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    The reduction of the spacecraft’s (SC) asymptotic velocity and the radiation hazard are really main problems for 

low-Delta V cost Jovian moons missions: orbiters and landers. Algorithm to overcome the "obstruction of solo 

disturbances" for one-body flybys around some Jovian moon with using full ephemeris with two coupled CR3BP engaging 

has been implemented. The region where the total received radiation dose (TID) exceeds is skirted along the upper section 

of Tisserand-Poincare graph. Withal low-cost reduction of the SC asymptotic velocity is required for rendezvous with small 

body. It became possible to find such scenarios when restricted three body problem is transformed into the two-coupled 

CR3BP models and full ephemeris model. Advanced Multi-Tisserand coordinates has been exploit for parametric passage 

into this region. With their help it is shown that the "cross" gravity assists at the early stage of reduction of the orbital 

period are required. As a result, a reasonable increase in the duration of the mission can be exchanged on a sharp decline 

TID and found "comfortable" (in TID) rounds scenario in the system (less than 70 krad for standard SC protection 8-10 mm 

Al). This will provide significant gains in the payload for spacecraft missions in Jovian system and systems of other outer 

planets and improving the reliability of their scientific instruments. 
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Nomenclature 

 

sca  :  semimajor-axis of the spacecraft’s orbit,   

Jovian radii 

sata
 

:  semimajor axis of the moon, Jovian radii 

e  :  eccentricity of the spacecraft’s orbit 

i  :  inclination of the spacecraft’s orbital 

plane relative to Jupiter’s geographic    

equator 

JR  :  Jovian radius 

R  
:  apojove, Jovian radii 

R  
:  perijove, Jovian radii 

 Subscripts 

0 :  initial 

sc :  spacecraft 

 

1.  Introduction 

 

  Mission design of low-Delta V cost gravity assists tours in 

Jovian system for the landing on the Galilean moon is 

considered, taking radiation hazard into account [1]. Limited 

dynamic opportunities of using flybys require multiple gravity 

assists. Relevance of regular creation of optimum scenarios – 

sequences of passing of celestial bodies with definition of 

conditions of their execution is obvious. This work is devoted 

to the description of criteria for creation of such chains. 

Advanced Multi-Tisserand coordinates [2] for this purpose are 

exploit for the best study of features for the radiation hazard 

decrease and for the spacecraft's asymptotic velocity 

reduction. 

 

 

2.  Strategy of Mission Design in the Jovian system  

 

  One of main problems of the Jovian system mission design 

is that the reduction of the asymptotic velocity V∞ of the 

spacecraft with respect to the satellite for the capture of the 

moon is impossible. A valid reason is consist in the invariance 

of the Jacobi integral and the Tisserand parameter in a circular 

restricted three-body model (CR3BP) [3-5]. Furthermore, the 

same-body flybys sequence on the Tisserand-Poincaré graph 

[3-4] falls according the V∞-isoline to the extra radiation 

zone. Formalized algorithm to overcome this "obstruction of 

solo disturbances" with using full ephemeris model and with 

two coupled CR3BP engaging has been implemented. The 

region of exceeding of the total received radiation dose (TID) 

can be bypassed along the upper section of the 

Tisserand-Poincaré graph. Withal low-cost reduction of the 

spacecraft asymptotic velocity required for the capture of the 

moon. For this purpose classes of “crossed” gravity assists 

from one small body of first CR3BP (“Ganymede”) to the 

second CR3BP (with small body “not Ganymede”- mostly 

Callisto) and then – in the opposite direction are demanded. 

The corresponding numerical scheme was developed with 

using Tisserand-Poincaré graph and the simulation of tens of 

millions of options. The Delta V-low cost searching was 

utilized also with help of the modeling of the multiple 

rebounds of the beam of trajectories. The techniques 

developed by the authors specifically to the needs of the 

mission "Laplas P1,P2" of the Russian Space Agency [6]. 
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3.  Specific features of gravity assist maneuvers 

 

  In the first approximation, the spacecraft trajectory in the 

represented jovicentric coordinates can be represented as a 

flyby hyperbola [7]. The ascent to orbit of an artificial satellite 

of Jupiter requires a braking impulse JOI (Jovian Orbit 

Insertion) in its pericenter. After this, the spacecraft ascends to 

a highly elongated elliptical orbit in the Jovian system. 

Both interplanetary and intersatellite (Jovian) flights can be 

designed using the following step-by-step algorithm. 

  (1) Before approaching a target satellite, the current gravity 

assist maneuver (GAM) is planned by specifying the next 

GAM based on the chosen method of the target passage. 

  (2) At the perijove preceding the current GAM, after 

choosing the parameters of the subsequent GAM, the patched 

conics method [7] is initially used to calculate the correction 

of the spacecraft’s orbit providing the implementation of the 

current GAM due to the flight of a target satellite at a given 

height calculated from the solution of the Euler–Lambert 

problem. 

  (3) Newton’s method is used to refine the correction 

according to the model of precise ephemeris (PEMs). Then, 

the corresponding solution is called the refined solution of the 

Euler–Lambert problem. 

  (4) The spacecraft motion is calculated (using PEMs) to the 

perijove preceding the next GAM. 

We introduce the term of beam trajectory. We assume that in 

the first approximation, the pulse execution of arbitrarily 

small orbit corrections before the GAM corresponds to the 

formation of a “tube” of virtual trajectories (in other words, to 

a “paraxial beam of trajectories”). Under a certain choice of 

small impulses maintained by a given indicatrix, this produces 

a corresponding set of possible longitudinal and lateral flyby 

heights of the target satellite. The model evolution of this set 

using PEMs until leaving target satellite’s sphere of influence 

leads to the formation of a trajectory beam. 

  The scenarios of gravity assist maneuvers in the Jovian 

system must contain (after JOI) the following two main stages 

[1-2,8-12]. The first stage (P1) is used to decrease the orbital 

energy of the spacecraft relative to Jupiter after JOI and 

provide conditions for more frequent encounters with Jupiter’s 

natural satellites by reducing the period of spacecraft 

revolution down to values of the order of a few orbital periods 

of the satellite (for example, the period of Ganymede is 

approximately 7.155 Earth days). Before each flyby of 

Jupiter’s satellite that serves for a gravity assist, the spacecraft 

orbit should be corrected to ensure the given parameters of the 

flyby of this satellite of Jupiter; according to the PEMs, these 

parameters guarantee a new encounter with it. In the second 

stage (P2), one should use the “frequent” series of GAM (with 

a decreased period of spacecraft revolution) to approximate 

the orbital velocities of the spacecraft and a target satellite (for 

example, Ganymede) to provide the conditions for the 

formation of a landing orbit. Here, one has to avoid the 

technique of resonance GAM using only a single target 

satellite because they do not allow one to reduce the 

asymptotic velocity of the spacecraft relative to this satellite 

down to the desired value. This is conditioned by the features 

of spacecraft trajectories in the restricted three-body problem. 

In the class of low-cost (quasi-inertial) gravity assist 

maneuvers near a fixed target satellite, the invariants are the 

Jacobi integral, the Tisserand parameter [5], and the 

asymptotic velocity relative to the target satellite (the 

“obstruction of solo perturbations” [3-4]). 

  The implementation of P1 is sufficiently clear: it is required 

to perform the correct refinement of the solution of the 

Euler–Lambert problem from the condition that the spacecraft 

goes to Ganymede after the JOI and for providing opportunity 

of solution of the next series of similar P1 tasks, such that the 

orbital period of the spacecraft at the exit from the zone of the 

subsequent gravity assist maneuver is a multiple of the orbital 

period of the chosen maneuvering partner satellite 

(quasi-resonance property). The fact that the periods of the 

spacecraft and the Jupiter’s satellite (“small body”) are 

quasi-resonant provides a new encounter with the partner in a 

time period that is a multiple of the spacecraft period at a 

vicinity of true anomaly of the last encounter. To this end, it 

will suffice to perform a small correction of the flyby height 

of the target satellite immediately before the upcoming 

planned GAM. 

  One can see that the resonant isolines of the spacecraft’s 

orbital period are blurred by thickness as a result of the fact 

that the PEM is used instead of patched conics model.  

  The problem of the search for GAM chains in the P1 stage 

is solved as conjunctions (encounters of the spacecraft with a 

target satellite G (for example, Ganymede) computed using 

PEM). 

  The P2 stage cannot be implemented in a way similar to P1 

[1-2]. However, there is another possibility. The asymptotic 

velocity of the spacecraft relative to a small body can vary 

when another small body is used [1-4,8-12] (multibody 

GAMs). This property is a dynamic feature of the model of 

double bond of restricted circular three-body problems. In 

terms of a restricted circular three-body problem (RC3BP), 

this modification can be written as 2-RC3BP. At a fixed time, 

we consider the osculating 2-RC3BP for the spacecraft in the 

Jovian system for which there exist both the Tisserand number 

   [5] for the main target satellite (for example, Ganymede) 

and the Tisserand number for an auxiliary small body   

(for example, Callisto). Each of them becomes dominant 

when entering into the sphere of influence of a given satellite. 

The corresponding reduction of the asymptotic velocity has 

already been considered earlier (for example, by NASA 

during the use of multibody GAMs in the Galileo and 

Cassini-Huygens missions, as the analysis of ballistic 

scenarios shows). In addition, this technique proves to be 

irreplaceable in terms of saving the characteristic velocity 
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V  and implementing the required maneuver of the 

pericenter uplift almost “free of charge” [1-2,13]. 

  Thus, at the P2 stage after the P1 stage, one should use 

special correcting maneuvers to “enable” other small bodies 

of the Jovian system. This will provide a transition of another 

RC3BP to the line of the Tisserand invariant [1-5, 8-10]. 

These are “cross” GAMs such that the spacecraft after the 

reflection from the sphere of influence of the main target 

satellite G (for example, Ganymede) approaches another 

satellite G  (Non_Ganymede). After this, it is necessary to 

choose a conjugate cross maneuver with a reverse change of 

the participants. By turning from the search for solutions in 

the simplest RC3BP model to the 2-RC3BP and R4BP 

problems that are more adequate to PEM, one can overcome 

the ballistic determinism of RC3BP imposed by the Jacobi 

integral. 

  For mass computing (tens of millions of variants with PEM 

are simulated), we formalize the invariant technique of 

asymptotic velocity reduction: 

  1G … kG  mG … m nG   1kG  … (1) 

  This makes it possible, using PEM, to solve the problem of 

GAM chains synthesizing as a special automatic selection of 

the spacecraft’s trajectory beams in the class of conjunctions 

(1) of the encounters with satellites. To this end, the authors 

developed a semianalytic technique for constructing adaptive 

scenarios based on Tisserand graphs (Ti-graphs) [14-15] 

carrying the results of the numerical search for only 

structurally suitable low-cost reflections and rereflections of 

trajectory beams (in the PEM-formulation [16-17]). 

  At the revolution before the GAM, the spacecraft’s orbit is 

slightly corrected. To fully reveal its dynamic capabilities, we 

use a four-parametric small correction to the spacecraft’s 

velocity vector, chosen from the indicatrix (three parameters 

are responsible for the orientation and the correction 

magnitude and the fourth parameter controls its place in the 

orbit). The indicatrix is a uniformly “seeded” sphere of virtual 

supplements for each of the sufficiently densely distributed 

points of the spacecraft’s orbit. As a result, the given vector of 

the spacecraft’s velocity is replaced by a thin cone of virtual 

velocities and the single trajectory is replaced by a beam of 

trajectories (a large number of trajectories dynamically 

implementable using a single-impulse correction of the 

variants). The calculations within the RC3BP show that after 

the GAM is conducted relative to any satellite, the points for a 

new orbit of the spacecraft remains on the isolines of the 

corresponding Tisserand invariant [5]. For the calculations 

using PEM the corresponding points of the trajectory beam 

turn out to be close to the isolines. To investigate a 

multiparameter family of the trajectory beam subjected to 

gravitational scattering on the GAM, one needs a large 

number of trajectories in the beam. During tests of millions of 

variants we choose only those GAM chains that contains 

closed cycles of Ganymede flybys on the Tisserand graph 

provided that Callisto is passed intermediately. This reduces 

the analysis of the number of possible GAM variants by three 

orders of magnitude. 

Fig. 1. Image of the beam of spacecraft trajectories passed 

through the sphere of influence of Ganymede (primary G

-reflections) on the Ti-P graph (a); image of the beam of 

spacecraft trajectories passed through the sphere of influence 

of Ganymede after the application of formulas G C G   

on the Ti-P graph (b). 

 

  Fig. 1 a) shows the set of resulting possible GAM variants 

of the beam of trajectories near Ganymede (primary 

G-reflections). The secondary points are marked by circles. 

To avoid missing the required solution, we should ensure that 

their quantity is sufficiently large. Fig. 1 a) shows around 

63 10  primary variants. Fig. 1 b) shows a beam of primary 

trajectory reflections chosen using cross-GAMs for Callisto. 

The dotted-dashed line roughly indicates the level of 

Ganymede’s pericenter. The number of resulting variants is 

around 
33 10 . The arrows mark the general direction of 

moving points during a cross maneuver. It can be seen that 

their number is significantly reduced. 

  Now, we obtain a criterion allowing the technique 

corresponding to formula (1) to conduct cross maneuvers. 

This criterion should choose the bifurcation time BifT  for 

restructuring the trajectory beams of solo GAMs. This is done 

based on the requirements of reducing the maximum level of 

TID, with a reasonable increase in the mission time and the 

costs of the characteristic velocity. 
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4.  Isolines of accumulated ionizing dose (“isorads”) 

 

  It can be suggested that the increase in radiation at the 

revolution of a given orbit of the spacecraft entirely depends 

on its coordinates on the Ti-graph. In this paper, we calculate 

the TID using NASA’s flat Galileo model [18], which 

depends on the apocenter and pericenter of the spacecraft. The 

general consideration with respect to reducing the radiation 

hazard for space missions of the JUICE class (8 mm Al, TID 

< 300) is that the spacecraft’s orbit pericenter should not be 

reduced for a long time below the “danger threshold” (the 

zone of impermissible radiation { 10 }JXR R R   [8-9]; see 

the horizontal dashed line on the Ti-graph (Figs. 2 b). The 

numerical simulation shows that along an elliptical orbit the 

spacecraft receives the highest radiation dose in the pericenter 

almost quasi-singularly because most of the revolution (by the 

property of the area integral) is beyond the dangerous vicinity 

of the pericenter [8-10]. This is correlated to the localization 

of the XR region on the Ti-graph [8] for the elongated 

elliptical orbits that are typical for the initial stage of the 

mission to the Jovian system. However, with a decrease in the 

eccentricity of the spacecraft’s orbit during the reduction of its 

orbital energy, there appear classes of almost circular 

spacecraft orbits for which the interval of maximum dosing at 

the revolution begins to be enlarged. This necessitates the 

calculation and application of more accurately derived isorads 

(the isolines of radiation exposure) on both the Ti- and 

Multi-Ti-graphs, numerically integrating the radiation dose 

per revolution for all orbits [1,10]. 

 

Fig. 2. Isorads for single-revolution orbits with an increment 

of 2 krad on the Ti graph. 

 

  Fig. 2 shows isorads that make it possible to estimate the 

radioactive hazard of each gam and a series of gams. the main 

isorads are marked by the values of radiation doses in Krad. 

 

5.  Methods for lifting the pericenter of the spacecraft 

orbit and the Multi-Ti-coordinates 

 

  The zone of impermissible radiation XR on the Ti-graph 

(Fig. 1 b), which is represented by the horizontal stripe 

{ 10 }JXR R R  , is bounded above by the dashed line 

10 JR R  . For this boundary, the ionizing dose received per 

revolution can be approximately 30 krad, depending on the 

elongation of the spacecraft’s orbit in the Jovian system. 

Inside the XR-zone, the ionizing dose will be even higher. The 

pericenter of the spacecraft orbit can be lifted from the zone of 

impermissible radiation to the upper section in different ways 

depending on the problem formulation. Next, we consider a 

“standard” tour with respect to radiation (the TID does not 

exceed the JUICE norm of 300 krad), which implies a lift in 

the upper section directly at the P2 stage in one or more steps, 

and a “comfort” tour with respect to radiation (the TID is less 

than 100 krad), which implies a lifting of the pericenter at an 

earlier stage. For each tour, its specific bifurcation time BifT  

is determined. 

  We can use the dimensionless Tisserand parameters ,    

for Ganymede and Callisto in the corresponding “local” 

2-RC3BP. For simplicity, we assume that the dimensionless 

gravity parameters of these bodies in the Tisserand formula 

[3-5] are negligible. Then, we have with the using [10,13] 

 ( , , ) ( , , , )R R i T a R R i     , 

 ( , , ) ( , , , )r r i T a r r i     , 

 

2 2
( , , , ) 2 cossat

sat

sat

a R R
T a R R i i

R R a R R

 
 

   

 
 

, (2) 

where i  is the inclination of the spacecraft’s orbital plane to 

the median plane of the corresponding small body, e , sca  

and are the eccentricity and major semi-axis of the 

spacecraft’s orbit relative to Jupiter, and ,a a   are the 

major semiaxes of Ganymede and Callisto, respectively. BifT  

can be efficiently determined by introducing a new graph with 

the axes of ,   . Let us call this the Multi-Ti-graph, and 

,    we will call the Multi-Ti-coordinates. 

  We can argue, that [10]: 

  1. The solo conduction of the quasi-resonant GAMs near 

Ganymede generates vertical (both upward and downward) 

vectors on the Multi-Ti-graph. The solo conduction of GAMs 

near Callisto produces a chain of horizontal vectors (both to 

the right and to the left). 

  2. The isolines of the spacecraft’s orbital periods scT  for 

RC3BP on the Ti-graph are represented by straight lines 
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1 1, constR c R c    , where 1c  depends on the 

gravitational parameter of the main body. 

  3. The isolines of the spacecraft’s revolution periods on the 

Multi-Ti-graph will also be represented by straight lines. 

  Specifically, the choice of the time for this operation is a 

key problem: an excessively early start leads to long times and 

a late implementation is correlated to an increase in the total 

ionizing dose accumulated by the spacecraft. The adaptive 

scenario of landing on a satellite of Jupiter implies mixed 

tactics of using the elements with alternating solo and bonds 

of conjugate cross maneuvers. 

 

6.  Advanced Multi-Ti-graph 

 

  Let us consider a advanced variant of the Multi-Ti-graph. 

To obtain this, we apply the following curves on the 

Multi-Ti-graph: 

  (a) the isorads calculated earlier (the isolines of the ionizing 

dose (ID) received at the revolution); 

  (b) the isolines of the spacecraft revolution period 

(according to Proposition 2, these isolines will obviously be 

straight lines in these coordinates). 

  Fig. 3 shows the advanced Multi-Ti-graph for the 

Ganymede/Callisto-2-RC3BP model. The isorads (the isolines 

of ID accumulated on the revolution with indicated doses in 

krad) and the isolines of the spacecraft’s revolution period in 

Earth days are applied (dashed lines). The abscissa and 

ordinate axes of the Multi-Ti-graph indicate the Tisserand 

numbers for Ganymede and Callisto. 

Fig. 3. Advanced Multi-Ti-graph for the Ganymede/Callisto 

2-RC3BP mode 

 

 

  The advanced Multi-Ti-graph shows that the downward 

tracks on the Multi-Ti-graph do not improve the quality of the 

tour and lead only to a further increase in the period. The 

leftward tracks lead to a sharply increased TID and therefore 

are likewise inefficient. 

  It should be noted that the condition of landing on 

Ganymede require that the value of    be very close to 3, 

which corresponds to a zero asymptotic velocity of the 

spacecraft relative to Ganymede [1-2,8-10]. The “solo with 

Ganymede” chain generates vectors vertically upward on the 

Multi-Ti-graph. In the course of this process, the scenario 

track leans to the isorad corresponding to the model value of 

the limiting TID (or crosses it at the next GAM). 

Fig. 4. Ballistic scenarios on the advanced Multi-Ti graph. 

The isorads (isolines of ID accumulated on the revolution and 

isolines of the spacecraft period of revolution) are shown 

 

  It is this that serves as a criterion for changing the current 

local RC3BP and restructuring the regular solo-scenario by a 

bifurcation maneuver of going to a horizontal “solo with 

Callisto” (maneuvers with an exchange of ID with time). 

Further, when the horizontal chain solo with Callisto reaches 

the isoline of time limit, one should search for the 

continuation in the dissection of the phase flow of the reverse 

exchange. Fig. 4 shows the restructuring of solo-scenarios. 

For completeness, the limiting values of ID are chosen to be 

the pair of model values 21 and 11 krad and the limiting 

orbital periods of the spacecraft are taken to be 12 and 18 

Earth days, respectively. 

 

  7. Refined spatial 3-D modification of mission design 

 

  The ballistic design of some segments of the GAM’s chain 

requires the use of 3D constructs. We can try, for example, to 

outwit very strong radiation field in the Jovian system plane  

during the spacecraft's orbit inclination increasing. The phase 

state of the SC enters the layering from the base plane of the 

Ti–P-graph ( 0i  ). In these cases, V-infinity maps are 

introduced [19,20]. Alternatively, the beams of the “raised” 
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tracks of the virtual spacecraft’s trajectories can be modeled, 

estimated, and dynamically redirected given their resonance 

projections (resonance main streams) onto the plane of the 

classical 2D Ti–graph [21]. For this purpose, the level surface 

of the Jacobi integral (and the Tisserand parameter 

( , , )T r r i  ) that is invariant under GAM [13] is projected 

from above onto the coordinate plane on which the mesh of 

principal resonances and inclination isolines is simultaneously 

plotted. The mesh of principal resonances can be considered 

as a 3D structure of the main branches that peel off the 

Ti–P-graph at the points with the zero inclination. Fig. 5 

shows the set of the GAM’s invariant ( , , )T r r i   [21]. On the 

base surface, the distances of the pericenter and apocenter of 

the SC orbit are plotted (in sata -units); the vertical axis 

corresponds to the inclination in degrees. 

 

 

Fig. 5. The invariant set of ( , , )i r r T   

The displacement of the phase state of the SC across the 

Ti–P-graph resulting from the cranking GAMs may contain 

jumps from one resonance line to another [21] or the 

same-resonance line jumps (Fig. 6). 

 

 

Fig. 6. Spatial Ti-P-graph (in sata  units) with the jumping 

between resonance lines. On the 3D surface, the resonances 

3:4, 1:1, 5:4, 4:3, 3:2, and 5:3 (from the left to the right) and 

the inclination level lines with a step of 5 degrees are plotted 

  Next, the search is performed on the set of trajectory beams 

constructed using a complete accurate ephemeris model [17]. 

At a certain choice of small impulses, the corresponding set of 

possible longitudinal and lateral altitudes of the target planet’s 

flyby is realized. The simulated propagation of such a set 

using an accurate ephemeris model up to the point at which 

the SC leaves the sphere of influence of the target planet results 

in the formation of a beam of trajectories. Only the trajectories 

that are re-reflected onto a resonance line of the Ti–P-graph in 

the accurate ephemeris model are chosen. Fig. 7 shows the 

accurate domains of the beam of virtual SC orbits on the 3D 

level surface of the Tisserand parameter before and after a 

GAM near the resonance line of some the ratio of the SC to 

Jovian satellite orbital period (3:4), projected onto the 

”classical” Ti-graph plane ( , )r r   in Ganymede orbits radii 

 

Fig. 7. Accurate domains of the bundle of virtual SC orbits on 

the 3D level surface of the Tisserand parameter 

 

8.  Illustration of the algorithm of synthesizing a 

comfortable tour by TID (with the passage of the upper 

section) on the Multi-Ti-P graph 

 

  In most cases of organizing missions to Jupiter and other 

giant planets, as well as expeditions to the Sun, it is of special 
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importance during choosing from “pilot chart” to ensure that 

the scenario is comfortable with respect to the accumulated 

ID. The design of strong (with respect to the accumulated ID) 

tours in the “tank”-style [22] simplifies the choice and 

evidently expands the geometry of the “pilot chart” to 

satellites that are closer to Jupiter and simultaneously weights 

its characteristic velocity budget. Aimed, in contrast, at 

constructing a maximally favorable (in terms of TID) scenario 

of the tour to Ganymede, we used a advanced 

Multi-Ti-P-graph and assumed that the resulting ID received 

at a revolution is limited from above by a low isorad that still 

fits (during the reflection) the maximum required time of the 

orbital period (a limit of 70 Earth days was used). The 

calculation using tens of millions of variants allowed us to 

synthesize a comfort-tour (with respect to TID) (see Fig. 1).  

Fig. 8. Scenario of a comfortable (with respect to accumulated 

ID) tour on the Multi-Ti-P-graph 

 

  In Fig. 8, the intersection of the vertical (for Ganymede) 

and horizontal (for Callisto) sections corresponds to the 

intersection of the horizontal (for Ganymede) and vertical (for 

Callisto) separatrices of local RC3BPs. In the Jovian system, 

this intersection is a low-energy transfer channel of the 

Interplanetary Transport Network [23-25] (also called the 

Interplanetary Superhighway), which allows for low-cost 

quasi-ballistic flights to other small bodies in the Jovian 

system. 

  The corresponding form of the same tour on the Ti-P-graph 

is shown in Fig. 9. 

  In the Jovian system, the resulting variants of comfortable 

flights (with respect to ID) correspond to values of 70 krad 

(Fig. 10), which is obtained by using the standard protection 

of the Galileo spacecraft of 8–10 mm Al (or, alternatively, 

200–300 krad for light spacecraft with a thickness of the 

protective cover of 4–5 mm Al). 

Fig. 9. Scenario of a comfortable (with respect to accumulated 

ID) tour on the Ti-P graph 

 

Fig. 10. Scenario of a comfortable (with respect to 

accumulated ID) tour on the Jovian system middle plane 

 

9.  Conclusion 

 

  The beam algorithm to overcome the "obstruction of solo 

disturbances" of one-body flybys with using real ephemeris 

model and with two coupled CR3BP engaging has been 

implemented for the capture of the moon. The region of 

exceeding of the total received radiation dose (TID) skirted 

along the upper section of multibody Tisserand-Poincare 

graph. Advanced Multi-Tisserand coordinates are exploit for 

the parametric passage into this region. With their help it is 

shown that the "cross" gravity assists at the early stage of 

reduction of the orbital period are required. Withal low-cost 

(within 0.5 km/s) reduction of the spacecraft asymptotic 

velocity required for approaching. As a result, a reasonable 

increase in the duration of the mission can be exchanged on a 

sharp decline TID and found "comfortable" (in TID) tours 

scenario in the system (less than 70 krad for standard SC 

protection 8-10 mm Al, or less than 200-300 Krad for the 

“light” SC with the 4-5 mm Al shield). The execution of the 

scenario takes 2.5–3 years. 
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