chief. The 

trajectory spirals outward if 𝛿𝛾 > 0 and inward if 𝛿𝛾 < 0. 

For 𝜉 < 0 , 𝛿𝛾  decreases as 𝛿𝜃  increases, the trajectory 

solution is bounded, and 𝛿𝑟𝑚  represents the maximum 

separation between chief and deputy. For 𝜉 > 0, 𝛿𝛾 increases 

with 𝛿𝜃 , the solution is unbounded, and 𝛿𝑟𝑚  defines the 
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minimum separation. Note that although the mathematical 

solution extends to infinity, it is only valid in the region of 

validity of Eqs. (7) and (8) and the trajectory will be subject to 

the thrust limitations of the propulsion system. The polar angle 

𝛿𝜃 is restricted to the range 𝛿𝜃𝑚 ± 𝜋/2|𝜉|, so for 𝜉 between 

-0.5 and 0.5 the trajectory fully encircles the chief. For 𝜉 

outside of this range, the trajectory either converges to the chief 

or diverges to infinity without crossing itself. 

  As Fig. 2 illustrates, the family of sinusoidal spirals includes 

several shapes familiar from classical geometry.23) These 

include the logarithmic spiral and circle corresponding to 𝜉 =

0  in Fig. 2(a). The spiral with 𝜉 = −0.5  in Fig. 2(b) is a 

cardioid, while that with 𝜉 = 0.5 in Fig. 2(c) is a parabola 

with the chief on the directrix. Fig. 2(d) shows spirals for more 

extreme values of the thrust parameter, including a straight line 

for 𝜉 = 1, a rectangular hyperbola centered on the chief for 

𝜉 = 2, a circle passing through the chief for 𝜉 = −1, and the 

Lemniscate of Bernoulli for 𝜉 = −2. 

2.3.  Solution Dynamics 

  Motion along the trajectory is described by 𝛿𝑣  and 

therefore governed by Eq. (7) with explicit dependence only on 

the tangential component of thrust. Because this component is 

orthogonal to the thrust component used to enforce the 

trajectory shape, it introduces an additional degree of freedom 

to the analysis. For the current study, two relative velocity 

control schemes are considered: maintaining a constant ratio of 

𝛿𝑣 to 𝛿𝑟 and maintaining a constant 𝛿𝑣. The first is based on 

the result of linear relative motion theory that the relative speed 

varies in proportion to the separation, and reduces the extent to 

which the prescribed thrust must oppose the natural dynamics. 

The second scheme exercises greater control effort to enable 

behaviors not achievable by the first. These control schemes 

were selected for their simplicity and utility, not necessarily for 

optimality nor to represent the breadth of feasible strategies. 

Above all, they provide intuition for applying the analytical 

approach in the discussion to follow. 

2.3.1.  Constant 𝜹𝒗/𝜹𝒓 

  The requirement for maintaining a constant ratio of 𝛿𝑣 to 

𝛿𝑟 is that 

𝑑

𝑑𝑡
(
𝛿𝑣

𝛿𝑟
) =

𝛿𝑣̇

𝛿𝑟
−
𝛿𝑣

𝛿𝑟2
𝛿𝑟̇ = 0 (15) 

Substitution of Eqs. (5) and (7) into Eq. (15) and applying initial 

conditions leads to the 𝛅𝐯̂ measure of thrust 

𝐮 ⋅ 𝛅𝐯̂ = 𝛿𝑣 
𝛿𝑣0

𝛿𝑟0
sin 𝛿𝛾

−  3 𝑛2 𝛿𝑟 cos 𝛿𝜃 sin(𝛿𝛾 − 𝛿𝜃) 

(16) 

The structure of Eq. (16) parallels that of Eq. (11), with one 

term to cancel the plant dynamics and another to impose the 

desired motion. Both terms are comparable in magnitude and 

whether they add or subtract depends upon the values of 𝛿𝛾 

and 𝛿𝜃 at a given time. 

  Thus far, the equations of motion have been solved by 

replacing time with 𝛿𝜃 as the independent variable. However, 

a sense of time is required for trajectory design. The time of 

flight is obtained by integration of Eq. (6) using the known 

dependences of 𝛿𝑣 , 𝛿𝑟 , and 𝛿𝛾  on 𝛿𝜃.  This leads to the 

Fig. 2.  Geometry of relative spiral trajectory solutions for select values 

of 𝜉 and 𝛿𝜃𝑚 = 0. (a) 𝜉 = 0, (b) −0.5 ≤ 𝜉 ≤ 0, (c) 0 ≤ 𝜉 ≤ 0.5,  

(d) 𝜉 ≤ −0.5 and 𝜉 ≥ 0.5.  

(a) 

(b) 

(c) 

(d) 
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analytical expression 

𝑇𝑂𝐹 =

{
 
 

 
  

𝛿𝑟0
𝛿𝑣0

𝛿𝜃𝑓 − 𝛿𝜃0

cos 𝛿𝛾0
 𝜉 = 0

 
𝛿𝑟0

𝛿𝑣0
[ln 𝛿𝑟 +

1

𝜉
ln(sin 𝛿𝛾 + 1)]

0

𝑓

𝜉 ≠ 0

 (17) 

Time of flight takes on a different form based on whether 𝛿𝛾 

is constant or variable, i.e. whether 𝜉 is zero or not. In the 

former case, the deputy’s motion about the chief has constant 

angular velocity and the time of flight is simply the angular 

separation divided by this constant.  

2.3.2.  Constant 𝜹𝒗 

  To maintain a constant relative velocity, the control thrust 

needs only compensate for the component of the differential 

gravitational force that is tangential to the curve. From Eq. (7), 

the resulting thrust profile in the 𝛅𝐯̂ direction is given by  

𝐮 ⋅ 𝛅𝐯̂ = − 3 𝑛2 𝛿𝑟 cos 𝛿𝜃 sin(𝛿𝛾 − 𝛿𝜃) (18) 

and follows the same 𝑛2𝛿𝑟  scaling as the thrust profiles 

considered previously. 

  Again, the dynamics governing  𝛿𝜃̇  in Eq. (6) can be 

directly integrated in terms of the trajectory shape in Eq. (12) 

and known behavior of 𝛿𝛾 and 𝛿𝑣 to obtain the time of flight. 

Because 𝛿𝑣 is constant, time of flight is proportional to the 

path length. This may be understood geometrically for the two 

𝜉 = 0  cases. For a circular arc, it is the subtended angle 

divided by the angular velocity. For a logarithmic spiral, it is 

the change in separation divided by the constant measure of 

velocity toward or away from the chief. These relationships are 

expressed mathematically as 

𝑇𝑂𝐹 =

{
 
 

 
 𝛿𝑟0

𝛿𝑣0
(𝛿𝜃𝑓 − 𝛿𝜃0)   𝛿𝛾0 = 0

𝛿𝑟𝑓 − 𝛿𝑟0

𝛿𝑣0 sin 𝛿𝛾0
  𝛿𝛾0 ≠ 0

 (19) 

For the general case of 𝜉 ≠ 0, the path length integral is more 

complicated and time of flight must be expressed in terms of 

the Gauss hypergeometric function 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) as 

𝑇𝑂𝐹 =
1

𝜉

𝛿𝑟𝑚

𝛿𝑣0
[sin 𝛿𝛾 𝐹2

 
1 (
1

2
, 1 +

1

2𝜉
;
3

2
; sin2 𝛿𝛾)]

0

𝑓

 (20) 

For many special cases, including the classical geometric 

figures described in section 2.2 above, Eq. (20) reduces to more 

familiar mathematical functions. A list of such cases is omitted 

here for brevity but may be found in standard handbooks of 

mathematical functions such as Abramowitz and Stegun.24) 

 

3.  Patched Spirals 

 

  In order to meet demanding mission specifications, multiple 

sinusoidal spirals can be patched together to form a suitable 

trajectory. For formation flying missions, it is expected that the 

patched trajectories share a common reference point. However, 

it may be desirable to patch together spiral trajectories with 

reference to different points to add a further degree of freedom 

to the trajectory design space. These problems are addressed in 

succession. 

 

3.1.  Common Reference Orbit 

  Consider first the scenario of the deputy spacecraft 

performing low-thrust maneuvers in the vicinity of a chief that 

is on a circular absolute orbit. In a practical formation-flying 

mission, the chief might be a cooperative or non-cooperative 

spacecraft or might represent the geometric center or reference 

point of a formation. If the separation between chief and deputy 

has a prescribed upper bound, some portion of the motion must 

have a thrust parameter 𝜉 < 0. Similarly, if the separation has 

a lower bound, some portion of the motion must have 𝜉 > 0. 

These spirals must be patched together to meet the trajectory 

requirements. At the patch point, the position and velocity state 

of the deputy relative to the chief must match, as described by 

𝛿𝑟+ = 𝛿𝑟− 

𝛿𝜃+ = 𝛿𝜃− 

𝛿𝑣+ = 𝛿𝑣− 

𝛿𝛾+ = 𝛿𝛾− 

(21) 

  The conditions in Eq. (21) highlight a fundamental 

distinction between the methods of patched conics familiar 

from classical orbital mechanics and the method of patched 

spirals being described. If the thrust duration is short compared 

to the orbital period, its effect on the motion can be treated as 

impulsive for design purposes. Discontinuities in the velocity 

magnitude and direction result and only the position remains 

constant across the patch. When continuous low-thrust is used, 

the short-duration assumption is inherently invalid. Thus, both 

position and velocity must be continuous at a patch point. Only 

the thrust may have a discontinuity, but it will not be an impulse. 

3.2.  Distinct Reference Orbits 

  With the preceding formulation, the range of motion is 

restricted to the trajectories defined by Eq. (12) over a domain 

limited by the propulsion system’s ability to supply the thrust 

prescribed by Eqs. (11), (16), and (18). The scope may be 

dramatically expanded by exploiting the notion that the chief 

may simply be a reference point and not a physical object, and 

need not be the same reference point before and after patching. 

With this introduction of a virtual chief, the relative spiral 

patching can be applied to relative or absolute orbit control.25) 

  The conditions in Eq. (21) are void without a common 

reference point, and a new set of patching conditions must be 

introduced. These follow from continuity of the absolute 

position and inertial velocity of the deputy across the patch. 

Expressing the inertial velocity in terms of its radial and 

transverse measures in the deputy’s RTN basis, the new 

constraints are 

𝑟𝑑+ = 𝑟𝑑− 

𝜃𝑑+ = 𝜃𝑑− 

𝑣𝑑𝑟+ = 𝑣𝑑𝑟− 

𝑣𝑑𝑡+ = 𝑣𝑑𝑡− 

(22) 

These quantities are related to the relative motion variables in 

vector form by   

𝐫𝐝 = 𝐫𝐜 + 𝛅𝐫 (23) 
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𝐯𝐝 = 𝐯𝐜 + 𝛅𝐯 + 𝛚×𝛅𝐫 (24) 

To unpack these equations, take their dot products with the 

chief’s 𝐫̂ and 𝛉̂ basis vectors. The resulting scalar conditions 

are 

𝑟𝑑 cos(𝜃𝑐 − 𝜃𝑑) = 𝑟𝑐 + 𝛿𝑟 cos 𝛿𝜃 (25) 

𝑟𝑑 sin(𝜃𝑐 − 𝜃𝑑) = 𝛿𝑟 sin 𝛿𝜃 (26) 

1

𝑟𝑑
[𝑣𝑑𝑡𝛿𝑟 sin 𝛿𝜃 + 𝑣𝑑𝑟(𝑟𝑐 + 𝛿𝑟 cos 𝛿𝜃)]

= 𝛿𝑣 sin(𝛿𝛾 − 𝛿𝜃) + 𝑛𝛿𝑟 sin 𝛿𝜃 

(27) 

1

𝑟𝑑
[𝑣𝑑𝑡(𝑟𝑐 + 𝛿𝑟 cos 𝛿𝜃) − 𝑣𝑑𝑟𝛿𝑟 sin 𝛿𝜃]

= 𝑟𝑐𝑛 − 𝛿𝑣 cos(𝛿𝛾 − 𝛿𝜃)
+ 𝑛𝛿𝑟 cos 𝛿𝜃 

(28) 

where Eqs. (25) and (26) have been used to eliminate 𝜃𝑐 and 

𝜃𝑑  from Eqs. (27) and (28). Although cumbersome in their 

present form, Eqs. (27) and (28) are linear in the inertial 

velocity measures. Solving this system of equations for the 

inertial velocity measures yields the cleaner relationships 

𝑣𝑑𝑟𝑟𝑑 = 𝛿𝑣[𝑟𝑐 sin(𝛿𝛾 − 𝛿𝜃) + 𝛿𝑟 sin 𝛿𝛾] (29) 

𝑣𝑑𝑡𝑟𝑑 = 𝑛𝑟𝑑
2 − 𝛿𝑣[𝑟𝑐 cos(𝛿𝛾 − 𝛿𝜃) + 𝛿𝑟 cos 𝛿𝛾] (30) 

Equations (25), (26), (29), and (30) constitute the mapping 

between absolute and relative motion needed to enforce the 

conditions in Eq. (22) given 𝑟𝑐± and 𝜃𝑐±.  

  In section 4.1, a virtual chief is introduced to patch relative 

spirals between initial and final states with known orbit radii 

and inertial velocity vectors. Rather than matching relative 

states at a common absolute state, this boundary-value problem 

requires finding the relative states and common reference point 

for given initial and final absolute states. The equations 

required to define the relative spiral in this variant of the 

problem are now derived.  

  First, 𝜃𝑑 and 𝜃𝑐 may be eliminated from the parameter set 

by adding the squares of Eqs. (25) and (26) to obtain  

𝑟𝑑
2 = 𝑟𝑐

2 + 𝛿𝑟2 + 2 𝑟𝑐  𝛿𝑟 cos 𝛿𝜃 (31) 

The initial and final relative states, together with 𝑟𝑐  then 

constitute nine unknowns to be determined. Six constraints are 

provided by Eqs. (29), (30), and (31) at the two boundary 

conditions. Two additional constraints are provided by the 

velocity profile and the linear relationship between 𝛿𝛾  and 

𝛿𝜃. The final constraint is supplied by the trajectory shape from 

Eq. (12). In terms of the relevant variables, this becomes  

𝛿𝑟𝑓

𝑑𝑟0
=

{
 

 
exp[(𝛿𝜃𝑓 − 𝛿𝜃0) tan 𝛿𝛾] 𝜉 = 0

(
cos 𝛿𝛾0
cos 𝛿𝛾𝑓

)

1
𝜉

𝜉 ≠ 0
 (32) 

  This nonlinear system must generally be solved numerically 

and for given boundary conditions may only have solutions for 

some range of the thrust parameter 𝜉. However, exact solutions 

may be obtained for constant relative velocity in the special 

case of zero radial inertial velocity components at the initial and 

final states, i.e. patching between apses of the absolute orbit. 

For most scenarios relevant to relative spiral patching, the 

radial velocities will be small and these results will provide a 

good starting point for numerical solution of the full system. 

  Setting 𝑣𝑑𝑟 to 0 in Eq. (29) with 𝛿𝑣 ≠ 0 leads to  

𝛿𝑟 = 𝑟𝑐
sin(𝛿𝜃 − 𝛿𝛾)

sin 𝛿𝛾
 (33) 

Substituting this expression for 𝛿𝑟 in Eq. (31) and applying 

trigonometric identities, one finds that  

𝑟𝑑

𝑟𝑐
= ±

sin 𝛿𝜃

sin 𝛿𝛾
 (34) 

The sign in Eq. (34) is determined by sign(𝑟𝑑𝑖 − 𝑟𝑑𝑗), where i 

is the state 0 or 𝑓 corresponding to 𝛿𝜃, 𝛿𝛾, and 𝑟𝑑  in the 

equation, and 𝑗 is the other boundary state. Substituting 𝛿𝑟 

from Eq. (33) and 𝑟𝑐 from Eq. (34) into Eq. (30), solving for 

the constant 𝛿𝑣, and comparing at the initial and final states 

leads to 

𝑛 =
𝑣𝑑𝑡0 + 𝑣𝑑𝑡𝑓

𝑟𝑑0 + 𝑟𝑑𝑓
 (35) 

This remarkably simple expression relates the unknown mean 

motion of the reference orbit to the deputy’s initial and final 

inertial velocity measures and orbit radii. The altitude of the 

reference orbit 𝑟𝑐  is calculated from 𝑛  as √𝜇/𝑛2
3

. 

Expressions for 𝛿𝑣 may be found from Eqs. (30) and (35) at 

either of the boundary states as 

𝛿𝑣 = |𝑛𝑟𝑑 − 𝑣𝑑𝑡| (36) 

  No restrictions were placed on the relative spiral shape in 

Eqs. (33) through (36). These equations follow from the choice 

of constant 𝛿𝑣 control and the relative state variables chosen. 

At this stage, the relative spiral geometry must be invoked. If 

𝜉 = 0, 𝛿𝛾 is constant. Dividing Eq. (34) at the final state by 

itself at the initial state produces a relation between 𝛿𝜃0 and 

𝛿𝜃𝑓 as  

𝑟𝑑𝑓

𝑟𝑑0
= −

sin 𝛿𝜃𝑓

sin 𝛿𝜃0
 (37) 

The variables 𝛿𝜃𝑓 , 𝛿𝛾 , 𝛿𝑟0 , and 𝛿𝑟𝑓  can all be related to 

𝛿𝜃0 from Eqs. (37), (34), and (33) at the initial and final states, 

respectively. By inserting these relationships into the 𝜉 = 0 

trajectory shape expression in Eq. (32), the system is reduced 

to solving for 𝛿𝜃0 in the single transcendental equation 

𝛿𝑟𝑓

𝛿𝑟0
=
sin(𝛿𝜃𝑓 − 𝛿𝛾)

sin(𝛿𝜃0 − 𝛿𝛾)
= exp[(𝛿𝜃𝑓 − 𝛿𝜃0) tan𝛿𝛾] (38) 

For 𝜉 ≠ 0, 𝛿𝛾 differs at the initial and final states and cannot 

be eliminated from Eq. (34) in the derivation of Eq. (37). The 

system therefore reduces to solving for the unknowns 𝛿𝜃0 and 

𝛿𝜃𝑓 in the two transcendental equations 

𝛿𝑟𝑓

𝛿𝑟0
=
sin(𝛿𝜃𝑓 − 𝛿𝛾)

sin(𝛿𝜃0 − 𝛿𝛾)

sin 𝛿𝛾0
sin 𝛿𝛾𝑓

= (
cos 𝛿𝛾0
cos 𝛿𝛾𝑓

)

1
𝜉

 (39) 

𝛿𝛾𝑓 − 𝛿𝛾0 = 𝜉(𝛿𝜃𝑓 − 𝛿𝜃0) (40) 
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where 𝛿𝛾𝑖 is expressed in terms of 𝛿𝜃𝑖  using Eq. (34). 

  The exact solution for patching a relative spiral trajectory 

between a given set of 𝑟𝑑0, 𝑟𝑑𝑓, 𝑣𝑑𝑡0, and 𝑣𝑑𝑡𝑓 with 𝑣𝑑𝑟0 =

𝑣𝑑𝑟𝑓 = 0  is obtained by the following steps. First, 𝑛  is 

calculated directly from Eq. (35) and 𝑟𝑐 from the definition of  

𝑛, and 𝛿𝑣 from Eq. (36) and 𝑛. Based on a choice of 𝜉, either 

Eq. (38) is solved iteratively for 𝛿𝜃0 or Eqs. (39) and (40) are 

solved simultaneously for 𝛿𝜃0  and 𝛿𝜃𝑓 . The remaining 

parameters are then obtained from Eqs. (37), (34), and (33). If 

𝑣𝑑𝑟𝑓 or 𝑣𝑑𝑡𝑓 is nonzero, this procedure may be used to find 

an initial guess for numerically solving the full set of 

constraints in Eqs. (29) through (31) at the initial and final 

states and Eq. (32). 

 

4.  Application to GEO Servicer Mission 

 

  In this section, a notional satellite servicing mission scenario 

developed by NASA Goddard is analyzed to demonstrate the 

utility of the relative spiral trajectories.26) The mission consists 

of a servicer spacecraft approaching a noncooperative target in 

GEO, inserting into a static safety ellipse, and executing a 

rendezvous with the target to refuel, repair, or boost the target 

into a disposal orbit. 

  This scenario provides a practical motivation for the 

assumptions underlying the relative spiral analytical 

framework. The high cost of developing and launching GEO 

satellites makes on-orbit servicing operations to extend 

lifetimes and remove debris from this region commercially 

attractive. For a general target satellite, one cannot assume 

cooperativity or functionality and may only attribute 

continuous-thrust capabilities to the servicer. The emphasis on 

circular reference orbits and planar relative motion is well-

suited to the GEO belt, whose members lie in coplanar circular 

orbits. Because of the belt’s high altitude, the assumption of 

small separations is valid and perturbations from atmospheric 

drag and 𝐽2 effects are negligible. Finally, the inherently low 

mean motion in GEO makes it a prime candidate for 

continuous-thrust enhancement of the natural dynamics for 

time-sensitive operations. 

  Two modifications are made from the reference mission 

scenario for illustrative purposes. First, the safety ellipse is 

projected onto the target’s orbital plane to accommodate the 

coplanar framework being considered. In a real mission, the 

ellipse would be tilted with respect to the target’s orbital plane 

so that the servicer’s trajectory does not cross that of the target. 

The relative motion is then safe in the sense that drift of the 

ellipse due to a small difference in semi-major axis does not 

increase the risk of collision. To achieve this relative state, a 

small out-of-plane velocity component is needed in the final 

insertion maneuver. This can be accomplished with minor 

adaptation of the thrust profile, but continuous-thrust control of 

the out-of-plane motion is saved for future discussion. To 

distinguish the closed, elliptical relative trajectories subject to 

natural dynamics from the controlled motions being considered, 

they will be referred to henceforth as passive ellipses. 

  The final rendezvous and capture phase of the scenario is 

replaced with transfer from a larger to a smaller passive ellipse 

around the target, equivalent to reducing the relative 

eccentricity vector. Because the constant 𝛿𝑣/𝛿𝑟 thrust profile 

introduced in section 2.3.1 lends itself naturally to continuous-

thrust rendezvous from any relative state, this would not add to 

the discussion of patched spirals. In the modified scenario, the 

servicer is initially placed in a large passive ellipse around the 

target to conduct situational awareness observations, then 

transfers to a second passive ellipse to achieve accurate pose 

estimation before performing a rendezvous maneuver or 

departing for a new target. 

4.1.  Formation Establishment 

  Fig. 3 depicts the approach and passive ellipse insertion 

phase of the sample mission. The deputy spacecraft, in this case 

the servicer, is initially placed into a near-circular absolute orbit 

in the same plane as and approximately 30 km below the 

target’s orbit. This may be accomplished by a launch vehicle 

upper stage or through a maneuver sequence following a prior 

mission phase. At the start of the approach scenario, the deputy 

is 300 km behind the target in the along-track direction. Due to 

the difference in target and deputy semi-major axes, Keplerian 

drift reduces the along-track separation over time. Once 

sufficient angles-only navigation observations have been 

collected for the navigation filter to converge at this large 

separation, the deputy maneuvers into a new holding orbit 5 km 

below the target’s orbit. At this higher altitude, the drift is 

slower and a more accurate state estimate may be obtained 

before maneuvering into a third holding orbit 1.5 km below the 

target. The final maneuver establishes the formation by placing 

the deputy into a passive elliptical relative orbit with a semi-

minor axis of 300 m.  

  The maneuvers in the sequence described above can be 

divided between two distinct types. One involves the transfer 

between coplanar circular orbits, with a change only in semi-

major axis. The second involves changes in both semi-major 

axis and eccentricity. In NASA’s GEO servicer reference 

mission scenario, these maneuvers are accomplished with 

impulsive thrust. The following discussion shows how the 

analytical techniques developed in section 3.2 may be used to 

plan these maneuvers with continuous-thrust, relative spiral 

trajectories. 

Fig. 3.  Formation establishment phase of GEO servicer mission 

scenario in RTN frame of target, including sequence of orbit-raising 

maneuvers and insertion into a passive ellipse centered on target. The 

transfer trajectories shown may represent continuous, low-thrust 

maneuvers or Keplerian trajectories between impulsive maneuvers 

(e.g. Hohmann transfers). 
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  To develop insight for this approach, consider first the 

transfer between two circular orbits. If both chief and deputy 

are on circular orbits and the deputy is directly below the chief, 

the relative velocity in the RTN frame is related to their 

separation by 

𝛿𝑣 =
3

2
𝑛𝛿𝑟 (41) 

Because the deputy’s orbit is at lower altitude, it advances 

faster than the chief and the relative velocity is parallel to the 

chief’s velocity vector. The relationship between 𝛿𝑟 and 𝛿𝑣 

in Eq. (41) also applies to the case when the deputy is directly 

above the chief, but the relative velocity is then antiparallel to 

the chief’s velocity vector. This situation is illustrated 

schematically in Fig. 4. The transfer between concentric 

circular orbits may therefore be treated as a symmetrical 

trajectory in the Hill frame of a reference circular orbit midway 

between the departure and destination orbits. To perform the 

maneuver using a relative spiral, one may choose the simplest 

case 𝜉 = 0 with 𝛿𝛾 = 0, i.e. a circular arc centered on the 

reference chief (cf. Fig. 2 and Fig. 4). With this choice of thrust 

parameter, the separation is constant and the same result will 

be obtained whether the constant 𝛿𝑣  or constant 𝛿𝑣/𝛿𝑟 

control strategy is adopted.  

  Although the circular arc is the easiest relative spiral 

trajectory to understand intuitively, it is not the only solution 

spiral for this transfer and is not necessarily the best. 

Effectively, any spiral that sweeps at least 𝜋 radians of 𝛿𝜃 

before reaching an asymptote can be used to accomplish this 

maneuver. Due to the rotation of the RTN frame, the simple 

geometric intuition used to deduce the initial and final states for 

the 𝜉 = 0 case in Fig. 4 cannot be readily applied for 𝜉 ≠ 0. 

However, the initial and final flight path angles for this transfer 

are zero so the simplified form of the constraints in Eqs. (33) 

through (40) provide the spiral trajectory solutions. Unlike the 

circular arc, the solution for general 𝜉 will have variable 𝛿𝑟 

and the two 𝐮 ⋅ 𝐝𝐯̂  strategies will not produce the same 

motion.  

   Solving Eqs. (38) through (40) for a range of 𝜉  values 

allows for optimization over a variety of parameters, as shown 

in Fig. 5 for Δ𝑉. The vertical axis shows Δ𝑉, computed by 

integrating the L2-norm of the thrust vector 𝐮 for the duration 

of the transfer, referenced to the value for the 𝜉 = 0 case. The 

correspondence of the 𝜉 = 0 case for both control schemes 

ensures a common scale factor for the vertical axis. This plot 

was generated for the transfer between circular orbits 30 km 

and 5 km below GEO, but the shape of the curve is not strongly 

dependent on the change in altitude so long as Δ𝑟𝑑/𝑟𝑐 < 10
−3. 

  With the 𝐮 ⋅ 𝐝𝐯̂ profile for constant 𝛿𝑣 from section 2.3.2, 

a 20% improvement in Δ𝑉  over the 𝜉 = 0  case may be 

achieved using 𝜉 = 0.41. This minimum represents a balance 

between time of flight and trajectory shaping costs. For a 

single-pass transfer, lower values of 𝜉 demand more control 

effort to shape the trajectory, but have shorter time-of-flight 

due to the shorter path-length and constant 𝛿𝑣. Higher values 

of 𝜉 stretch the relative trajectory in the along-track direction, 

increasing the flight time and thus the duration of continuous-

thrust. With the constant 𝛿𝑣/𝛿𝑟 strategy, there is no distinct 

minimum for 𝜉 > 0 because the increase in time of flight is 

larger than in the constant 𝛿𝑣 case and the longer integration 

time dominates any shaping advantage. As noted above, the 

sharp increase in Δ𝑉  as 𝜉  approaches 0.5 is due to the 

inability of spirals with 𝜉 > 0.5 to be tangent to both circular 

orbits. For values of 𝜉  close to 0 there may be additional 

solutions which loop around the reference chief multiple times. 

These multi-pass solutions offer no advantage for the transfers 

being considered because they increase the flight time. 

  While Fig. 5 considers optimization only in terms of Δ𝑉, 

similar plots may be generated for other parameters of interest, 

such as time-of-flight or maximum thrust in Fig. 6. The 

discontinuities in slope of the maximum thrust vs. 𝜉 curves 

are caused by jumps in the location of the thrust peak. Local 

thrust maxima and minima change in size as the thrust profile 

varies continuously with 𝜉 . For a given set of boundary 

conditions there will be threshold values of 𝜉 at which one 

local maximum replaces another as the absolute maximum, 

resulting in the slope changes observed in the figure. For 

impulsive maneuvers, Δ𝑉  is the most important cost 

consideration because of its direct relationship to mass. Due to 

the high specific impulse of electric propulsion systems, 

propellant mass considerations may be secondary to flight time 

and power system constraints which are related to the metrics 

Fig. 4.  Geometric development of relative spiral transfer between 

circular orbits using 𝜉 = 0, including relationship between absolute 

and relative velocity (left) and the shape of the relative spiral transfer in 

the RTN frame of the virtual chief (right). 

Fig. 5.  Δ𝑉-Optimization of transfer with increase in semi-major axis and 

no change in eccentricity. 
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of Fig. 6.  

  The second type of maneuver in the sequence of Fig. 3 

involves a change of both semi-major axis and eccentricity. If 

the semi-major axis of the final absolute orbit matches that of 

the target, the result is a passive ellipse in the target’s RTN 

frame. For this analysis, the insertion point is assumed to be at 

perigee of the final orbit, corresponding to the point of the 

passive ellipse directly below the target. In the linearized 

relative motion theory, the relative velocity at the positions on 

a passive ellipse directly above and below the chief is 

proportional to the separation according to 

𝛿𝑣 = 2𝑛𝛿𝑟 (42) 

The difference of 1/2 𝑛𝛿𝑟  between Eqs. (41) and (42) 

accounts for the excess kinetic energy needed at perigee to 

reach apogee.  

  The first step in developing a relative spiral trajectory to 

accomplish this maneuver is the selection of an appropriate 

circular reference orbit 𝑟𝑐. When transferring between absolute 

orbits of the same eccentricity, the midpoint could be used as 

reference because Eq. (41) could be applied to both endpoints. 

For the transfer involving a change in eccentricity, the 

velocities at the boundaries relative to a reference orbit at the 

average altitude will not match. For this fundamentally 

asymmetric transfer, the reference orbit must be placed below 

the mean altitude to allow for 𝛿𝑣 windup, as Fig. 7 illustrates. 

This observation is consistent with the result in Eq. (35). 

Although the geometry is complicated by the relative dynamics, 

intuition can be developed by considering values of | cos 𝛿𝜃 | 

close to one at the boundaries. At the initial condition, the 

relative velocity is approximated by Eq. (41) with 𝛿𝑟 ≈ 𝛿𝑟0. 

Similarly, the velocity of the target relative to the reference 

point at the final condition is approximated by Eq. (41) with 

𝛿𝑟 ≈ 𝛿𝑟𝑓 + 𝛿𝑟𝐸, where 𝛿𝑟𝐸 is the semi-minor axis of the final 

passive ellipse. Because the mean motions of the target frame 

and reference RTN frame are equal to a first approximation, the 

velocity of the insertion point in the reference RTN frame can 

be estimated by the difference of the above velocity and the 

velocity relative to the target in Eq. (42). The initial and final 

relative velocities are therefore approximated by 

𝛿𝑣0 ≈
3

2
𝑛𝛿𝑟0 

𝛿𝑣𝑓 ≈
3

2
𝑛(𝛿𝑟𝑓 + 𝛿𝑟𝐸) − 2𝑛𝛿𝑟𝐸 =

1

2
𝑛(3𝛿𝑟𝑓 − 𝛿𝑟𝐸) 

(43) 

Using the constant 𝛿𝑣 strategy of section 2.3.1, one finds that 

𝛿𝑟0 = 𝛿𝑟𝑓 − 𝛿𝑟𝐸/3 and the reference point must be below the 

mean transfer altitude. Equation (43) leads to a contradiction if 

one instead assumes constant 𝛿𝑣/𝛿𝑟, so the strategy of section 

2.3.2 cannot be used to perform the transfer with change in 

eccentricity. 

  Exact solution for this maneuver with 𝜉 = 0  and 𝜉 ≠ 0 

can be obtained from the constraints in Eqs. (38) through (40), 

respectively. The analogue of Fig. 5 for the transfer to a passive 

ellipse is shown in Fig. 8. The shape of the curve is a strong 

function of the ratio of 𝛿𝑟𝐸 to the radial span of the transfer 

Δ𝑟𝑑. As 𝛿𝑟𝐸 approaches zero, the final orbit is circularized and 

Fig. 7.  Geometric development of relative spiral insertion into a passive 

ellipse with semi-minor axis 𝛿𝑟𝐸. 

 

Fig. 8.  Δ𝑉-optimization of transfer with change in semi-major axis and 

eccentricity of 𝛿𝑟𝐸/Δ𝑟𝑑 and constant 𝛿𝑣 control. 

 

Fig. 6.  Optimization of time of flight (top) and maximum thrust 

magnitude (bottom) for the transfer from a circular orbit 5 km below GEO 

to another 1.5 km below GEO. 
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the shape of the curve in Fig. 5 is recovered. As the ratio 

increases, the local minimum moves toward 𝜉 = 0  and 

ultimately vanishes near 0.73. No single-pass transfers of this 

type are possible for 𝛿𝑟𝐸 > 3Δ𝑟𝑑.  

  The above analyses for the two types of orbit-raising 

maneuvers may be directly applied to the co-elliptic approach 

and passive ellipse insertion phases of the example mission 

scenario. For the prescribed insertion to a passive ellipse with 

300 m semi-minor axis from a holding orbit 1.5 km below the 

target, 𝛿𝑟𝐸/Δ𝑟𝑑 = 0.25 and the Δ𝑉-minimizing value of 𝜉 

is 0.38. Using this value for the final maneuver and the 

corresponding value of 0.41 for transfers between holding 

orbits, one may simulate the maneuver sequence of Fig. 3. The 

resulting trajectory in the RTN coordinates of the target is 

shown in Fig. 10, along with the equivalent trajectory 

accomplished using impulsive Hohmann transfers. This 

simulation includes the full Keplerian dynamics, but neglects 

perturbations due to third-body interactions, solar radiation 

pressure, geopotential, etc., and assumes coplanar motion with 

both the target and deputy initially on circular orbits. Drift 

times were distributed evenly across the three holding orbits, 

leading to a total time of 3.3 days to complete the orbit raising 

and passive ellipse insertion. 

  The deputy thrust requirement is shown in Fig. 9, along with 

propellant consumption assuming nominal Isp values of 300 s 

and 2000 s for the impulsive- and continuous-thrust scenarios, 

respectively. Summary results for each maneuver are presented 

in Table 1. Due in part to kinematic inefficiency, the Δ𝑉 cost 

for the relative spiral maneuver sequence is higher than for the 

impulsive transfers. However, the higher specific impulse of 

electric propulsion systems causes the relative spiral trajectory 

to have better performance in terms of propellant mass. 

Because propellant mass effectively limits the number of 

targets that the deputy spacecraft can visit before retiring or 

refueling, the continuous-thrust control strategy proposed has a 

large advantage over the use of impulsive maneuvers. 

  Two important factors to consider for the continuous-thrust 

trajectory design are the maximum thrust required and the 

variation of the thrust level. For electric propulsion systems, the 

thrust is directly related to the power required, so the maximum 

thrust will be limited by the spacecraft’s power supply. 

Furthermore, a widely varying thrust profile represents an 

inefficient use of the power and propulsion systems. Although 

the thrust magnitudes in Fig. 9 would be feasible for existing 

electric propulsion systems, the order-of-magnitude difference 

in peak thrust between maneuvers is undesirable. The 

discrepancy is caused by the large difference in transfer sizes. 

Because the thrust profiles in Eqs. (11) and (18) scale as 𝑛2𝛿𝑟, 

the 25 km orbit raising maneuver requires seven times the 

Table 1.  Performance comparison of impulsive- and continuous-thrust 

maneuver sequences for GEO servicer orbit raising. 

 

 Impulsive Thrust 

(Isp 300 s) 

Low-Thrust Relative Spiral 

(Isp 2000 s) 

Maneuver Δ𝑉 

(m/s) 

Propellant 

(mg/kg sc) 

Δ𝑉 

(m/s) 

Propellant 

(g/kg s/c) 

Max 

Thrust 

(μN/kg) 

25 km raise 0.912 311 2.355 120 70.2 

3.5 km raise 0.128 43 0.328 16.7 9.8 

Ellipse 

insertion 

0.054 19 0.131 6.7 3.9 

Total 1.094 0.372 2.814 0.191 - 

Fig. 9.  Deputy thrust profile for relative spiral orbit-raising sequence 

(top) and comparison of propellant consumption schedules for impulsive 

and low-thrust trajectories (bottom). 

  

Fig. 10.  Comparison of low-thrust relative spiral trajectories with impulsive-thrust Hohmann transfers in RTN coordinates of target for GEO 

servicer orbit-raising sequence. 
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maximum thrust of the subsequent 3.5 km raise. The holding 

orbits selected were based on a reference scenario developed 

under the assumption of impulsive maneuvers, but are not 

critical mission parameters. A relative spiral trajectory with 

better continuous-thrust performance may be designed by 

distributing the orbit raising criteria across a greater number of 

small maneuvers between equally-spaced holding orbits. Fig. 

11 shows a thrust profile with nine such maneuvers. The shape 

of the last thrust curve differs from that in Fig. 9 because the 

increase in Δ𝑟𝑑  for the final insertion maneuver shifts the 

minimizing value of 𝜉 to 0.4 (cf. Fig. 8). Whereas the original 

scenario required a maximum thrust of 70 μN/kg for the first 

transfer, each transfer in this updated scenario has a peak thrust 

requirement of 9.3 μN/kg. The total Δ𝑉 requirement for the 

sequence remains 2.81 m/s. The tradeoff is that the sequence 

will now last for a week and the deputy must start more than 

750 km behind the chief to accommodate the greater maneuver 

time and allow for navigation filter convergence on 

intermediate coasting orbits. 

4.2.  Formation Reconfiguration 

  After orbiting the target spacecraft long enough on the 

passive ellipse to collect sufficient situational awareness 

observations, the servicer spacecraft performs a maneuver to 

reduce the size of the passive ellipse. This is equivalent to 

reducing the servicer’s orbit eccentricity and thus the relative 

eccentricity between servicer and target. Because closed, 

periodic relative motion is desired after the maneuver, the semi-

major axis of the servicer’s final orbit must match that of the 

target. Unlike the maneuvers considered in the previous section, 

the motion in this case is centered around the target and it may 

be treated as the chief for the analysis. There is no need to 

introduce artificial reference points and the simpler patching 

conditions in Eq. (21) apply. 

  The relative motion on a passive ellipse centered on the chief 

can be described analytically in terms of 𝛿𝜃  and the semi-

minor axis 𝛿𝑟𝐸 as 

𝛿𝑟 =
2𝛿𝑟𝐸

√1 + 3 cos2 𝛿𝜃
 (44) 

𝛿𝑣 = 𝑛𝛿𝑟𝐸√
1 + 15 cos2 𝛿𝜃

1 + 3 cos2 𝛿𝜃
 (45) 

tan 𝛿𝛾 =
3 cos 𝛿𝜃 sin 𝛿𝜃

1 + 3 cos2 𝛿𝜃
 (46) 

Equation (45) is the general form of Eq. (42) and reduces to the 

latter when 𝛿𝜃 is 0 or 𝜋. These equations define the boundary 

conditions for the formation reconfiguration patched spirals 

problem. In this example, the initial ellipse has a semi-minor 

axis of 300 m and the final has a semi-minor axis of 50 m. 

  For the orbit raising problem considered above, extensive 

use was made of the control strategy driving constant 𝛿𝑣. That 

control strategy has limited utility for the new problem of 

patching spirals between concentric passive ellipses. To 

understand why, consider the dependence of 𝛿𝑣 on 𝛿𝑟 in Eq. 

(45). If 𝛿𝑣 is to remain constant throughout the motion and if 

there can be no discontinuities in 𝛿𝑣 across the patch points, 

then the 𝛿𝑣 at departure from the first ellipse must equal that 

at arrival on the second. The square root term in Eq. (45) varies 

between 2 at 𝛿𝜃 = 𝑚𝜋  and 1 at 𝛿𝜃 = (2𝑚 + 1)𝜋/2  for 

integer 𝑚. Two passive ellipses can only contain points with 

matching 𝛿𝑣 if the size ratio of larger to smaller is less than or 

equal to 2. The ratio in the present problem is 6, so all points 

on the inner ellipse have lower 𝛿𝑣 than any point on the outer 

ellipse and a spiral with constant 𝛿𝑣  cannot satisfy the 

patching conditions in Eq. (21). Instead, the constant 𝛿𝑣/𝛿𝑟 

strategy outlined in section 2.3.2 must be adopted. 

  To facilitate the patched spirals analysis with constant 

𝛿𝑣/𝛿𝑟, Eq. (45) may be rewritten in terms of 𝛿𝑟 as 

𝛿𝑣 =
1

2
𝑛𝛿𝑟√1 + 15 cos2 𝛿𝜃 (47) 

Following the same reasoning applied to the constant 𝛿𝑣 case, 

it is clear that if points on concentric passive ellipses share a 

common 𝛿𝑣/𝛿𝑟 , they must also share cos2 𝛿𝜃 . For any 

departure point on the initial ellipse, there are four compatible 

locations on the destination ellipse. Two of these are located at 

𝛿𝜃0 +𝑚𝜋 and have the same relative flight path angle 𝛿𝛾 as 

the departure point. The other two are at 𝑚𝜋 − 𝛿𝜃0 and have 

𝛿𝛾 that is the negative of the departure value. 

  First consider patching a single relative spiral between two 

ellipses. The search space can be divided into four regions 

corresponding to the choice of 𝜉 = 0 or 𝜉 ≠ 0 and 𝛿𝛾𝑓 =

𝛿𝛾0 or 𝛿𝛾𝑓 = −𝛿𝛾0. If 𝜉 = 0, then 𝛿𝛾 is a constant so any 

solutions must have 𝛿𝛾𝑓 = 𝛿𝛾0. If 𝜉 ≠ 0, then |𝛿𝛾𝑓| = |𝛿𝛾0| 

implies that 𝛿𝑟𝑓 = 𝛿𝑟0 and the destination ellipse cannot be 

reached (cf. Eq. (32)). Three of the four regions may thus be 

eliminated from the outset and only 𝜉 = 0 , 𝛿𝛾𝑓 = 𝛿𝛾0 

warrants further examination. The ellipse and relative velocity 

constraints give 𝛿𝜃𝑓 = 𝛿𝜃0 +𝑚𝜋 and 𝛿𝑟𝑓/𝛿𝑟0 = 𝛿𝑟𝐸𝑓/𝛿𝑟𝐸0, 

so Eqs. (32) and (46) become 

tan 𝛿𝛾0 =
1

𝑚𝜋
ln
𝛿𝑟𝐸𝑓

𝛿𝑟𝐸0
=
3 cos 𝛿𝜃0 sin 𝛿𝜃0

1 + 3 cos2 𝛿𝜃0
 (48) 

For a given ratio 𝛿𝑟𝐸𝑓/𝛿𝑟𝐸0  and choice of 𝑚  half-

revolutions around the target, Eq. (48) has two solutions in the 

domain (0, 𝜋) which are duplicated in (𝜋, 2𝜋). There can be 

no solution with 𝛿𝜃0 = 𝑚𝜋/2  because 𝛿𝛾 = 0  and the 

logarithmic spiral becomes a circle. Fig. 12 shows the two 

solution trajectories for the specified ellipse ratio and 𝑚 = 1 

Fig. 11.  Thrust profile for relative spiral transfers between equally-

spaced holding orbits for GEO servicer orbit raising scenario. 
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in the RTN coordinates of the target. The solutions may be 

characterized as fast and slow according to their departure point. 

The trajectory beginning at 𝛿𝜃0 nearer to 𝜋/2 is longer and 

has lower 𝛿𝑣 than the one beginning nearer to 𝜋. As shown 

in Fig. 13 and enumerated in Table 2, the fast trajectory takes 

less time and carries a lower Δ𝑉  cost than the slower 

trajectory.  

  In addition to the relative-spiral reconfiguration, Table 2 lists 

the flight time and cost of the optimal impulsive solution for 

this reconfiguration.27) As was the case for orbit raising, the 

continuous thrust reconfiguration has a higher Δ𝑉 cost than its 

impulsive counterpart but may be accomplished with less 

propellant mass. An advantage of the continuous-thrust 

reconfiguration that was not evident in the orbit raising scenario 

is the substantial reduction in flight time. Using impulsive 

maneuvers, the flight time is governed by Keplerian dynamics 

between maneuvers. For the optimal three-impulse 

reconfiguration in GEO considered here, a full 24-hour orbital 

period is required. In contrast, the fast spiral trajectory 

completes the reconfiguration in just over 9 hours.  

  The presence of two solutions is a consequence of tan 𝛿𝛾 

assuming all values between -3/4 and 3/4 twice in the domain 

(0, 𝜋 ). If 𝛿𝑟𝐸𝑓/𝛿𝑟𝐸0 = exp (±3𝜋/4) ≈ 0.095 , the two 

solutions for 𝑚 = 1 merge. For more extreme ratios there are 

no half-revolution transfers using a single spiral. As 𝑚 

increases or 𝛿𝑟𝐸𝑓/𝛿𝑟𝐸0 increases, the departure point for the 

fast solution approaches 𝛿𝜃0 = 𝜋  and the slow approaches 

𝛿𝜃0 = 𝜋/2. This is illustrated for the 𝑚 = 2 case in Fig. 14. 

The increase in path length for 𝑚 = 2 as compared to 𝑚 = 1 

leads to an increase in flight time and Δ𝑉  cost, as Table 2 

Fig. 12.  Half-revolution, single-spiral reconfiguration from a passive 

ellipse with 𝛿𝑟𝐸0 = 300  m to one with 𝛿𝑟𝐸𝑓 = 50  m for a pair of 

spacecraft in GEO. 

 

Fig. 13.  Comparison of Δ𝑉 cost (top), thrust magnitude (middle), and 

time-of-flight (bottom) for the fast and slow half-revolution relative spiral 

reconfiguration maneuvers in Fig. 12. 

Fig. 14.  Full-revolution, single-spiral reconfiguration from a passive 

ellipse with 𝛿𝑟𝐸0 = 300  m to one with 𝛿𝑟𝐸𝑓 = 50  m for a pair of 

spacecraft in GEO. 

 

Fig. 15.  Comparison of Δ𝑉 cost (top), thrust magnitude (middle), and 

time-of-flight (bottom) for the fast and slow full-revolution relative spiral 

reconfiguration maneuvers in Fig. 14. 
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shows. This increase is more pronounced for the slow transfer, 

which then departs from a region of lower relative velocity. The 

fast transfer departs from a region of the passive ellipse with 

higher ratio of 𝛿𝑣 to 𝛿𝑟, mitigating the effect of the larger 

path length on flight time and fuel cost.  Further increasing 𝑚 

leads to longer flight times and higher Δ𝑉 for both the fast and 

slow transfers, so these multi-revolution reconfigurations offer 

no advantage over those shown in Fig. 12 and Fig. 14. 

   To achieve further improvements in flight time and Δ𝑉, 

one may increase the number of spirals used in the 

reconfiguration maneuver. Doing so adds degrees of freedom 

to the problem, allowing for multiple solutions and 

optimization. In principle, the number of spirals that may be 

patched together is arbitrary. For the purpose of providing a 

flavor for the patching technique, this discussion will be 

restricted to two spirals. As with the single-spiral case, one may 

begin by paring down the search space. Due to the restrictions 

imposed on 𝛿𝛾  and 𝛿𝜃  by Eqs. (44) through (46) and the 

constant 𝛿𝑣/𝛿𝑟  control strategy, no sequence involving a 

logarithmic spiral (𝜉 = 0) can improve upon the single-spiral 

case. The only case to consider is therefore 𝜉1 ≠ 𝜉2  and 

𝜉1, 𝜉2 ≠ 0. By imposing the patching conditions in Eq. (21) and 

the geometric relationship in Eq. (32), one obtains the 

constraint equation 

𝛿𝑟𝐸𝑓

𝛿𝑟𝐸0
= (

cos (𝛿𝛾0 −𝑚𝜋
𝜉1𝜉2
𝜉1 − 𝜉2

)

cos 𝛿𝛾0
)

1
𝜉2
−
1
𝜉1

 (49) 

 For a given ellipse size ratio, number of half revolutions, and 

starting point 𝛿𝜃0, Eq. (49) imposes a relationship between the 

thrust parameters for the two spirals, 𝜉1  and 𝜉2 . For half-

revolution two-spiral reconfiguration of the ellipses prescribed 

by the GEO servicer example there is a shallow optimum at 

𝛿𝜃0 = 0.8𝜋, 𝜉1 = −0.5, 𝜉2 = −0.08. The relative trajectory 

in the RTN coordinates of the target is shown in Fig. 16 and the 

corresponding Δ𝑉, thrust, and time-of-flight plots in Fig. 17. 

Numerical results are included with the single-spiral and 

impulsive reconfiguration results in Table 2. This two-spiral 

solution achieves a 15% improvement in Δ𝑉  over the fast, 

half-revolution single-spiral solution while reducing the 

reconfiguration time by 2 hours. 

4.3.  Inertial Pointing 

  The preceding section only considers the case of patching 

between passive ellipses with the natural dynamics of relative 

motion dictating the boundary conditions. For some 

applications, the natural dynamics may be unacceptable and 

continuous-thrust modification of the system may be desirable. 

For example, the deputy may need to enforce an inertial 

pointing constraint with the chief or hasten the 

circumnavigation of a target in a long-period orbit. The relative 

spiral framework provides a simple tool for designing such 

trajectories.  

  As a demonstration, consider a variation on the GEO servicer 

reconfiguration example. Rather than inserting into a passive 

Table 2.  Performance comparison of impulsive- and continuous-thrust maneuver sequences for GEO servicer reconfiguration. 

 
Impulsive Thrust 

(Isp 300 s) 

Low-Thrust Relative Spirals (Isp 2000 s) 

Single Spiral, 𝑚 = 1 Single Spiral, 𝑚 = 2 Double Spiral, 

𝑚 = 1 Fast Slow Fast Slow 

Δ𝑉 (cm/s) 0.91 4.73 15.73 6.64 38.59 4.04 

Propellant (mg/kg sc) 3.1 2.4 8.0 3.4 19.7 2.1 

Max Thrust (μN/kg) - 3.9 3.1 4.5 4.7 6.3 

Reconfiguration Time (h) 24.0 9.1 20.8 13.3 46.5 7.1 

Fig. 16.  Optimal half-revolution, two-spiral reconfiguration from a 

passive ellipse with 𝛿𝑟𝐸0 = 300 m to one with 𝛿𝑟𝐸𝑓 = 50 m for a pair 

of spacecraft in GEO. 

Fig. 17.  Comparison of Δ𝑉 cost (top), thrust magnitude (middle), and 

time-of-flight (bottom) for the optimal half-revolution two-spiral 

reconfiguration maneuver in Fig. 16. 
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spiral around the target, the formation is now required to 

achieve an inertial pointing state with constant separation equal 

to the mean separation on the final ellipse considered before.  

  Constant separation implies that the final state will be a 

circular relative trajectory and therefore have 𝜉 = 0 . To 

maintain inertial pointing on a circular arc, the relative motion 

must satisfy 𝛿𝑣/𝛿𝑟 = 𝑛. Using the constant 𝛿𝑣/𝛿𝑟  control 

strategy, the relative motion at departure from the initial 

passive ellipse must also meet this requirement. By inspection 

of Eq. (47), one may conclude that there are four points on the 

passive ellipse with 𝛿𝑣/𝛿𝑟 = 𝑛, corresponding to cos 𝛿𝜃 =

±1/√5.  Since 𝛿𝑟𝑓 = 1.5𝛿𝑟𝐸𝑓 < 𝛿𝑟𝐸0 , the initial relative 

flight path angle must be negative and two of these points must 

be eliminated. The relative spiral used for reconfiguration must 

have 𝛿𝛾 = 0 at the patch point on the circular orbit so 𝛿𝜃𝑓 =

𝛿𝜃𝑚 and 𝛿𝑟𝑓 = 𝛿𝑟𝑚. Equations (13) and (46) define the value 

of 𝜉 for a single-spiral reconfiguration maneuver that satisfies 

these constraints. The resulting trajectory is shown in Fig. 18 

and its time histories in Fig. 19. After an initial Δ𝑉 

expenditure of 10.3 cm/s to achieve the inertial pointing 

configuration, the deputy must expend an additional 5.3 cm/s 

per revolution for maintenance. If the formation consists of two 

spacecraft with continuous-thrust capabilities, the cost can be 

divided equally between them by placing each spacecraft on a 

circular trajectory of half the size relative to a central reference 

point. 

 

5.  Conclusion 

 

  This work has introduced the shape-based method of low-

thrust trajectory design to the problem of relative motion for 

two spacecraft. The prescribed thrust profile yields a family of 

sinusoidal spiral trajectories characterized by the thrust 

parameter. This family exhibits sufficient variability to 

generate practical low-thrust trajectories for mission scenarios 

of interest while providing an analytical handle and geometric 

insights for design and optimization. 

  Two approaches were presented for controlling the relative 

velocity. In one the velocity is kept constant throughout the 

motion, while in the second the velocity varies in proportion to 

the separation. Because the thrust magnitude scales as 𝑛2𝛿𝑟 in 

each case, the techniques outlined are most practical for 

medium earth orbit and GEO orbits. The example of a servicer 

spacecraft visiting a target in GEO was used to demonstrate two 

approaches to patching spiral trajectories and illustrated the 

utility of the control schemes considered. The constant 𝛿𝑣 

strategy has merit for orbit raising in the virtual chief 

framework, while the constant 𝛿𝑣/𝛿𝑟  approach enables 

reconfiguration of the formation state. When compared to 

impulsive transfers, both strategies may be used in their 

respective domains to reduce flight time. This is a large 

advantage for high altitude orbits in which the natural period 

may be considerably longer than the timescale of interest. 

In its present state, this theory is restricted to coplanar 

relative motion about a chief in unperturbed circular orbit. 

However, it may be easily extended to handle out-of-plane 

motions and elliptical reference orbits. Further efforts should 

investigate the optimality conditions for maneuver design 

within the relative spiral framework and develop new relative 

velocity control schemes accordingly. 
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