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A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization
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Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft

solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available

to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model.

This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function.

Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.
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n-th degree zonal harmonic coefficient
penumbra apex

penumbra cone angle

solar vector

state vector

independent variable of integration
true anomaly

transition function
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Subscripts
© : Sun
B :  occulting body
sc :  spacecraft
/ with respect to
0 initial value
f final value
® Earth
C Moon
e penumbra entry or exit

1. Introduction

Low-thrust trajectories about planetary bodies are likely to
experience solar eclipses that disrupt the power available to SEP
systems. Trajectory optimization without concern for eclipsing
is futile when subsequent analysis reveals that a critical maneu-
ver has been placed in the shadow of the central body.

Kéchichian developed analytical expressions for the change
in orbital elements due to continuous tangential thrust acceler-
ation over a single revolution with coasting enforced through
eclipse.” For changing only the inclination of a circular orbit
in presence of Earth shadow, Kéchichian suggests strategies for
switching the direction of pure out-of-plane thrust to maximize
the inclination change over a single revolution with prescribed
eclipse geometry.?

Betts® presents a multi-phase formulations to solve many-
revolution geocentric trajectories with eclipsing. First, Betts®
constructs an initial guess by stepping through one phase at a
time. A control law in each burn phase minimizes the orbit error
at shadow entry, which is the end of the burn phase and begin-
ning of a coast phase. The next burn phase resumes at shadow
exit. This loosely describes a receding horizon algorithm that
continues until the final point is close to the target orbit, after
which the trajectory can be refined with a sequential quadratic
programming or interior point method.

Graham and Rao® use a collocation method and first solve
the minimum time transfer without eclipsing. This nominal tra-
jectory is then evaluated for eclipse passages and is terminated
at the first shadow entry. A new nominal trajectory without
eclipsing is solved from the shadow exit. Remaining eclipses
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Fig. 1.: Solar and planetary discs as viewed by a spacecraft are

on the threshold of an eclipse event. Geometric features relevant
to the eclipse model are labeled.

are introduced one at a time in this fashion until the target orbit
is reached with all eclipses included.

Ferrier and Epenoy” model Earth’s shadow as a cylinder and
define an auxiliary cylinder just interior or exterior to Earth’s
shadow. Power available in the shell between the two cylinder
radii is chosen as a degree 3 polynomial, but is 0% or 100% oth-
erwise. The polynomial effectively smooths the power available
across the eclipse transition, but the model is not differentiable
at the switch to or from the polynomial. Nonetheless, transfers
from geostationary transfer orbit (GTO) to geosynchronous or-
bit (GEO) are obtained sequentially with a shooting algorithm,
beginning with a null shadow radius that is then increased in-
crementally to Earth’s radius, while each solution becomes the
next initial guess.

Advancements in the application of the second-order gradi-
ent based-method, differential dynamic programming® (DDP),
towards spacecraft trajectory optimization have motivated the
development of a twice-differentiable power model. This work
proposes a model based on the geometry of overlapping discs®
that smooths the eclipse transition with a logistic function in
the same manner that has seen previous success when applied
to the discontinuity in discrete number of thrusters available.”
The proceeding chapters present the mathematical formulation
of the smoothed eclipse model and example trajectories com-
puted with an implementation of the Hybrid Differential Dy-
namic Programming (HDDP) algorithm.®-'"

2. Eclipse Geometry

By assuming spherical shapes of the Sun and occulting body,
and neglecting atmospheric effects, the eclipse geometry can be
represented with overlapping circular discs.®’ Figure 1 sketches
the eclipse geometry when the edges of the solar disc and oc-
culting body are perceived to be coincident by a spacecraft. Rel-
ative position vectors are defined so that

ro/se =Te — I'sc (D
is the position of the Sun with respect to the spacecraft, and
IB/sc = TB — I'sc 2

is the position of the occulting body with respect to the space-
craft. The apparent solar radius and apparent body radius are
the angles subtended by their respective radii.

R
aS R = arcsin ( © > 3)
”rO/sc”

R
aBR = arcsin < 5 ) 4
”rB/s('”

Lastly, the apparent distance is the angle between the two bod-
ies as viewed by the spacecraft.

IB/sc " TO®/sc )
”rB/SC””r@/SC“

aD = arccos ( (®)]
By inspection of Fig. 1, an eclipse occurs when the sum of the
apparent radii exceeds the apparent distance between the two
bodies,

aSR + aBR > aD . (6)

If the inequality holds, then aSR < aBR indicates a total
eclipse, and aSR > aBR indicates a partial eclipse. The par-
tial eclipse is an annular eclipse when the spacecraft is in the
occulting body’s antumbra. These conditions also assume that

TB/sc < T®/sc-
3. Smoothed Sunlight Fraction

The sunlight fraction is a discontinuous function of the ge-
ometry of the spacecraft, Sun, and occulting body positions,

0, aSR + aBR > aD and aSR < aBR
vy=1+(0,1), aSR+ aBR > aDandaSR > aBR, (7)
1, aSR + aBR < aD

where the total eclipse occurs in umbra, and the intermediate
case is itself a discontinuous function that depends on if the
spacecraft is in penumbra or antumbra. Additional relations
from the overlapping disc geometry allow for the computation
of the sunlight fraction in each of these cases.” However, the
smoothed eclipse model imposes a zero-thrust constraint for
both partial and total eclipse. The sunlight fraction is then a
step function between 100% and 0%, and relies only on Egs. (3)
to (5) for the necessary geometry. With the Heaviside defini-
tion of a step function, the sunlight fraction is half-valued at the
eclipse transition.

0, x < x*
H(x) =405, x=x* 8)
1, x > x*

0, aSR + aBR > aD
aSR + aBR = aD ©)]
1, aSR + aBR < aD

Eq. (8) is the unit Heaviside step function that transitions at x*,
and is applied to the eclipse transition to develop the Heaviside
sunlight fraction in Eq. (9). The Heaviside step function alone
does not resolve the issue of a discontinuous power model, but it
can be approximated by a logistic function with smooth deriva-
tives that are favorable for gradient-based optimization.

1
T 1+ exp[—cs(x — x*)]

L(x)

(10)

1

1 + exp{—c,[aD — c¢;,(aSR + aBR)|} (1

YL
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Fig. 2.: The sunlight fraction is represented by a Heaviside
step function and logistic functions of different sharpness co-
efficients.
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Eq. (10) is the unit logistic function that is a smooth approxima-
tion to the unit Heaviside step function. Eq. (11) is the logistic
sunlight fraction and constitutes the smoothed eclipse model.

Figures 2 and 3 depict the Heaviside sunlight fraction and the
logistic sunlight fraction for different (c;, ¢;) values. Sharpness
coeflicient ¢, determines the slope of the curve at the transition
point. Transition coefficient ¢, scales the total angle of the ap-
parent solar and body radii, and effectively moves the transition
point.

Selection of a (cy, ¢;) pair might be driven by numerical be-
havior, desired model accuracy, or mission operations. An inter-
mediate ¢, value that is not too steep or flat is likely to benefit
optimizer performance, but at the expense of model accuracy.
When model accuracy is a priority, the (cy, ¢;) pair that mini-
mizes the smoothed model error could be selected. Further im-
provements could be gained by considering (c;, ¢;) as functions
of time or orbital radius, for example, in lieu of constant val-
ues, to reflect the changing eclipse geometry during a transfer.
From a mission operations perspective, it might be necessary to
power down/up the spacecraft at a certain rate and offset from
eclipse entry/exit. That rate and offset are prescribed by (cy, ¢;)
in the smoothed eclipse model.

4. Trajectory Optimization Example

Transfers from low Earth orbit (LEO) to GEO characteristi-
cally encounter frequent solar eclipses. That rate is expectedly
once per revolution in the early stages of the trajectory, but pos-
sibly declining with changes to the orbital altitude and inclina-

Table 1.: Spacecraft Parameters.

moy 1000 kg Toar 1445 N

I, 1849.347748s Py 13.103192 kW

Table 2.: Initial and Target Orbit States.
po 6878.14km p, 42241.095482 km

fo 0.0 fr 00
9o 0.0 gr 0.0
ho  —0.253967 hy 0.0
ke 0.0 k0.0
Ly n«

o 0.0

tion. To demonstrate the utility of the smoothed eclipse model,
the minimum-fuel LEO to GEO transfer from Betts® is repro-
duced with HDDP as the optimization method.

4.1. Constant Power With Smoothed Eclipsing
Power available to the spacecraft is modeled by scaling a ref-
erence power level by the logistic sunlight fraction.

P, =1vyLP (12)

Higher-fidelity modeling is possible by replacing Py with im-
proved power models, such as inverse-square decay with helio-
centric distance, or a polynomial. It is assumed that the space-
craft has gimbaled solar arrays and/or gimbaled thrusters so that
the arrays are always wholly effective. Thrust available from the
SEP system is then,

1, = 2t (13)

1 spgo

and often scaled by a duty cycle or engine efficiency. Ref. 3)
considers T, = T,y for burn phases, so Ty, is used to set Py
for this example. Table 1 lists the necessary spacecraft parame-
ters.

Selection of a (c;, ¢;) pair began by choosing ¢, = 1.0 so that
there is no shift in the eclipse transition. A value of ¢, = 289.78
was found to minimize the error between the smoothed and dis-
continuous eclipse model for a range of orbital radii and eccen-
tricities. In fact, it was found that the Sun and body radii and
Sun-body distance drive the optimal ¢, value, rather than the
spacecraft’s planetocentric orbit. For example, c; ~ 289.78 was
obtained for geocentric orbits, but the same procedure found
¢y ~ 432.35 appropriate for Mars-centered orbits.

4.2. Boundary Conditions and Dynamics

Initial conditions for a 500 km altitude LEO with 28.5° incli-
nation are stated in terms of the modified equinoctial elements
in Table 2. The target GEO is also listed with the exception of
the unconstrained true longitude. Dynamics include solar and
lunar third body perturbations, and perturbations from Earth
zonal harmonics J,, J3, and Js. Dynamic model parameters
are summarized in Table 3. The Sun’s position, velocity, and
acceleration are obtained from heliocentric Keplerian motion
of the Earth beginning with the osculating orbital elements for
the Earth at the reference epoch. The Moon’s state is similarly
obtained by geocentric Keplerian motion.

Betts selects the true longitude as the independent variable
and arrives at an optimal final mass of my = 718.79 kgin Ly =
248.5 revolutions. For this example, the eccentric anomaly is




Table 3.: Dynamic Model Parameters.
Uy 398600.436380 km*/s>  J, 1.082639 x 1073

He 132712440018 km3/s2  J; —2.565 x 107°

He  4902.798815 km?/s? J4 —1.608 x 1076

Ry  6378.14km £ 9.80665 x 1073 kmy/s?
Ro 695500 km (csrc)  (289.78,1.0)

Reference Epoch  2457377.5 Julian Date TDB

X (km)

x10* Y (km)
Fig. 4.: The trajectory computed by HDDP with the smoothed
eclipse model active is shown in a three-dimensional view.
Thrust arcs are colored orange and coast arcs in sunlight are
colored blue. Eclipse arcs are colored on grayscale from black
for total eclipse to white for total sunlight. A square marker
indicates the end of the transfer.

chosen as the independent variable and the endpoint is fixed
at E; = 248.5 revolutions. The trajectory is integrated with a
fixed-step fifth-order Dormand-Prince method'? at a discretiza-
tion of 60 stages per revolution. An initial guess considers
T = 0 for all stages so that HDDP iteration begins from a bal-
listic trajectory through 248.5 revolutions in LEO.

Results were generated on an Intel Xeon E5-2680 v3 2.50
GHz CPU with 128 GB memory and Red Hat Enterprise Linux
7 operating system. State transition matrices and tensors were
computed in parallel across 12 cores with OpenMP.!¥
4.3. Initial Results

The LEO to GEO trajectory computed by HDDP with the
smoothed eclipse model active is shown in Figure 4, and the
eclipse passages are higlighted in Figure 5. An improved fi-
nal mass of my = 733.29 kg is obtained in a time of flight
ty = 45.78 days. True longitude accumulates to 249.1 revo-
lutions. This result is listed alongside other trials in Table 4.
Computational performance is summarized in Table 5.

Eclipse passages interfere with initial thrusting to raise the
orbital radius from LEO. Coast arcs in sunlight are driven by
the minimum propellant objective and do not occur until late in
the transfer. A terminal coast arc is included in the revolution
count and indicates that the target orbit states are met before the
prescribed number of revolutions.

5. Penumbra Terminator Detection

Eclipse effects are most accurately included in the numerical
integration of spacecraft trajectories if integration steps fall ex-
actly on the penumbra terminator. While the smoothed eclipse
model benefits from an automatic response in power available
during eclipse without the need for event detection, a fixed mesh
of integration stages will step over the eclipse entry and exit
points. The spacecraft effectively sees prolonged sunlight into
penumbra entry and prolonged eclipse through penumbra exit.
The discretization error is illustrated in Figure 5, where penum-
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Fig. 5.: An equatorial projection of the eclipse passages is
shown with penumbra entry and exit locations marked.

Fig. 6.: Geometry of the penumbral cone.

bra entry and exit locations have been marked on an equatorial
projection of the initial trajectory result. There are several ways
to fix this error. One is to use a variable time-step integrator.
Another is to compensate analytically, which is discussed in the
proceeding sections.

5.1. Calculation Method for Penumbra Entry and Exit
Penumbra entry and exit locations can be estimated as the
intersection of the line between two integration stages and the
penumbral cone. Calculations in this study do not correct for
light-time but capture the instantaneous penumbral cone geom-
etry that is illustrated in Figure 6.
The origin of the penumbral cone is a function of the solar

and occulting body radii and the solar vector.
R
X, = —2 5 (14)
R + R

Note that s = rg /. The penumbral cone axis is represented by
a unit vector opposite the solar vector, —§. The penumbral cone
angle is

. (R
@, =sin"! (ﬁ) (15)

A spacecraft with position vector r is within the penumbral cone
if the vector difference r — X, forms an angle with the cone axis
that is smaller than the cone angle.

—(r—=X,) 8= (r—Xp)llcose, (16)

Squaring Eq. (16) yields a quadratic inequality with roots along
the penumbra terminator.

(r—X,) (88" —Icos®a,)(r—X,) =0 (17)

Consider the position vectors r; and r; just before and after
penumbra entry. Inserting the line r(¢) = r; + tr, into Eq. (17)
and solving for the roots of as> +2bt +c = 0 provides the points



of intersection of r(¢) and the penumbral cone. After defining
M = (§§" — I cos® @), the coeflicients are

a = rzTMrz (183-)
b=r"M(r —X,) (18b)
c=(r —X,) ' M(ri —Xp). (18¢)

The smaller root t = (—b + +/b? — ac)/a estimates the space-
craft penumbra entry, while the larger root extends the line to
the far side of the penumbral cone. For position vectors r; and
r; just before and after penumbra exit, a positive root estimates
the spacecraft penumbra exit and a negative root is the far side
intersection.
5.2. Mesh Adjustment for Penumbra Entry and Exit

The method for calculation of penumbra entry and exit points
can be leveraged for mesh adjustment to place integration stages
on the penumbra terminator. First, a generic integration step
relies on the current state and the step size.

X2:f(X1,T2*T1) (19)

State vector X includes the position vector r or orbital elements
that determine r, while f is a transition function, e.g., the inte-
gral of the equations of motion, and 7 is the independent vari-
able of integration.

Given r; and having computed r;, the two positions can be
checked for a change in eclipse conditions. The step size 7, — 7
should be selected so that the penumbra will not be stepped over
entirely. If eclipse entry or exit is detected, the estimated inter-
section of the trajectory and penumbra terminator is r, = r(t,)
where 7, is selected as the appropriate root obtained by Eqgs. (17)
and (18). The angle between r; and r, is the approximate
change in true anomaly to reach the penumbra terminator.

r,'r

Av = cos™! (e—l> (20)
lIrllllr ]

Then the independent variable at the terminator 7, =

7(X1,71,Av) can be determined, and two consecutive steps re-
place Eq. (19).

X, = f(X1,7e—11) (21a)
X, = f(Xe. ) — 1) (21b)

As an approximation, r, targets the penumbra terminator but
is expected to err on either side. Stepping too far provides a
conservative model of the power available, so it may be worth-
while to further increment Av. This is perhaps a more realistic
representation of a spacecraft shutting down early and remain-
ing down for a time after an eclipse event. In the worst case, a
single-step integrator carries the incorrect power available from
r, to ry. Multi-step methods, however, should have integration
sub-steps on the correct side of the penumbra terminator to off-
set this error.

6. Results with Penumbra Detection

Accuracy of the initial result is improved by inserting stages
at the penumbra entry and exit locations detected by the meth-
ods of Section 5. HDDP is restarted with the previous solu-
tion as an initial guess. Power available is again computed with
the smoothed eclipse model but stages for eclipse passages are

Table 4.: Trajectory Optimization Results.

Iteration my (kg) ¢, (days)
1 733.29 4578
2 732.61  45.58
3 732.41 45.51
4 732.29 4549
5 732.24 4546
Betts® 718.79  43.13

Table 5.: Computational Performance.

Iteration HDDP Iterations Runtime (sec)
1 161 9362
2 60 3758
3 39 2398
4 31 1978
5 18 1181

forced to coast by setting T),,,. = 0. For each revolution with an
eclipse, the new throttle constraint is assigned for the inserted
penumbra entry stage and subsequent stages up to but not in-
cluding the inserted penumbra exit. While the improved trajec-
tory is similar, its penumbra entry and exit locations correspond
to the previous solution. Subsequent iterations insert stages to
update the penumbra entry and exit locations to further improve
solution accuracy. The new trajectory is practically indistin-
guishable aside from the improved resolution at the penumbra
terminator. Color contours of the logistic sunlight fraction are
not used in Figure 8 (as they were in Figure 4). As the smoothed
model is active, stages adjacent to the penumbra see ;. less than
but approximately 100%.

Thrust steering profiles are depicted in Figure 7. The in-plane
thrust angle is measured from the transverse direction about
the angular momentum, and the out-of-plane thrust is measured
from the orbit plane about the radial direction. The thrust mag-
nitude profile confirms the expected bang-bang control, though
initial coast arcs are owed to eclipsing, while later coast arcs
are for propellant savings. Steering angles indicate how ini-
tial steering is devoted to raising the orbital radius. The out-
of-plane component increases throughout the transfer as it be-
comes more fuel efficient to change the inclination at a larger
orbital radius.

7. Conclusion

A smoothed eclipse model has been presented for use in com-
puting optimal trajectories for space missions that employ solar
electric propulsion. The logistic sunlight fraction is introduced
as the visible sunlight through the smoothed eclipse transition
from total eclipse (and vice versa) to total sunlight by a logistic
function. The model is continuously differentiable and suitable
for gradient based optimization methods. As a percentage of the
sunlight available, the smoothed eclipse model is a coefficient
that can be paired with arbitrary power models. A set of tun-
ing parameters allows for mission designers to adjust the rate
at which power available to the spacecraft declines or recovers,
and to shift the location of the eclipse discontinuity. An exam-
ple trajectory computed with HDDP and the smoothed eclipse
model improves upon the mass delivered for a LEO to GEO
trajectory in the literature. A refined solution corrects for dis-
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Fig. 9.: An equatorial projection of the eclipse passages is
shown for the final trajectory with penumbra detection.
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gles are shown for the duration of the transfer.
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Fig. 8.: The final trajectory with penumbra detection is shown in
a three-dimensional view. Thrust arcs are colored orange, coast
arcs in sunlight are colored blue, and eclipse arcs are colored
black. A square marker indicates the end of the transfer.

cretization errors by inserting penumbra entry and exit locations
with only a minor adjustment to the delivered mass.
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