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    The error budget analysis is presented which quantifies the effects of different error sources in the Earth-based orbit 
determination process when the orbit estimation filter is used to reduce radio metric data. The estimator strategy differs 
from more traditional filtering methods in the nearly all of the principal ground system calibration errors affecting the data 
are represented as filter parameters. The article reviews the fundamental concepts of reduced-order filtering theory, which 
are essential for sensitivity analysis and error budget development. 
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1.  Introduction 
 
	
 	
 Development of improved navigation techniques which 
utilize radiometric ( Ranging and Doppler ) data acquired 
from some ground stations have received considerable study 
in several years, as these data types are routinely collected in 
tracking, telemetry, and command operations. A sequential 
data filtering strategy currently under study is the orbit 
estimator, in which most if not all of the major systematic 
ground system calibration error sources are treated as 
estimated parameters, along with the spacecraft trajectory 
parameters. This strategy differs from current practice, in 
which the ground system calibration error sources are 
represented as unestimated bias parameters, accounted for 
only when computing the error covariance of the filter 
( estimator ) parameters. 
This article reviews the fundamental concepts of 
reduced-order filtering theory, which are essential for 
sensitivity analysis and error budget development. The theory 
is then applied to the development of an error budget for a 
Mars mission cruise scenario in which enhanced orbit 
estimation is used to reduce X-band Doppler and ranging data. 
The filter model is described and error budgets are given for 
two different strategies: X-band Doppler only, X-band 
Doppler plus ranging. 
For this study, the filter model is assumed to be correct 
representation of the physical world. 
 
2. Reduced-order filter 
 
	
 	
 In some navigation applications, it is not practical to 
implement a full-order or the optimal filter when system 
model, with all major error and noise sources, is of high order. 
Use of reduced-order filter allows the analyst to obtain 
estimates of key parameters of interest, with reduced 
computational burden and with moderate complexity in the 
filter model. Thus, reduced-order or suboptimal	
 filters are 
results of design trade-offs in which sources of error are most 
critical to over all system performance. Nevertheless, there are 

reasons for not always using a full-order optimal filter for 
spacecraft orbit estimation. 
Some of reasons includes : (1) there may be a lack of adequate 
models for an actual physical effect; (2) certain parameters, 
such as the station location, may be held fixed in order to 
define reference frame and/or length scale; (3) if estimated, 
the computed uncertainty in model parameters would be 
reduced far below the level warranted by model accuracy.  
 
2.1.  Estimator evaluation 
  There are a number of error analysis methods which can be 
used to evaluate estimator ( filter ) models and predict filter 
performance. Reduced-order error analysis techniques enable 
an analyst to study the effects of using incorrect a priori 
statistics, data-noise/data-weight assumptions, or process 
noise model on the filter design. 
If the filter is optimal, then the filter and truth models coincide. 
If the filter is suboptimal, then the filter model is of equal or 
lower order (i.e., reduced-order) than the truth model and 
possibly represents a subset of the states of the truth model. In 
practice, a fully detailed truth model may be difficult to 
develop and thus one typically evaluates a range of 
‘reasonable’ truth models to assess whether the filter results 
are especially sensitive to a particular elements of the filtering 
strategy being used. The objective is to design a filter model 
to achieve the best possible accuracy, but which is also robust, 
so that its performance will not be adversely affected by the 
use of slightly incorrect filter parameters. 
In a special case of reduced-order error analysis, various 
systematic error sources are treated as unmodeled parameters 
which are not estimated, but whose effects are accounted for 
in computing the error covariance of the estimated parameters. 
In a consider state analysis, the sensitivity of the estimated 
parameter set to various unmodeled consider parameters can 
be computed via partial derivatives of the state estimate with 
respect to the consider parameters set. The filter has no 
knowledge about the contribution the unmodeled parameters 
to the uncertainty in the state estimate since the modified 
covariance, which includes effects from both the estimated 
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and consider parameters, is not fed back to the filter.  
 
2.2.  Optimal and suboptimal estimator 
  Restricting the discussion to the filter measurement up-date 
equations, the mathematical model presented here is the 
estimator form of the measurement up-date. 
    Let  

x  represent the state estimate and P represent the 
error covariance matrix. Using the convention that ‘(-)’ 
denotes a pre-observation up-date value and ‘(+)’ denotes a 
post-observation up-date value, the filter observation up-date 
equations for Extended Kalman type’s estimator are given by 

State estimate   :     x̂k
(+) = x̂k

(−) +

Kk zk −Hxk x̂k

(−)⎡⎣ ⎤⎦     (1) 
 
 
Error  covariance : Pk

(+ ) = I −

KkHxk⎡⎣ ⎤⎦Pk

(− )          (2) 
    Gain matrix  :   


Kk = α k

−1Pk
(− )Hxk

T               (3) 
where zk  is the observation vector defined by the 
measurement model, Hxk  is observation matrix of 
measurement partial derivatives, I is simply the unit matrix, 
and α k = HxkPk

(− )Hxk
T +Wk

−1  is the innovation covariance. 
Wk represents the weighting matrix, the inverse of which is 
taken to be the diagonal observation covariance Vk ; thus for 

 i = 1,…,m  observations, 
 Wk

−1 ≡ Vk = diag v1,, vm[ ]  
for observation variances vi . The filter equations described 
by Eqs (1) through (3) can be employed without loss of 
generality, since whitening procedures can be used to 
statistically decouple the measurements in the presence of 
correlated observation noise and obtain a diagonal Vk . The 
gain matrix Kk  is used to up-date estimates of the filter 
parameters as each measurement is processed. And denote 
that Eq. (2) is valid only for the optimal gain  


Kk  

	
 The use of Eq. (2) to compute the error covariance matrix 
has historically been suspect due to finit computer word 
length limitations. As a result, a utilized alternative is the 
stabilized form of the up-date, expressed as 

Pk
(+ ) = (I − KkHxk )Pk

(− ) (I − KkHxk )
T + KkWk

−1Kk
T   (4) 

Although this form of the covariance observation up-date is 
more stable numerically than Eq. (2), it requires a greater 
number of computations; however, a further advantage is that 
it is valid for the arbitary gain matrices; therefore, Kk  in Eq. 
(4) need not be optimal. 
 In some cases, the observation up-date equation may also be 
deficient numerically. As a result, factorization methods have 
been developed to help alleviate the numerical deficiencies of 
the up-date algorithms. The details of the factorization 
procedures will not be discussed here; however, an important 
observation from the literature and critical to the general 
evaluation mode of the filter is the observation that Eq.(4) can 
be written in an equivalent form as 
	
 Pk

(+ ) = (I − KkHxk )Pk
(− ) +α k (Kk − K̂k )(Kk − K̂k )

T   (5) 
where Kk  is an suboptimal gain matrix and K̂k is the 
optimal gain matrix. This equation of the error covariance 
observation up-date is referred to as the suboptimal 
observation up-date since it includes a correlation based on 
the gain difference between the filter evaluation run and the 
original estimation run. In the general evaluation mode, the 
estimator uses suboptimal gains saved in an evaluation filter 
from an earlier filter which is run purposely with what is 

believed to be an incorrect model, in order to generate 
suboptimal gains. It is this strategy of the suboptimal 
observation up-date which will be critical to the error 
described in the following section. It is important to note that 
the time in the filter evaluation mode takes the same style as 
the original estimator time up-date, except that in the presence 
of process noise modeling parameters, the original estimator 
stochastic time constants and process noise (system noise) 
uncertainties are replaced with evaluation mode time 
constants and process noise terms. 
 
3.  Observation strategy and the estimator 
 
3.1.  Observation strategy 
 Observation data acquisition plan is assumed, containing 
several passes of two-way Doppler and ranging data per week. 
And also, the data schedule consisted of about 6 hours 
tracking pass of two-way Doppler and of about 2 hours 
tracking pass of two-way range from USUDA station basis 
from ME (Mars encounter) – 30 days to ME-10 days. 
To account for observation noise, an assumed one-sigma 
random measurement uncertainty of 0.02 mm/sec was chosen 
for two-way Doppler, and for two-way ranging, the one-sigma 
random measurement uncertainty was assumed to be about 5 
m. It should be noted that the data weights quoted here are for 
the round trip range-rate and range, respectively. Both data 
types were collected at a rate of one point every 10 min., and 
the noise variances were adjusted by an elevation-dependent 
function for USUDA station, to reduce the weight of the low 
elevation data; furthermore, no data were acquired at 
elevations of less than 13 deg. 
 
3.2.  The estimator 
 Table 1. summarizes the parameters which make up the filter 
model, along with a priori statistics, steady state uncertainties for 
the Gauss-Markov parameters, and noise densities for the 
random-walk parameters. All of the parameters were treated as 
filter ( estimator ) parameters and grouped into three categories: 
spacecraft epoch state, spacecraft nongravitational force model, 
and ground system error model. Effects of uncertainty in the 
ephemeris and mass of Mars were believed to be relatively small 
in this scenario. 

Table 1.  Estimation parameters ( Assumed ) 

Estimate pa rameter Uncertainty (one -sigma)
State ve ctor

Position e lement
Velocity element 1 km /s

Nonga ravitational force

SRP 10%
Anoum alous accelerations
Range bi ase 5 m

Station location (U SUDA)
Spin ra dious 0.05 m

Z-hight 0.05 m
Longi tudu

  

1 ×10 7    km

1×10 −12    km/sec 2

3× 10−9    deg
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 The simplified spacecraft nongravitational force model was 
used. There were filter parameters representing solar radiation 
pressure (SRP) forces as well as small anomalous forces due 
to gas leaks and attitude control thruster misalignments, and 
so on. 
For processing the two-way range data, the filter model 
included a stochastic bias parameter associated with each 
ranging pass from the station, in order to approximate the 
slowly varying, nongeometric delays in ranging observations 
that are caused principally by station delay calibration errors 
and uncalibrated solar-plasma effects.  
The station location covariance represents the uncertainty in 
the station location. 
 
4.  The error values 
 
  The purpose of developing an error budget is to determine 
the contribution of individual error sources, or groups of error 
sources, to the total navigational uncertainty. In general, an 
error budget is a catalog of the contributions of the error 
sources which contribute to errors in the filter estimate at a 
particular point in time, whether explicitly modeled in the 
filter or not. For the first analysis, it is assumed that filter is 
optimal, that estimator model is an accurate representation of 
the physical world. 
  In order to establish an error budget, it is necessary to 
compute a time history of the filter gain matrix for the 
complete filter and to subsequently use these gains in the 
sensitivity calculations ( Eq. (4) ) during repeated filter 
evaluation mode runs, in which only selected error sources or 
groups of error sources are ‘turned on’ in each particular run. 
In this way, the individual contributions of each error sources 
or group of error sources to the total statistics uncertainty 
obtained for all of the filter parameters for given radiometric 
data set can be established. 
 Using the reduced observation data schedule and the filter 
model derived for Mars mission scenario, orbit estimation 
error statistics were computed for Doppler-only and 
Doppler-plus-ranging observation data sets. The orbit 
estimation were propagated to the nominal time of Mars 
encounter and expressed as dispersions in a Mars centered 
aiming plane, or B-plane, coordinate system; specifically, the 
one-sigma magnitude uncertainty of the miss vector, resolved 
into respective miss components B ⋅T ( parallel to planetary 
equatorial plane) and B ⋅R (normal to planetary equatorial 
plane. This plane definite Figure. 1. 
  In the B-plane ellipse, there are semimejor (SMAA) axis 
and semiminor (SMIA) axis. Where γ  is the orientation 
angle of semimajor axis measured positive clockwise from 
T  to R . 
 Additional, the one-sigma uncertainty on the linearized time 
of flight (LTF). The LTF defines the time from encounter 
( point of closest approach ) and specifies what the time of 
flight to encounter would be if the magnitude of the miss 
vector were zero. In the case, the errors were expressed as 
dispersion ellipses in the B-plane to graphically significant 
groups of error sources. 
 

Fig. 1.  Definition of B-plane ellipse. 
 
4.1.  In the case of 2-way Doppler only 
  With the reduced-filter, the 2-way Doppler data allowed 
determination of the B ⋅T  component of the miss vector to 
about 50 km and the B ⋅R component of miss vector to about 
25 km, with the LTF determined approximately 8 sec. These 
results summarized in Fig.2, which gives the magnitude of the 
B-plane error ellipse around the nominal aim point for the 
groups of the filter model error sources to the total statistical 
uncertainty, in a root-sum-square.  
 

Fig. 2. The error ellipse on the B-plane for X-band 2-way Doppler only at 
closest approach 

	
 The most dominant error source groups were the random 
nongravitational acceleration, followed by solar radiation 
pressure coefficient uncertainty, and ground system 
calibration error. For this encounter phase, the direction of the 
Earth-spacecraft range is closely aligned with semmimajor 
(SMMA) axis  of the B-plane error ellipse. The Doppler data 
alone were able to determine this component of the solution to 
only about 55 km. 
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4.2.  In the case of 2-way Doppler plus ranging 
More one case in which both the 2-way Doppler plus ranging 
data were used, the B ⋅T  component of the miss vector was 
determined to about 6 km and the B ⋅R component to about 5 
km, with the LTF determined approximately 5 sec. 
Similar to the results for the Doppler-only data strategies (See 
3.1), random nongravitational accelerations were the 
dominant error source group. 
In additional ranging data to Doppler data, the dispersion is 
reduced compare with only Doppler observation strategy. 
B-plane error ellipse are also provided ( see Fig. 3.), 
illustrating the contributions of the major source groups to the 
total root-sum-square error and the orientation of the ellipses 
in the aiming plane. In this case, the accuracy with which the 
Earth-spacecraft range component at encounter was 
determined was roughly 12 km. 
 

Fig. 3. The error ellipse on the B-plane for X-band 2-way Doppler plus 
ranging at closest approach 

 
5.  Sensitivity analysis 
 
The results of the linearity assumptions used to develop error 
budgets is that sensitivity values can readily bee generated. 
These values graphically illustrate the effects of using 
different prescribed values of the error source statistics on the 
estimation errors, with the assumption that the reduced-order 
filter.  
 The procedure for sensitivity values development is repeated 
here for completeness:  

(1) Subtract the contribution of the error source under     
consideration from total mean-square navigation     
error. 

(2) To compute the effect of changing the error source by a 
preset scale factor, multiply its contributions to the 
mean-square errors by the square of the scale factor 
value. 

(3) Replace the original contribution to mean-square       
error by the one computed in the previous step. 

(4) Take the square root of the newly computed 
mean-square error to obtain the total root-sum square 
navigation error. 

Several cases were used to generate sensitivity curves for the 
major groups of error sources in the filter ( estimator ).  Fig. 
4. and Fig. 5. give the sensitivity curves for the random 
nongarvitational accelerations and illustrate the sensitivity of 
this error source group to various scale factor values. Random 
nongravitationnal acceleration dominated the error budget in 
two data strategy cases considered. 

 
Fig. 4 Sensitivity of he estimation error to perturbation 

of random nongravitational accelerations 
(X-band two-way Doppler only) 

 
As seen from the figures, a quadratic growth in the 
sensitivity is evident for scale factor values ranging from 1 
to 3, and a nearly linear growth is exhibited for scale factor 
values ranging from 4 to 10. On average, for two data 
strategies considered, an order of magnitude increase in the 
preset scale factor resulted in about a factor of three to six 
increase in the root-mean-square estimation errors. 
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Fig. 5 Sensitivity of he estimation error to perturbation 
of random nongravitational accelerations 
(X-band two-way Doppler plus ranging 

 
5.  Conclusion 
 
 A sensitivity analysis was conducted for a reduced-order 
filter referred to as the enhanced orbit estimation filter. In 
practice, the enhanced filter attempts to represent all or nearly 
all of the principal ground system error sources affecting 
radiometric data types as filter parameters. A reduced-order 
filter technique were reviewed and utilized to perform the 
sensitivity analysis, and, in particular, to develop navigation 
error budgets for two different data acquisition strategies.  
  Error budget performed for the assumed mission strategy 
revealed that the most significant error source for two 
data-acquisition strategies studied was spacecraft random 
nongravitational accelerations, indicating that, for the 
reference error model, the enhanced filter is most sensitive to 
mismodelling of small anomalous forces affecting spacecraft. 
These results suggest that if high-precision navigation 
performance is to be achieved, the error sources requiring the 

most accurate modelling are spacecraft nongravitational 
accelerations error. 
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