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Conventional ground-based orbit navigation systems are well-developed but expensive, and it is excessive for reasonable missions.
Therefore, autonomous orbit determination without ground stations will be significant for future interplanetary missions. Satellite-to-
satellite tracking (SST) is a measurement to observe the relative range between multiple spacecraft, and it is applicable for autonomous
orbit determination. Previous studies show that orbits are observable by using only SST data if spacecraft is strongly perturbed by
the third body, and this method cannot be applied to general problems because of the uncertainty of orbit orientations. This research
proposes a new orbit navigation method using SST and active sensing technology. The proposed method uses more than two active
sensing maneuvers and these maneuvers yield the information of the orientation. Three types of analyses, that is, 1) geometrical,
2) analytical, and 3) numerical analyses, prove that the positions and velocities of two spacecraft and the magnitudes of ∆Vs are
observable if there are at least two active sensing maneuvers and the information of orientations of ∆Vs is given. Numerical simulations
verify the proposed algorithm and indicate that the estimation errors depend on the orientations of ∆Vs. This result shows that the
proposed method will be practically applied to interplanetary missions.
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Nomenclature

t : time
a : semi-major axis
e : eccentricity
ν : true anomaly
i : inclination
Ω : longitude of ascending node
ω : argument of perigee

c, d : relative angle
µ : gravitational constant
σ : standard deviation of error
ρ : crosslink range
α, β : spacecraft’s name
λ : parameter of ridge regression
P̂ : basis vector of periapsis direction
Q̂ : cross product of R̂ and P̂
R̂ : basis vector parallel to angular momentum

r, r : position vector and its norm
u : velocity vector

∆u,∆û : ∆V vector and its orientation
X : state vector
Y : observation vector
x : linearized state vector
y : linearized observation vector
ϵ : noise vector
Φ : state transition matrix
P : variance-covariance matrix

Superscripts
∗ : reference

: a priori
Subscripts

+ : after maneuver
− : before maneuver

1. Introduction

Autonomous orbit determination is one of the essential tech-
nologies for future interplanetary missions. Most deep space
probes determine their orbit based on the Earth-based observa-
tions. However, ground resources get stringent with increas-
ing the number of interplanetary missions. For interplanetary
micro-spacecraft, especially, the orbit determination is a bottle-
neck for low-cost and frequent missions.

One of the promising ideas uses Satellite-to-Satellite Track-
ing (SST) between multiple spacecraft and determines their or-
bits in the inertial frame. Markley (1984) and Psiaki (1999)
have studied the orbit determination using the measurement of
relative range and angle of two spacecraft.6)7) For interplanetary
missions, however, the relative angle cannot be measured if two
spacecraft is distant from each other. Hill and Born (2007) have
proposed liaison navigation, which uses only crosslink range of
multiple spacecraft, and proven that their orbits can be com-
pletely determined in the inertial frame if the dynamics of the
spacecraft is highly influenced by third body’s gravity.2) How-
ever, the liaison navigation cannot determine the inertial orbits
for general dynamical systems.2) This is because the orienta-
tion of the orbits is unobservable through the crosslink range,
whereas the size and shape of them are observable.

This paper proposes a new autonomous orbit determination
method in general dynamical systems. The proposed method
uses only crosslink range information but determines the in-
ertial orbits completely by applying the active sensing strat-
egy. Active sensing is a technology to recover the observability
by executing active maneuvers. For example, Woffinden and
Geller (2009) analyses optimal active rendezvous maneuvers
for angles-only navigation to determine the relative orbits.10)

It is proven that the inertial orbits can be determined with
crosslink range if the spacecraft executes more than two maneu-



Fig. 1. Rotational symmetry about two-body problem.

Fig. 2. Reflection symmetry about two-body problem.

vers. In this paper, the proposed method is verified with three
ways: 1) geometrical approach, 2) theoretical approach, and 3)
numerical approach. Finally, numerical examples present that
the proposed algorithm is practical for deep space missions.

2. Orbit Determination by SST

Spacecraft orbits are observable when the orbits are uniquely
determined. For example, in the two-body problem, two pairs
of orbits in Fig. 1 cannot be distinguished from each other by
SST observation because they coincide by rotational transfor-
mation and their range histories are the same. Pairs in Fig. 2
also cannot be distinguished because they coincide by reflec-
tion.

According to Hill and Born (2007), when the acceleration
field and its time-derivative are symmetric, orbits are not unique
and SST does not provide enough information for orbit deter-
mination.2) In the two-body problem, there are rotational sym-
metry about the center of the primary body and reflection sym-
metry about any plane including that point. This is the reason
orbits cannot be observable in the two-body problem.

Furthermore, Liu and Liu (2001) states that it is possible to
determine the semi-major axis, the eccentricity, and the true
anomaly of two spacecraft in the two-body problem by using
SST only, but it is impossible to estimate the inclination, the
longitude of the ascending node, and the argument of perigee
of them.5) However, Hill and Born (2007) showed relative ori-
entation angles d, cα, cβ, defined in Fig. 3, can be estimated.2)

These angles do not change by any rotation or reflection.
In the three-body problem, however, time derivative of ac-

celeration field is not symmetric except for reflection symmetry
about the ecliptic plane, and orbits can be determined by SST
data.2) This is because there are only two possible pairs of or-
bits when there is only a reflection symmetry about a plane, and
these orbits can be distinguished by using a priori information

Fig. 3. Relative angles of two spacecraft orbits.

Fig. 4. Proposed method.

Fig. 5. Rotational symmetry about two-body problem with a maneuver.

about the orbits.
In the proposed method, ∆V maneuvers reduce symmetries

of the two-body problem as shown in Fig. 4, and orbits can be
estimated even in the two-body problem. These symmetries are
discussed in the next section.

3. Geometrical Approach

In the two-body problem with ∆V maneuvers, the kinds of
symmetries are variable depending on the number and the ori-
entations of impulses. In the case of one maneuver, there is
a rotational symmetry about an axis parallel to the ∆V vector
passing through the center of the primary body as shown in Fig.
5. There is also a reflection symmetry about any plane including
that axis. In this case, orbital elements about absolute orienta-
tion are not fully estimated because of the symmetries.

In the case of two ∆Vs, if the two ∆V vectors are not par-
allel, there does not exist any rotational symmetry but there is
a reflection symmetry about a plane including the center of the
primary body and those two vectors. However, there are only
two possible orbits like in the three-body problem, and these
orbits also can be distinguished by a priori information. In the
case of two maneuvers whose orientations are parallel, the sit-
uation is the same as the case of only one maneuver and orbital



elements cannot be fully estimated. There is no symmetry if
there are more than three maneuvers whose ∆V vectors include
three linearly independent vectors.

4. Analytical Approach

In this section, observability of the proposed method is ana-
lyzed by formulation. For the spacecraft α and β, let us deter-
mine the inertial orbits by SST with two impulsive maneuvers
of the spacecraft α.

The position and the velocity of spacecraft are expressed with
Keplerian elements, a, e, ν, and orbital basis vectors:

r =
a
(
1 − e2

)
1 + e cos ν

(
cos νP̂ + sin νQ̂

)
(1)

u =

√
µ

a
(
1 − e2) (− sin νP̂ + (e + cos ν) Q̂

)
. (2)

Therefore, it is necessary to determine aα, aβ, eα, eβ, να, νβ,
P̂α, P̂β, Q̂α, and Q̂β for orbit determination. As stated in Sec.
2., aα, aβ, eα, eβ, να, and νβ can be estimated by SST data only.
Then, P̂α, P̂β, Q̂α, and Q̂β should be determined by other calcu-
lations.

In the proposed method, the additional conditions to orbital
basis vectors are the information of ∆Vs. A ∆V vector is repre-
sented by Eq. (2) as follows.

∆u = u+ − u−

=

√
µ

aα+
(
1 − e2

α+

) (− sin να+ P̂α+ + (eα+ + cos να+) Q̂α+
)

−
√

µ

aα−
(
1 − e2

α−
) (− sin να− P̂α− + (eα− + cos να−) Q̂α−

)
(3)

In one ∆V case, let us consider a rotational transformation
matrix Θ whose eigenvector corresponding to the eigenvalue 1
is ∆u. This matrix is applied to Eq. (3) and then

Θ∆u = ∆u

=

√
µ

aα+
(
1 − e2

α+

) (− sin να+ΘP̂α+ + (eα+ + cos να+)ΘQ̂α+
)

−
√

µ

aα−
(
1 − e2

α−
) (− sin να−ΘP̂α− + (eα− + cos να−)ΘQ̂α−

)
.

(4)

Eqs. (3) and (4) show that (P̂α+, Q̂α+, P̂α−, Q̂α−) and (ΘP̂α+,
ΘQ̂α+, ΘP̂α−, ΘQ̂α−) cannot be distinguished by information of
one ∆V only. This result corresponds to rotational symmetry
stated in Sec. 3.. Reflection symmetry is also shown similarly
by considering a reflection transformation matrix whose eigen-
vector corresponding to the eigenvalue 1 is ∆u.

In two ∆Vs case, dot products of ∆û and P̂β, Q̂β, R̂β are con-
sidered.

∆û · P̂β = ∆u · P̂β/∥∆u∥ (5)

∆û · Q̂β = ∆u · Q̂β/∥∆u∥ (6)

∆û · R̂β = ∆u · R̂β/∥∆u∥ (7)

where ∆û and ∥∆u∥ are given. ∆u · P̂β, ∆u · Q̂β, and ∆u · R̂β can
be calculated from Eq. (3) if dot products between P̂α, P̂β, Q̂α,
Q̂β, R̂α, and R̂β are known. As shown in the Appendix B, these
values are the function of relative angles cα, cβ, and d, which
can be estimated in the two-body problem. Therefore, ∆û · P̂β,
∆û · Q̂β, and ∆û · R̂β can be calculated.

Then, P̂β and Q̂β are represented as follows if ∆û0 and ∆û1
are not parallel (see Appendix C).

P̂β =
p − r cos θ
1 − cos2 θ

∆û0 +
−p cos θ + r
1 − cos2 θ

∆û1

±
√

2pr cos θ−p2−r2+1−cos2 θ

1 − cos2 θ
(∆û0×∆û1) (8)

Q̂β =
q − s cos θ
1 − cos2 θ

∆û0 +
−q cos θ + s
1 − cos2 θ

∆û1

±
√

2qs cos θ−q2−s2+1−cos2 θ

1 − cos2 θ
(∆û0×∆û1) (9)

p = ∆û0 · P̂β (10)

q = ∆û0 · Q̂β (11)

r = ∆û1 · P̂β (12)

s = ∆û1 · Q̂β (13)
cos θ = ∆û0 · ∆û1 (14)

The plus-minus signs show reflection symmetry as stated in
Sec. 3.. There are four combinations of plus-minus signs in
Eqs. (8) and (9), but there is a constraint

P̂β · Q̂β = 0, (15)

and the number of possible combinations is reduced to two by
this constraint. Therefore, P̂β and Q̂β can be determined if there
is a priori information as stated in Sec. 3.. P̂α and Q̂α are cal-
culated from dot products of orbital basis vectors shown in Ap-
pendix B after P̂β and Q̂β are determined.

Additionally, ∥∆u∥ can be calculated as follows.

∥∆u∥ =
√(
∆u · P̂β

)2
+
(
∆u · Q̂β

)2
+
(
∆u · R̂β

)2
(16)

Therefore, only information of ∆û and a priori information
of orbits are needed for orbit determination by the proposed
method.

5. Numerical Approach

In this section, the numerical approach demonstrates that the
proposed algorithm can determine a pair of orbits in the inertial
frame. The numerical simulations consider that two spacecraft
α and β, the spacecraft α executes orbital maneuvers, and com-
pare the results.

5.1. Estimation Algorithm
This simulations use the batch processor algorithm shown in

Ref. 8) with some modifications. For the state vector

X =
[

rT
α uTα rT

β uTβ ∥∆u0∥ ∥∆u1∥
]T
, (17)

and the observation vector

Yi = ρi, (18)



the state and observation equation are as follows.

Ẋ = F (X) (19)

=
[
uTα − µr3

α
rT
α uTβ − µr3

β

rT
β 0 0

]T
(20)

Yi = G (Xi) + ϵi (21)
= ∥rαi − rβi∥ + ϵi (22)

where the subscript i represents the epoch of the observation.
These equations are linearized around the reference orbit X∗

and Y∗. The linearized state and observation vectors are

x = X − X∗, y = Y − Y∗. (23)

Therefore the linearized equations are expressed with the lin-
earized state and observation vectors:

ẋ = Ax (24)
yi = H̃ixi + ϵi (25)

A =
[
∂F
∂X

]∗
, H̃i =

[
∂G
∂X

]∗
i

(26)

where we neglect the higher order terms of the Taylor series
expansions of F (X) and G (Xi).

The state vector xk at epoch tk is expressed with a state tran-
sition matrix (STM) and the state vector at an initial epoch.

xk = Φ (tk, t0) x0 (27)

The STM is computed by integrating the following ordinary dif-
ferential equation.

Φ̇ (tk, t0) = AkΦ (tk, t0) (28)

where the initial condition is Φ (t0, t0) = I. The effects of im-
pulsive maneuvers are included to the STM (Appendix D).

When we have multiple observations y1, y2, ...yl, the obser-
vation vectors and observation equation are expressed with the
state vector x0 at the initial epoch and the STM.

y = Hx0 + ϵ (29)

y =


y1
...
yl

 , H =


H̃1Φ (t1, t0)

...
H̃lΦ (tl, t0)

 ϵ =

ϵ1
...
ϵl

 (30)

The minimum variance estimation of the initial state vector
is

x0est =
(
HT WH

)−1 (
HT Wy

)
(31)

Wi =
1
σ2 (32)

where x0est is the maximum likelihood state vector. For solving
nonlinear problems, we expand the nonlinear state and observa-
tion equations around the updated reference orbits (X∗0 + x0est),
solve the minimum variance estimation, and continue these pro-
cesses iteratively until the orbits converge.

In this study, the estimation algorithm is modified because
it is not robust to linearization errors and the iteration may di-
verge. The modified algorithm minimizes the objective function

J (x0) =
∑

i

ϕ (yi − Hix0) + 1/2λxT
0 x0 (33)

ϕ (u) =
{ 1

2σ2 u2 (|u| < C)
1
σ2 C (|u| − 1/2C) (otherwise).

(34)

Table 1. Simulation parameter settings.

rα0

[
4×103, 0, 0

]T
km

uα0 [0, 3600, 0]T m/s

rβ0
[
4.5×103, 4.5×103, 0

]T
km

uβ0 [−800, 900, 2000]T m/s
∥∆u0∥ 10.0749 m/s
∥∆u1∥ 10.1694 m/s

primary body Mars -
toi 10 s
∆û0 [0, 0.866, 0.5]T -
∆û1 [−0.6061, 0.6061, −0.5152]T -
σ 10 m

Table 2. Estimation parameter settings.

rα0

[
3.8×103, −1×102, −7×102

]T
km

uα0 [100, 3500, −400]T m/s

rβ0
[
4.5×103, 4×103, 2.4×103

]T
km

uβ0 [−1200, 400, 1800]T m/s
∥∆u0∥ 10 m/s
∥∆u1∥ 10 m/s

C 100 m

The first term is the same as Huber’s robust minimum least
squares method.4) The second term is used for ridge regres-
sion.3)

The estimation algorithm is summarized as follows.

1. Reference orbit (RO), X∗ and Y∗i , is generated by using a
priori information(X0).

2. x0, yi, Φ (t, t0), H̃i are calculated with RO.
3. The maximum likelihood state vector x0est is estimated by

x0est = P0

(
HT Wy

)
(35)

P0 =
(
λI + HT WH

)−1
(36)

Wi =

 1
σ2 (∥yi∥ < C)

C
σ2∥yi∥ (otherwise).

(37)

4. The reference orbit is updated as X∗0 ← X∗0 + x0est. If x0est

is smaller than a specified value, λ is decreased. The itera-
tion ends if λ converges to zero. Otherwise, the procedure
returns to 2.

5.2. Parameter Settings
The simulation parameters are shown in Tables 1 and 2 where

toi is the observation interval. The total observation time is
14400 s and the maneuver execution time is 7200 s for one ∆V
case and 4800 s and 9600 s for two ∆Vs case. The execution
error of ∆û and the visibility of range measurement is not con-
sidered in these simulations.
5.3. Results and Discussion

The results are shown in Figs. 6, 7, and 8. In these figures,
the shape and size of the estimated orbits become the same as
those of the true orbits in all cases. However, the orientations of
the estimated orbits do not coincide with those of the true orbits
in ballistic and one ∆V cases, and the estimated orbits converge
to the true orbits in two ∆Vs case. In one ∆V case, the rotational
axis between the true and estimated orbits is parallel to the ∆V
vector.



Fig. 6. True orbits and estimated orbits in no ∆V case. The green and
magenta dashed orbits are true orbits of α and β. The red and blue represent
estimated orbits of α and β respectively.

Fig. 7. True orbits and estimated orbits in one ∆V case. The black line
is the axis of rotation between true orbits and estimated orbits. The allow
represents ∆V vector.

The result of the estimation in two ∆Vs case is as follows.

rα0est − rα0 = [10, 5552, − 2851]T m (38)
uα0est − uα0 = [−5.00, − 0.01, 2.08]T m/s (39)
rβ0est − rβ0 = [−6251, 6243, − 609]T m (40)

uβ0est − uβ0 = [0.18, − 2.27, 1.09]T m/s (41)
∥∆u0∥est − ∥∆u0∥ = −0.0034m/s (42)
∥∆u1∥est − ∥∆u1∥ = 0.0037m/s (43)√

max eig (P0rα) = 5.09 km (44)√
max eig (P0vα) = 3.51 m/s (45)√
max eig

(
P0rβ

)
= 7.15 km (46)√

max eig
(
P0vβ

)
= 2.49 m/s (47)

where
√

max eig (P) means the square root of the maximum
eigenvalue of the covariance matrix P and its subscript repre-
sents the corresponding portion of it.

Fig. 8. True orbits and estimated orbits in two ∆Vs case.

The result shows that the orbits and the magnitude of ∆Vs
can be estimated with higher precision than a priori informa-
tion. Finally, these numerical results demonstrate the orbit de-
termination with active sensing in the two-body problems.

6. Estimation Considering Error of ∆u

This section considers more realistic situations by discussing
the numerical simulation and its estimation result when the
magnitude and direction errors of ∆u are not negligible. The
simulation is conducted under the almost same condition as Sec.
5.2.. The difference is that the ∆V errors are considered and the
magnitudes of ∆u are not estimated. However, the errors of ∆V
magnitudes and orientations are regarded as consider parame-
ters and the covariance matrix was calculated including these
errors.

6.1. Maneuver Execution Error Model
Gates model is adopted as the maneuver execution error

model.1) The execution error is represented as normal distribu-
tion whose mean is zero and variance is formulated as follows.

σ2
m = σ

2
m f ixed + σ

2
mprop∥∆u∥

2
(48)

σ2
o = σ

2
o f ixed + σ

2
oprop∥∆u∥

2
(49)

where σ2
m is a variance along ∆û and σ2

o is variance in the plane
normal to ∆û. These variances consist of fixed errors and pro-
portional errors.
6.2. Parameter Settings

The different parameters from Sec. 5.2. are shown in Table
3. The 1996 pre-launch model of Cassini-Huygens’s Main En-
gine Assembly is used for the values of Gates execution error
model.9)

6.3. Result
Figure 9 shows the estimated orbits and the true orbits. We

realize that these orbits are very close each other. The differ-
ences between estimated and true state vectors and standard de-



Table 3. Simulation and Estimation parameter settings.

σm f ixed 0.01 m/s
σmprop 0.35 %
σo f ixed 0.0175 m/s
σoprop 10 mrad
∥∆u0∥ 10.1 m/s
∥∆u1∥ 9.9642 m/s
∥∆u0∥ 10 m/s
∥∆u1∥ 10 m/s
∆û0 [−0.0086, 0.8609, 0.5086]T -
∆û1 [−0.6178, 0.6339, − 0.4653]T -
∆û0 [0, 0.866, 0.5]T -
∆û1 [−0.6247, 0.6247, −0.4685]T -

Fig. 9. True orbits and estimated orbits with two ∆Vs considering ∆û er-
rors.

viations are as follows.

rα0est−rα0 = [−736, −65162, −34504]T m (50)
uα0est−uα0 = [58.63, −0.48, −12.49]T m/s (51)
rβ0est−rβ0 = [72432, −73932, −54414]T m (52)

uβ0est−uβ0 = [32.15, 19.54, 3.70]T m/s (53)√
max eig (P0rα) = 91.9 km (54)√
max eig (P0vα) = 65.5 m/s (55)√
max eig

(
P0rβ

)
= 121 km (56)√

max eig
(
P0vβ

)
= 42.9 m/s (57)

The results are worse than the result without ∆V execution
errors in Sec. 5., but the order of the errors is practical for
some missions. Therefore, this method is also effective for orbit
determination in the two-body problems even when execution
errors of ∆Vs are considered.

7. Sensitivity Analysis of ∆V Orientation

The estimation errors by the proposed algorithm depend
on the orbital configurations of two spacecraft and tim-
ing/direction/magnitude of the orbital maneuvers. This sec-
tion analyze the influence of ∆V direction on the estimation
errors. Let us consider the influence of ∆û2 for a given ∆û1.

Fig. 10. Relationship between ∆û1 and
√

max eig (P0rα). Green circle and
square represent ∆û0 and −∆û0 respectively. Red square is placed on ∆û1
which minimizes

√
max eig (P0rα).

Fig. 11. Relationship between ∆û1 and
√

max eig
(
P0rβ
)
.

√
max eig (P0rα) and

√
max eig

(
P0rβ

)
are used as the criteria to

evaluate the determination errors, and these values are calcu-
lated for various ∆û1. P0 is computed along true orbits because
estimated orbits are near to them and P0true is a good approxi-
mation of P0 if estimation converges. The execution errors of
∆Vs are also considered in this analysis. The simulation param-
eters are almost the same in Table 3., but ∥∆u0∥ is 10m/s and ∆û0
is [0, 0.866, 0.5]T .

Figures 10 and 11 show the maximum eigenvalue of the co-
variance matrices of the spacecraft α and β, respectively. These
results indicate that ∆û1 affects the both covariance matrices.
Therefore, an appropriate ∆û1 reduces the error of estimation
and the optimal ∆û1 should be selected when the proposed
method are conducted.

8. Conclusion

For autonomous orbit determination in interplanetary mis-
sions, various methods have been proposed. One of the sophis-
ticated work uses Satellite-to-Satellite Tracking (SST) between
multiple spacecraft and it can determine the spacecraft orbits in
the inertial frame when the dynamical system is highly affected



by three-body perturbations. However, this method cannot be
applied for general problems, such as two-body problems be-
cause of the orbital symmetries. This study proposes a new or-
bit navigation method using active sensing maneuvers and SST,
and it can determine the spacecraft orbits completely in the in-
ertial frame.

The observability of the proposed method is verified by geo-
metrical, analytical and numerical approaches. These analyses
show that orbits are observable in general problems, i.e. two-
body problems, with active sensing maneuvers and at least two
orbital maneuvers are necessary for the complete observabil-
ity. In addition, the sensitivity analysis of the ∆V direction of
the active sensing maneuvers shows that the ∆V directions have
influence on the navigation errors, and there is an optimal di-
rection to decrease the estimation errors.

The results show that the proposed method has potential to
provide autonomous orbit determination strategy for interplane-
tary micro spacecraft which does not depend on ground stations.
Further work will find the optimal ∆V direction to improve the
estimation accuracy.
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AppendixA Orbital Basis Vectors

Orbital basis vectors, P̂, Q̂, R̂, are represented by Keplerian
elements about orientations, i, Ω, ω, as follows.

P̂ =

 cosω cosΩ − sinω sinΩ cos i
cosω sinΩ + sinω cosΩ cos i

sinω sin i

 (58)

Q̂ =

 − sinω cosΩ − cosω sinΩ cos i
− sinω sinΩ + cosω cosΩ cos i

cosω sin i

 (59)

R̂ = P̂ × Q̂ =

 sinΩ sin i
− cosΩ sin i

cos i

 (60)

AppendixB Relative Angles and Orbital Basis Vectors

The relationship between orbital basis vectors and relative
angles are

P̂α · P̂β = cos cα cos cβ + sin cα sin cβ cos d (61)

P̂α · Q̂β = cos cα sin cβ − sin cα cos cβ cos d (62)

P̂α · R̂β = ∓ sin cα sin d (63)

Q̂α · P̂β = sin cα cos cβ − cos cα sin cβ cos d (64)

Q̂α · Q̂β = sin cα sin cβ + cos cα cos cβ cos d (65)

Q̂α · R̂β = ± cos cα sin d (66)

R̂α · P̂β = ± sin cβ sin d (67)

R̂α · Q̂β = ∓ cos cβ sin d (68)

R̂α · R̂β = cos d. (69)

Fig. 12. Relative angles and orbital basis vectors.

These equations are derived by the spherical law of cosines in
Fig. 12. The plus-minus signs are used because R̂ is a pseudo-
vector and the sign of it is flipped by reflection.

AppendixC Relationship between P̂β, Q̂β and ∆V Vectors

In two ∆Vs case, P̂β and Q̂β is represented by ∆û0, ∆û1, and
∆û0 × ∆û1 if ∆û0 and ∆û1 are not parallel.

P̂β = lp∆û0 + mp∆û1 + np∆û0 × ∆û1 (70)

Q̂β = lq∆û0 + mq∆û1 + nq∆û0 × ∆û1 (71)

Therefore, dot products of ∆û0, ∆û1, P̂β, and Q̂β are

p = ∆û0 · P̂β = lp + mp cos θ (72)

q = ∆û0 · Q̂β = lq + mq cos θ (73)

r = ∆û1 · P̂β = lp cos θ + mp (74)

s = ∆û1 · Q̂β = lq cos θ + mq (75)

where

cos θ = ∆û0 · ∆û1 (76)
∆û0 · (∆û0∆ × û1) = ∆û1 · (∆û0∆ × û1) = 0. (77)

These equations can be solved as follows.

lp =
p − r cos θ
1 − cos2 θ

(78)

mp =
−p cos θ + r
1 − cos2 θ

(79)

lq =
q − s cos θ
1 − cos2 θ

(80)

mq =
−q cos θ + s
1 − cos2 θ

(81)

np and nq are derived from

∥P̂β∥2 = l2p + m2
p + n2

p

(
1 − cos2 θ

)
+ 2lpmp cos θ = 1(82)

∥Q̂β∥2 = l2q + m2
q + n2

q

(
1 − cos2 θ

)
+ 2lqmq cos θ = 1 (83)

and solved as

np = ±
√

2pr cos θ−p2−r2+1−cos2 θ

1 − cos2 θ
(84)

nq = ±
√

2qs cos θ−q2−s2+1−cos2 θ

1 − cos2 θ
. (85)



AppendixD STM considering ∆Vs

The STM is defined as

Φ (tk, t0) =
∂Xk

∂X0
. (86)

Then, the effect of ∆Vs can be included by initializing the por-
tion of STM about uα and ∥∆u∥ while integration of the STM.

Φ (t1, t0) [4 : 6, 13] =
∂uα1+

∂∥∆u0∥
= ∆û0 (87)

Φ (t2, t0) [4 : 6, 14] =
∂uα2+

∂∥∆u1∥
= ∆û1 (88)
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