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This paper studies rendezvous control of spacecrafts via constrained optimal control using generating functions. The minimum

energy control of spacecraft transiting between specified states with consideration of constraints is formalized into the constrained

optimal control problem. The generating function approach is extended to such problems by equipping with penalties. Finally, the

developed technique is summarized as algorithms to successfully realize optimal rendezvous control with velocity and thrust bounds.
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Nomenclature

X : radial direction

Y : along-track direction

Z : cross-track direction

R0 : orbital radius of reference spacecraft

ω : orbit rate

µe : gravitational parameter of the Earth

G : universal gravitational constant

Me : mass of the Earth

uX : radial component of control

uY : along-track component of control

uZ : cross-track component of control

x : state variable

u : input variable

vX : radial component of velocity

vY : along-track component of velocity

t0, tf : initial and terminal time

x0, xf : initial and terminal state values

Ck : state constraint function

s : number of state constraints

ui, ui : upper and lower bounds of thrust

xu : solution of initial value problem

Uf : set of u satisfying xu(tf) = xf

Up : set of u satisfying Ck(xu(t)) 6 0

Up0 : set of u satisfying Ck(xu(t)) < 0

J : cost function of constrained problem

P : penalty function

µ : penalty parameter

Xp0 : set of x satisfying Ck(x) < 0

Jp : cost function of penalized problem

up : input of penalized problem

H : Hamiltonian

λ : costate

F : generating function

Ωx : neighborhood of origin in Rn w.r.t. x

Ωλf
: neighborhood of origin in Rn w.r.t. λf

F : coefficient of GF’s Taylor term

P : coefficient of penalty’s Taylor term

H : expanded Hamiltonian

1. Introduction

Many space missions, such as docking, repairing, intercept-

ing, saving, satellite networking, large-scale structure assem-

bling and so on, rely heavily on successful rendezvous.1) Con-

sidering a reference spacecraft in a circular or elliptical or-

bit and a follower spacecraft in its neighborhood, the relative

motion of the follower with respect to the reference can be

described by autonomous nonlinear differential equations for

which the linearized equations are known as Hill–Clohessy–

Wiltshire (HCW) equations.2) The minimum energy control of

spacecraft transiting between specified states using continuous

thrust in a fixed amount of time can be formalized into a stan-

dard optimal control problem. After decades of development,

much work3–6) has been done on this topic.

Using generating functions (GFs) to evaluate the problem of

optimal rendezvous control of spacecraft is a topic of interest

in recent years. GF derives a family of optimal trajectories as

a function of the boundary values of the states, such that it is

useful in on-demand rendezvous control for different mission-

s. Park proposes feedback control law for the spacecraft sub-

ject to the general gravity field by GFs.7) Bando extends GF

method to design a robust controller for spacecraft rendezvous

with disturbances.8) However, both of these papers consider the

unconstrained rendezvous problems. In space missions, it is

necessary to consider obstacle avoidance of the spacecraft with

inactive objects due to the growing amount of debris and num-

ber of spacecrafts in orbit, velocity limit during transitions in

order to keep the spacecraft in stable state, thrust bound and so

on. All these can be regarded as constraints. The recent work by

Lee presents a suboptimal continuous control algorithm that en-

ables an active spacecraft to avoid collision with inactive space

objects via GFs with penalties.9)

This paper develops a method using GF equipped with

a penalty function to evaluate an energy-optimal rendezvous

problem for spacecrafts with constraints, particularly the veloc-

ity and thrust bounds. Section 2 reviews the HCW equation-

s and formulates the constrained energy-optimal rendezvous

problem. Such a problem is formalized into a state constrained

optimal control problem and converted to an unconstrained pe-
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Fig. 1. Local Vertical Local Horizontal Frame.

nalized problem based on careful analyses of convexity and

convergence in Section 3. Section 4 provides both the analytic

and numerical solutions of the penalized problem via the GF.

Two cases of velocity and thrust bounded rendezvous problems

are implemented in Section 5 to illustrate the effectiveness of

the proposed algorithm. Section 6 concludes the paper.

2. Constrained Energy-Optimal Rendezvous Problem

We review HCW equations in Section 2.1, and then for-

mulates the constrained energy-optimal rendezvous problem in

Section 2.2.

2.1. Hill–Clohessy–Wiltshire equations

The relative orbit between spacecrafts can be described by

the famous HCW equations.2) In this model, a so-called ref-

erence spacecraft is considered that orbits Earth in a circular

trajectory (see Fig. 1). The motion of the follower spacecraft

is studied from a reference frame (X, Y, Z) fixed at the center of

the reference spacecraft. This set of coordinate axes is called as

Local Vertical Local Horizontal Frame. The relative motion in

this frame is given by

Ẍ =2ωẎ + ω2(R0 + X) −
µ

R3
(R0 + X) + uX ,

Ÿ = − 2ωẊ + ω2Y −
µ

R3
Y + uY ,

Z̈ = −
µ

R3
Z + uZ ,

where R = ((R0 + X)2
+ Y2

+ Z2)1/2, ω = (µe/R
3
0
)1/2, µe = GMe.

Note that R0 is much larger than the relative distance between

the spacecrafts. After nondimensionalization with reference

length R0 and time 1/ω, and linearization about (X, Y, Z) =

(0, 0, 0), we get the HCW equations as

Ẍ =2Ẏ + 3X + uX ,

Ÿ = − 2Ẋ + uY ,

Z̈ = − Z + uZ .

For the sake of simplicity, only the first two in-plane motions

(independent of the third out-plane motion) are considered7)

ẋ = Ax + Bu, (1)

where x : = [X, Y, Ẋ, Ẏ]T ≡ [X, Y, vX , vY ]T, u : = [uX , uY ]T, and

A =
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.

In rendezvous problems, the initial and terminal states of the

spacecraft are pre-specified as

x(t0) = x0, x(tf) = xf . (2)

2.2. Formulation of constrained optimal problem

To achieve minimum energy consumption during the control

of a spacecraft governed by Eq. (1) as it transits between spec-

ified states, a quadratic cost function is designed as

1

2

∫ tf

t0

u(t)Tu(t)dt. (3)

In space missions, it is necessary to consider obstacle avoid-

ance of the spacecraft with inactive objects due to the growing

amount of debris and the number of spacecrafts in orbit, and

also velocity limit during transitions in order to keep the space-

craft in stable state, and so on. All these cases can be regarded

as state constraints, and in general they are denoted by

Ck(x(t)) 6 0, k = 1, 2, · · · , s, ∀t ∈ [t0, tf], (4)

where Ck(·) : Rn → R for k = 1, 2, · · · , s.

During maneuvering, the designed thrust often can not be at-

tained due to motor torque limit such that the real energy cost is

still high, which violates the original intention of optimal con-

trol. Thus, the input constraints

uk 6 uk(t) 6 uk, k = 1, 2, ∀t ∈ [t0, tf], (5)

should also be taken into account.

By summarizing the above function and equations compact-

ly, the constrained optimal control problem is formulated as

min
u[t0 ,tf ]

1

2

∫ tf

t0

u(t)Tu(t)dt,

s.t. ẋ = Ax + Bu, x(t0) = x0, x(tf) = xf ,

Ck(x(t)) 6 0, k = 1, 2, · · · , s, ∀t ∈ [t0, tf],

uk 6 uk(t) 6 uk, k = 1, 2, ∀t ∈ [t0, tf].

The physical meaning of the above problem is to find an optimal

thrust trajectory u(t), t ∈ [t0, tf], of the spacecraft governed by

the dynamics (1) as it transiting between specified states x0 and

xf in a fixed amount of time [t0, tf] satisfying the state and thrust

constraints (4) and (5).

The constrained problem will be converted to an uncon-

strained problem by employing the penalty technique in Section

3, and then be evaluated by the GF method in Section 4.

3. Problem Conversion

The input constraint (5) can be treated as a state constraint by

a technique that will be introduced in detail in Section 5. Then,

the state–input constrained problem is reduced to the problem

with state constraint only. To well present the GF method, we

study the state constrained problem in a general way as follows.

Problem 1.

min
u[t0 ,tf ]

1

2

∫ tf

t0

(

x(t)TQx(t) + u(t)TRu(t)
)

dt,

s.t. ẋ = Ax + Bu, x(t0) = x0, x(tf) = xf ,

Ck(x(t)) 6 0, k = 1, 2, · · · , s, ∀t ∈ [t0, tf],



where the variables x ∈ Rn and u ∈ Rm, the constants A ∈

R
n×n, B ∈ Rn×m, Q ∈ Rn×n is semi-positive definite, R ∈ Rm×m

is positive definite, x0 ∈ R
n, and xf ∈ R

n, and the function

Ck : Rn → R, k = 1, 2, · · · , s.

This section converts the above constrained problem to an un-

constrained penalized one based on convexity and convergence

analyses that will be presented in latter subsections.

3.1. Constrained problem and its convexity

First, we make the following assumption.

Assumption 1. Assume the following:

(i) Ck(x) is a convex function of x, ∀k = 1, 2, · · · , s;

(ii) Ck(x0) < 0 and Ck(xf) < 0, ∀k = 1, 2, · · · , s;

(iii) u∗(t) is continuous in t;

(iv) Uf , Up0, and Uf ∩ Up0 are all nonempty, where the

three sets Uf : = {u ∈ L∞([t0, tf],R
m) | xu(tf) = xf},

Up : = {u∈L∞([t0, tf],R
m) | Ck(xu(t))60, k=1, 2, · · · , s,∀t ∈

[t0, tf]}, and Up0 : = {u∈L∞([t0, tf],R
m) | Ck(xu(t))<0, k=

1, 2,· · ·, s,∀t ∈ [t0, tf]}.

We know that for each input u[t0 ,t], the dynamics (1) satisfying

the initial condition x(t0) = x0, i.e., the initial value problem,

has a unique solution xu(t) for t > t0.

Next, we will show the convexity of Problem 1. To this end,

we first reformulate Problem 1 as the following Problem 1′.

Problem 1′.

min
u[t0 ,tf ]

u∈Uf∩Up

(

J(u) : =
1

2

∫ tf

t0

(

(xu(t))
T

Q (xu(t)) + u(t)TRu(t)
)

dt

)

.

Then, it is easy for us to show the convexity of the setUf∩Up

and that of the cost function J.

Proposition 1.

(i) Under Assumptions 1(i), 1(ii), and 1(iv), the set Uf ∩ Up

of Problem 1′ is a convex set of the input u .

(ii) Under Assumption 1(iv), the cost function J(u) of Problem

1′ is a strongly convex function in u, ∀u ∈ Uf ∩Up.

We omit the proof here.

Remark 1. According to Proposition 1, we know that Problem

1′ is the problem minimizing a strictly convex cost function of

u over a nonempty convex set Uf ∩ Up in u space, such that

Problem 1′ (Problem 1) has a unique global minimizer u∗.10)

3.2. Penalized problem and its convexity

We design the following penalized problem by adding a

penalty term in the cost function.

Problem 2.

min
u[t0 ,tf ]

∫ tf

t0

(

1

2

(

x(t)TQx(t) + u(t)TRu(t)
)

+ µP (x(t))

)

dt,

s.t. ẋ(t) = Ax(t) + Bu(t),

x(t0) = x0, x(tf) = xf , (6)

where P(x) ≡ P′(C(x)) and P′ : Rs → R. For the penalty func-

tion, we make the following assumption.

Assumption 2. Assume the following:

(i) P(x) is a convex function of x ∈ Xp0;

(ii) P(x) > 0, ∀x ∈ Xp0;

(iii) P(x) → +∞ when x approaches the boundary of Xp0 from

its interior.

Remark 2. In Problem 2 with starting and ending points (x0

and xf) in the interior, the value of the penalty grows sharply

when x (driven by u) approaches the boundary of the path con-

straint such that it can prevent the state trajectory violating the

constraints. This implies u ∈ Uf ∩ Up0 in Problem 2 in fact,

which is achieved by adding the penalty.11) Correspondingly,

the augmented cost function then can be minimized in absence

of the path constraint, yielding a biased estimate of the solution

of Problem 1. It is natural to imagine that we can set the factor

µ small enough to reduce the bias such that the solution is close

enough to that of Problem 1′. This will be investigated in the

next subsection.

Now, to show the convexity of Problem 2, we reformulate it

as well as follows.

Problem 2′.

min
u[t0 ,tf ]

u∈Uf

(

Jp(u, µ) : =

∫ tf

t0

(

1

2

(

(xu(t))
T

Q (xu(t))+u(t)TRu(t)
)

+µP (xu(t))

)

dt

)

.

Then, convex properties of the set Uf and the cost function

Jp are given in the following proposition.

Proposition 2.

(i) Under Assumption 1(iv), the setUf of Problem 2′ is a con-

vex set of the input u.

(ii) Under Assumptions 1(i), 1(ii), 1(iv), 2(i), and 2(ii), the pe-

nalized cost function Jp(u, µ) of Problem 2′ is strictly con-

vex in u, ∀u ∈ Uf and ∀µ > 0.

We omit the proof here.

Remark 3. Proposition 2 shows that Problem 2′ is the problem

minimizing a strictly convex cost function of u over a nonempty

convex setUf in u space, such that Problem 2′ (Problem 2) has

unique global minimizer u∗p(µ) for each specified µ.

3.3. Convergence

We will exhibit the convergent properties of minimum cost

function value and the optimal input as well as optimal state

in this subsection. Before them, notice the definition of Jp in

Problem 2′, we can rewrite it as

Jp(u, µ) = J(u) +

∫ tf

t0

µP(xu)dt. (7)

Now first, we present the following theorem as a preparation.

Theorem 1 (11, 12)). Under Assumptions 1(i), 1(ii), 1(iv), and 2,

we have the following two convergent properties for the penal-

ized cost function of Problem 2:

(i) lim
µ→0

J
(

u∗p(µ)
)

= J∗;

(ii) lim
µ→0

∫ tf

t0

µP
(

xu∗p(µ)
)

dt = 0.

Theorem 1 presents the convergence of the two summands in

the right hand side of Eq. (7). By combining the two conclu-

sions of Theorem 1, we have the following corollary readily.



Corollary 1. Under Assumptions 1(i), 1(ii), 1(iv), and 2, we

have the convergence with respect to the minimum cost function

values of Problems 1′ and 2′ as

lim
µ→0

Jp

(

u∗p(µ), µ
)

= J∗.

The other two main convergent properties are presented in

the following theorem.

Theorem 2.

(i) Under Assumptions 1(i), 1(ii), 1(iv), and 2, we have the

convergence with respect to the optimal inputs of Problems

1′ and 2′ as

lim
µ→0
‖u∗p(µ) − u∗‖L2 = 0.

(ii) Under Assumptions 1 and 2, we have the convergence with

respect to the optimal states of Problems 1′ and 2′ as

lim
µ→0
‖xu∗p(µ) − xu∗‖L∞ = 0.

Note that Theorem 2(i) can be proven based on Proposition

1(ii), which is an assumption in Malisani’s work11) for the non-

linear problem. We omit the proof for Theorem 2(ii) here.

In summary, by the convexity and convergence analyses in

this section, we know that both Problems 1 and 2 are strictly

convex problems such that they have unique global minimizers.

Furthermore, the minimum cost function value as well as the

optimal input and state of Problem 2 converge to the ones of

Problem 1 as the factor µ → 0. Hence we can select a rather

small factor µ to form a penalized problem approximating the

constrained problem. From this viewpoint, we convert the con-

strained Problem 1 to the penalized Problem 2.

4. Solution Using Generating Function

This section introduces the GF approach to Problem 2. In

detail, the analytic solution of Problem 2 is obtained via GF

in Section 4.1. Further, since Problem 2 is a nonlinear problem,

Section 4.2 gives Taylor series based implementation to provide

numerical solution. It is the approximation of the solution of

Problem 1. At last, an algorithm about how to solve Problem 2

numerically for different sets of boundary conditions (BCs) is

summarized in Section 4.3.

4.1. Analytic solution

According to minimum principle, the necessary conditions

for optimizing Problem 2 is

ẋ =
∂H(x, λ)

∂λ
, (8)

λ̇ = −
∂H(x, λ)

∂x
, (9)

u∗p = −R−1BTλ, (10)

where the Hamiltonian∗ is defined as

H(x, λ) : =
1

2
xTQx + λTAx −

1

2
λTGλ + µP(x), (11)

∗ In fact, the Hamiltonian is not only the function of x and λ, but also

the function of µ, i.e., H(x, λ, µ). Since it is treated as a parameter, not

a variable, for every specified µ in this section, we express the Hamil-

tonian as H(x, λ) for convenience.

with G = BR−1BT. Note that the Hamilton’s equations (8) and

(9) with BCs (6) form a Two Point Boundary Value Problem

(TPBVP). Evaluating the optimal trajectory of Problem 2 cor-

responds to solving the TPBVP, which is rather difficult.

The GF, defined as F : Rn × Rn × [t0, tf] → R, satisfying the

Hamilton–Jacobi equation (HJE) as

∂F(x, λf, t)

∂t
+ H

(

x,
∂F(x, λf, t)

∂x

)

= 0, (12)

specifies the family of canonical transformations (x(tf), λ(tf)) 7→

(x(t), λ(t)) for t ∈ [t0, tf] by the following relations

λ =
∂F(x, λf, t)

∂x
, (13)

xf =
∂F(x, λf, t)

∂λf

. (14)

The relations (13) and (14) also describe the time evolution of x

and λ which is defined in the Hamilton’s equations. Therefore,

once the GF is solved from the HJE, it can be used to generate

optimal trajectories† by the evaluation of Eqs. (13) and (14)

with BCs x(t0) = x0 and x(tf) = xf .

The following theorem gives analytic solution of Problem 2.

Theorem 3 (13, 14)). Under Assumptions 1 and 2, the unique

global minimizer of Problem 2 is

u∗p = −R−1BT∂F(x, λf(x0, xf , t0), t)

∂x
, t ∈ [t0, tf], (15)

where the terminal costate λf(x0, xf , t0) is determined by solving

xf =
∂F(x, λf , t)

∂λf

∣

∣

∣

∣

∣

t=t0

. (16)

4.2. Numerical implementation

Since the HJE (12) is a nonlinear partial differential equation

which is difficult to find its analytic solution, we need numer-

ical implementations to find its approximate solution. Taylor

series expansion is the most popular numerical method utilized

for such a purpose,13, 14) so in this paper we will also use this

technique.

First, we expand the nonlinear functions in Eq. (12), i.e.,

the GF and penalty function, as Taylor series in their arguments

about zeros. To this end, we need the following assumption.

Assumption 3. For Problem 2, we assume the following:

(i) F(x, λf , t) is an analytic function of x and λf , ∀x ∈ Ωx and

∀λf ∈ Ωλf
;

(ii) P(x) is an analytic function of x, ∀x ∈ Ωx;

(iii) Xp0 ⊆ Ωx.

Based on Assumption 3, we expand both F(x, λf , t) and P(x)

as Taylor series in their arguments about zeros as

F(x, λf , t) =

∞
∑

i=0

i
∑

j=0

F (i, j)(t) ·
(

x⊗(i− j) ⊗ λ
⊗ j

f

)

, (17)

P(x) =

∞
∑

i=0

P(i) · x⊗i. (18)

† The sufficient condition for optimality is also guaranteed. For the de-

tail see the work of Park.13)



Notice Eqs. (17) and (18), the GF coefficients F (i, j)(t)’s are

undetermined, while the penalty function coefficients P(i)’s are

known.

Second, by substituting Eqs. (17) and (18) into the HJE

(12), and collecting terms with same variable x⊗(i− j) ⊗ λ
⊗ j

f
for

j = 0, 1, · · · , i and i = 0, 1, · · · ,∞, we get expanded HJE. By

vanishing the coefficient of each term in the expanded HJE, we

get a sequence of ordinary differential equations with respect to

F (i, j)(t)’s as

Ḟ (i, j)(t) = −H (i, j)
(

F (·,·)(t),P(·)
)

, (19)

for j = 0, 1, · · · , i and i = 0, 1, · · · ,∞. Furthermore, we can get

the BCs of F (i, j)(t)’s according to Eqs. (13) and (14) as

F (i, j)(tf) =

{

I, i = 2, j = 1

0, other cases
, (20)

where I ∈ R1×nn with all its entries equal to one. With these

terminal conditions, we are able to determine all the F (i, j)(t)’s

by solving (19) in the sequence of j = 0, 1, · · · , i and i =

0, 1, · · · ,∞.

Once we obtain the coefficients F (i, j)(t)’s, we obtain the GF

according to Eq. (17). It enables us to obtain numerical optimal

solution by the substitution of Eq. (17) into Eqs. (15) and (16).

4.3. Algorithm

Optimal solutions are dependent on state BCs according to

Eqs. (15) and (16), while the GF coefficients are independent

of state BCs according to Eq. (19). From this point of view, the

GF is useful in on-demand optimal trajectory generation for the

problem with different state BCs. This is the advantage of the

developed method. In detail, we can divide the whole compu-

tation into two parts, between which the off-line part calculates

the GF coefficients in advance, then the on-line part efficiently

generates optimal solutions for different BCs. This is summa-

rized as the following two algorithms.

Algorithm 1 Off-line part, calculate GF coefficients.

Input: penalty parameter, µ; highest Taylor series truncated

order, ℓ; initial and terminal time, t0 and tf ; time step, ∆t.

Output: GF coefficients, F (i, j)(t) for all t ∈ [t0, tf], j =

1, · · · , i, and i = 0, · · · , ℓ.

1: if (i, j) = (2, 1) then

2: F (i, j)(tf)← I;

3: else

4: F (i, j)(tf)← 0;

5: end if

6: for i = 0, 1, · · · , ℓ0 do

7: for j = 0, 1, · · · , i do

8: for t = tf to t0 do

9: F (i, j)(t)← F (i, j)(t − ∆t) −H (i, j)(µ; t − ∆t) · ∆t;

10: end for

11: end for

12: end for

According to above algorithms, optimal solutions will be

more accurate if we select greater ℓ, i.e., truncate Taylor se-

ries up to higher orders. Since the calculation of coefficients

is implemented off-line, it is free of us to choose any particu-

lar orders. From this viewpoint, though the original problem is

nonlinear, we can still get solutions accurately by the developed

Algorithm 2 On-line part, generate optimal solutions.

Input: initial and terminal time, t0 and tf ; time step, ∆t; GF

coefficients, F (i, j)(t) for all t ∈ [t0, tf], j = 1, · · · , i, and

i = 0, · · · , ℓ.

Output: optimal state and input, x∗(t) and u∗p(t).

1: while there is a computational demand of BCs (x0, xf) do

2: x(t0)← x0;

3: x(tf)← xf ;

4: solve λf from xf =
∂F(x,λf ,t)

∂λf

∣

∣

∣

∣

t=t0
;

5: for t = t0 to tf do

6: x∗(t + ∆t)← x(t) + Ax · ∆t −G
∂F(x,λf ,t)

∂x
· ∆t;

7: end for

8: for t = t0 to tf do

9: u∗p ← −R−1BT ∂F(x,λf ,t)

∂x
;

10: end for

11: end while

method. However, when we increase the order ℓ, the total num-

ber of ordinary differential equations that has to be handled in

off-line part also increases. For such a reason, when we select

the truncated order ℓ, both the demand of the accuracy and the

computational ability of the off-line computer should be taken

into account.

5. Cases of Constrained Optimal Rendezvous

This section applies GF method to evaluate rendezvous prob-

lems with velocity and thrust bounds in Sections 5.1 and 5.2,

respectively.

5.1. Velocity constrained optimal rendezvous

According to Problem 1, various of constraints, such as ve-

locity limits, position obstacles, these two mixed constraints

and so on, can be well tackled by the developed GF method.

In this subsection, we only consider the velocity limit example.

The follower spacecraft starts from the initial positions locat-

ing along the radius 0.15 and velocities identically zero, i.e.,

[0.15 cos θ, 0.15 sin θ, 0, 0]T with θ varying from 0 to 2π by the

step π/8, transits to the origin [0, 0, 0, 0]T in one unit time. Ad-

ditionally, we also set the velocity bounds as

−0.2 6 vX 6 0.2, −0.2 6 vY 6 0.2. (21)

Algorithms 1 and 2 are applied to this problem. For the con-

straints (21), we design the penalty as

1

vX + 0.2
+

1

0.2 − vX
+

1

vY + 0.2
+

1

0.2 − vY
,

and select the penalty factor 10−6. We expand functions as Tay-

lor series up to sixth order in off-line part. On-line part gives

results shown in Fig. 2, where figures in the left column are the

position and velocity trajectories for the constrained problem,

while figures right column are the results in park’s work7) for

the problem without velocity limits (21).

This example demonstrates the computational efficiency of

the GF method for different BCs, and the comparison illustrates

the effectiveness of the GF method for state constrained ren-

dezvous control.
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Fig. 2. Comparison between constrained and unconstrained trajectories.

5.2. Thrust constrained optimal rendezvous

This subsection considers the problem of spacecraft transit-

ing from [0.15, 0, 0, 0]T to [0, 0, 0, 0]T with thrust constraints as

uY (t) 6 −0.3, ∀t ∈ [t0, tf]. (22)

To apply the proposed algorithms, we design the following

problem.

min
û[t0 ,tf ]

1

2

∫ tf

t0

(

x̂TQ̂x̂ + ûTR̂û
)

dt,

s.t. ˙̂x = Âx̂ + B̂û,
x̂(t0) = x̂0, x̂(tf) = x̂f ,
x̂6(t) 6 −0.3,

where x̂ : = [xT, uT]T, x̂0 : = [xT
0
, uT

0
]T, x̂f : = [xT

f
, uT

f
]T, û : =

u̇, R̂ ∈ R2×2, and

Q̂ : =

[

04×4 04×2

02×4 R2×2

]

, Â : =

[

A4×4 B4×2

02×4 02×2

]

, B̂ : =

[

04×2

I2×2

]

.

It is obvious that a small R̂ approximates the above designed

problem to the original thrust constrained one.

Now we are able to apply Algorithms 1 and 2 to the designed

problem to get approximations, where the parameter µ and trun-

cated order ℓ are set as 0.01 and six. Results are shown in Fig.

3 where figures in the left column exhibit state and input tra-

jectories of the constrained problem, while figures right column

the ones for the problem without input constraint. The com-

parison illustrates the effectiveness of the GF method for thrust

constrained rendezvous control.

6. Conclusion

This paper develops a method using GF equipped with penal-

ty to solve energy-optimal rendezvous problem for spacecraft-

s with constraints, particularly the velocity and thrust bound-

s. Such a problem is formalized into state constrained optimal

control problem and converted to unconstrained penalized prob-

lem based on careful analyses of convexity and convergence.

Both analytic and numerical solutions of the penalized problem
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Fig. 3. Comparison between constrained and unconstrained trajectories.

is given via the GF, and algorithms are summarized for differ-

ent specified states. Two cases of velocity and thrust bounded

rendezvous examples illustrate the effectiveness of the method.
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