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The attitude control of the 2-wheel spacecraft using the input-output linearization has been proposed as a failsafe system for the
reaction wheel failure. This method is the model based non-linear controller. In actual environment, it is difficult for high precision
control via model based controller to be achieved due to a model error. For this problem, this paper proposes applying model error
compensator (MEC) using fictitious reference iterative tuning (FRIT). MEC is one of the methods to suppress the influence of the
model error. The algorithm to compensate the model error is to modify input by using a difference between output of the controlled
object and the one of the nominal model. FRIT is the method to update the parameter of the controller consecutively to become the
optimum value. Therefore, the influence of the model error can be suppressed by applying FRIT to MEC even though the model error
fluctuates. The validity of this proposed method is verified by numerical simulation.
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Nomenclature

ω : Angular velocity
Σ : Coordinate frame
J : Inertial matrix

Subscripts
s : spacial
b : body
w : reaction wheel
n : nominal

1. Introduction

A spacecraft is indispensable in the weather forecast and
the radio communication in our daily life. When a spacecraft
achieves these missions, an attitude control is essential to point
an antenna to a target direction, or to point the solar cell paddle
to the sun direction. The performance of the weather forecast
and the radio communication depends on the one of the attitude
control. Thereby, the high accurate attitude control is required.
In general, the required pointing accuracy for the spacecraft is
approximately 0.05 deg.1)

The various methods of the attitude control of the spacecraft
exist. Especially, three axises stability methods using reaction
wheels are utilized for high accurate attitude control. Three-
axis stability method can achieve an arbitrary attitude by attach-
ing three reaction wheels independently. However, the reaction
wheel is sometimes broken down by discharge or sudden tem-
perature change in the outer space. But, it is difficult to repair
the broken reaction wheel in outer space. In addition, the sys-
tem becomes underactuated when the number of the available
reaction wheels becomes less than three. In this case, the at-
titude control becomes difficult. When the spacecraft cannot
realize the attitude control with enough precision, the mission
is suspended. In the worst case, the spacecraft is discarded and
the new spacecraft is launched. For example, a reaction wheel
is broken down in a mission in Kepler of a planetary probe

satellite developed in NASA, and the observation mission is
stopped because the high accurate attitude control cannot be
achieved.2) It is desirable to operate the launched spacecraft as
long as possible because the cost of production and the launch
of the spacecraft becomes enormous. Therefore, it is necessary
to think about the failsafe system so that the spacecraft contin-
ues the mission when a reaction wheel is broken down and be-
comes only two reaction wheels. In the past study, the method
of the attitude control using two reaction wheels in consider-
ation of total angular momentum is proposed by Katsuyama
and others.3) The attitude control is performed by using this
method when the number of available reaction wheels become
two. Thereby, the spacecraft becomes able to be managed for a
long term, and reduction of the launching cost is expected.

In this method, exact model parameters are essential because
the non-linear model based controller is used. However, it is dif-
ficult to acquire the exact model. For examples, the disturbance
torque, motor dynamics or elastic motion of the paddle are diffi-
cult to build the exact model, and then the model parameters in
the controller might be fluctuate in actual environment. When
such a model error exists in the model based control, the con-
trol performance deteriorates and cannot achieve the high accu-
rate attitude control. For this problem, we propose the method
to modify input so that the actual controlled object follows the
movement of the ideal model by applying model error compen-
sator (MEC)4)5)6)7)8)9) using fictitious reference iterative tuning
(FRIT) which is one of the adjustment method of the controller
parameters. The validity of this proposed method is verified by
numerical simulation.

2. Controlled object and state equation

2.1. Controlled object
The spacecraft is controlled object in this study. Model pa-

rameters is listed in Table 1. Inertial coordinate frame Σs, body
coordinate frame Σb to go along the inertial central organization
are established to be shown in Fig. 1. The antenna is attached
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Fig. 1. Model of a spacecraft

to the Zb axis of body coordinate frame Σb and we set inertial
coordinate frame Σs so that the target direction is the Zs axis of
inertial coordinate frame Σs.

In addition, we suppose that the reaction wheel is attached
to the Xb, Yb axis and the reaction wheel of the Zb axis is bro-
ken down. unknown and nonzero angular momentum exists in
a whole system. Moreover, the inertial matrix has the model er-
ror. Additionally, it is assumed that the following data is avail-
able to calculation of input; angular velocities ωb and u, and
the attitude information of the body is q. The attitude expres-
sion of the body uses quaternion. Quaternion expresses attitude
in four parameters using unit vector k = [xr, yr, zr]T and angle
of rotation θ defined on the inertial coordinate frame Σs.

q =
[

q0 q1 q2 q3
]T

=
[

cos( θ2 ) xr sin( θ2 ) yr sin( θ2 ) zr sin( θ2 )
]T
.

In addition, the above equation is restricted in

q2
0 + q2

1 + q2
2 + q2

3 = 1.

Table 1. Model parameters

Σs Inertial coordinate frame (Xs, Ys, Zs)
Σb Body coordinate frame (Xb, Yb,Zb)
Jb Inertial matrix of the body is fixed in Σb

Jb=diag(Jbx,Jby,Jbz)
Jwl Inertial matrix of reaction wheel is fixed in Σb

(l = 1, 2)
H0 Total angular momentum is fixed in Σs

H0=[h0x, h0y, h0z]T

Rbs Rotation matrix (Σb w.r.t. Σs)
u Angular velocity of reaction wheel

u = [u1, u2]T

ωb Angular velocity of the body
ωb = [ωbx, ωby, ωbz]T

ul Direction of reaction wheel is fixed in Σb (l = 1, 2)
u1=[v1x, v1y, v1z]T, u2=[v2x, v2y, v2z]T

2.2. State equation
We derive the state equation of the spacecraft based on law

of conservation of angular momentum. We show law of conser-
vation of angular momentum based on the reaction wheel of the
Xb,Yb axis and total angular momentum as follows:

H0 = Rbs(q)
{
Jbωb + Jw1(ωb + u1u1)

+Jw2(ωb + u2u2)
}
. (1)

We can express equation (1) as follows:

ωb = J−1
t (RT

bs(q)H0 − Jw1u1u1 − Jw2u2u2), (2)

where Jt is an inertial parameter of the total:

Jt = Jb + Jw1 + Jw2. (3)

Relations of time differential of quaternion q̇ and the angular
velocity of the body ωb are as follows:

q̇ =
1
2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

ωb

= Q(q)ωb. (4)

The following non-linear state equation is provided by substi-
tuting equation (2) for equation (4).

q̇ = f (q) + g(q)u, (5)

where state variable q is the attitude information of the body,
input u is angular velocity of the reaction wheel. In addition,
f (q), g(q) = [g1, g2] are as follows:

f (q) = Q(q)J−1
t RT

bs(q)H0, (6)

g1(q) = −Q(q)J−1
t Jw1u1, (7)

g2(q) = −Q(q)J−1
t Jw2u2. (8)

3. Attitude control with two reaction wheels3)

3.1. Control objective
We perform the attitude control of the spacecraft when the

reaction wheel of the antenna installation axis is broken down
in this paper. The control objective is to point the antenna at-
tached to Zb axis of the body coordinate frame Σb to Zs axis
of the inertial coordinate frame Σs which is the target direction.
Therefore, we can achieve control target because it becomes
[xr, yr, zr]T = [0, 0, 1]T by zeroing the attitude of the body each
q1, q2.
3.2. Input-output linearization10)

Because the state equation of the spacecraft is non-linear, we
make the input-output relations of the controlled object linear.
We design the output function h(q) as follows:

y = h(q) =
[

q1 q2
]T
. (9)

We explain a derivation method of the input to perform input-
output linearization in the following. First, we continue differ-
entiating the output function until input u appears. Next, we
demand input u to remove the non-linear clause of a provided
equation.

ḣ(q) =
∂h(q)
∂q

( f (q) + g(q)u), (10)

u = −α(q) + β(q)µ, (11)

α(q) =
(
∂h(q)
∂q
g(q)

)−1
∂h(q)
∂q

f (q),

β(q) =
(
∂h(q)
∂q
g(q)

)−1

.

Therefore, a linear system surrounded in a red frame of Fig. 2 is
provided.
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Fig. 2. Input-output linearization
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3.3. Output zeroing control
We build the feedback controller to make q1, q2 a zero to

achieve the control objective. We design virtual input µ as fol-
lows:

µ =
dy
dt
= −Fy, (12)

where feedback gain F is as follows:

F = diag(F1, F2), F1, F2 > 0.

4. Model error compensator

4.1. Compensator structure
MEC is one of the method to suppress the influence of the

model error.5) MEC modifies input by using a difference be-
tween the output of the controlled object and the one of the
nominal model in every sampling period. The structure of MEC
is depicted in Fig. 3. The compensation gain K is set in Com-
pensator in Fig. 3. The calculations of the compensation input
∆u using this compensation gain are as follows:

∆u = K(yn − y), (13)

where yn is the nominal output which is obtained from the
model. The calculations of the actual input u is as follows:

u = un + ∆u. (14)

As explained above, MEC suppresses the influence of the model
error by compensation of the input.
4.2. Design of Compensation Gain

We explain the adjustment method of the compensation gain
K in this section.

FRIT is the parameter adjustment method for PID gain. FRIT
is usually carried out off-line. However, FRIT can be carried out
on-line by using Recursive Least-Squares (RLS).11)12) We can
ajust the compensation gain on-line by applying this method to
MEC. The structure of the method that applied FRIT to MEC in
Fig. 4. La represents the actual system with input transforma-
tion, Ln represents the ideal linear model without the model er-
ror, K represents the compensation gain, r(i) represents the ref-
erence signal, h(i) represents the actual output, hn(i) represents

Fig. 4. Structure of method that applied FRIT for MEC

the nominal output and hr(i) represents the ideal output which
is provided when the ideal system without the model error is
controlled. In this section, we set discrete steps i = 1, . . . ,N to
think about the discrete system. N expresses the current time.
In addition, we can express the virtual input µ as follows:

µ = F(r(i) − h(i)) + K(hn(i) − h(i)). (15)

By rearranging equation (15) , the following equation obtained.

r̃(K, i) = F−1{µ(i) − K(hn(i) − h(i))} + h(i). (16)

In FRIT, it is important that we express this fictitious reference
signal r̃ for a function of compensation gain K. Based on this
fictitious reference signal, compensation gain K is adjusted so
that following criterion function J(K) is minimized.

J(K) =
N∑

i=1

(h(i) − hr(K, i))2, (17)

hr(K, i) = M r̃(K, i), (18)

where M is the ideal closed loop model that does not have the
model error. In addition, this criterion function is designed so
that when the influence of the model error becomes small, the
evaluation value level becomes small. However, this optimiza-
tion calculation is not generally solved effectively. To calculate
this optimization problem, we think about an ideal case J = 0.

h(i) − M r̃(K, i) = 0. (19)

By substituting equation (16) in equation (19), and multiplying
feedback gain F from the left, the equation becomes as follows:

KM(hn(i) − h(i))
− {Mµ(i) − F(h(i) − Mh(i))} = 0. (20)

Hereby, we replace problem to minimize equation (17) with a
problem to minimize the following criterion function.

Ĵ(K) =
N∑

i=1

ε2(K, i), (21)

ε(K, i) = KM(hn(i) − h(i))
− {Mµ(i) − F(h(i) − Mh(i))}. (22)

The virtual error ε(K, i) is rewritten as follows based on equa-
tion (22):

ε(K, i) = Kξ(i) − η(i), (23)
ξ(i) = M(hn(i) − h(i)), (24)
η(i) = Mµ(i) + F(h(i) − Mh(i)). (25)
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In this case, the minimization problem of Ĵ(K) is regarded as a
least-squares problem because ε(K, i) is linear with respect to
K. Thereby, we apply RLS for equation (21). The algorithm of
RLS demands K̂(i) recursively using optimal estimate K̂(i − 1)
of the compensation gain at the previous time i − 1.

Standard RLS uses all data from the initial time to the present
time. When the characteristic fluctuates the controlled object by
changing the model error, standard RLS cannot cope a change
appropriately by considering the data before the change. We
use RLS with the forgetting factor λ(0 < λ < 1) to cope with
this.11) When we use the forgetting factor, the criterion function
is as follows:

Ĵ(K) =
N∑

i=1

λN−iε2(K, i). (26)

Therefore, small weight is multiplied the old error data. In addi-
tion, standard RLS algorithm can be expressed by setting λ = 1.

The calculation of the RLS algorithm with the forgetting fac-
tor is settled as follows:

P(i) =
1
λ

{
P(i − 1) − P(i − 1)ξ(i)ξ(i)T P(i − 1)

λ + ξ(i)T P(i − 1)ξ(i)

}
, (27)

K̂(i) = K̂(i − 1) +
P(i − 1)ξ(i)(η(i) − K̂(i − 1)ξ(i))

λ + ξ(i)T P(i − 1)ξ(i)
, (28)

where P is the correlation matrix. To initialize the RLS algo-
rithm, we need to specify the initial compensation gain K̂(0) and
the initial correlation matrix P(0). Usually we set the matrix

P(0) = γI, (29)

where I is identity matrix, and γ > 0 is set for the fixed number
of the big value when signal-to-noise ratio is high. Based on
RLS algorithm stated above, the compensation gain K̂(i) is up-
dated at each time. This variation of the compensation gain may
be large at the beginning of the algorithm. Due to this, the con-
trol performance is deteriorated. Thus, to reduce the variation
of K̂(i) may be of the compensation gain, we use the following
update rule of the implemented compensation gain K(i):11)

K(i) = (1 − κ)K(i − 1) + κK̂(i), (30)

where κ is an enough small integer. Equation (30) is discrete
low-pass filter. Then, the cut-off frequency becomes big when
the coefficient of the low-path filter κ closes to 1, and the cut-off
frequency becomes small when the coefficient of the low-path
filter κ closes to 0. K in this way changes gently.

In addition, the destabilization of the compensation gain is
suppressed by breaking off update of the compensation gain K
when ξ close to 0. When output error hn − h becomes smaller
than threshold ψ, this algorithm breaks off update. Thereby, this
method suppresses destabilization of the compensation gain K
caused by bringing ξ close to 0.

5. Simulation

5.1. Simulation Conditions
We perform simulation in the case of the nominal inertial ma-

trix of the totals Jtn to use for decision of the input is different
from the actual inertial matrix of the totals Jt, and the unknown

total angular momentum exists. The relation of the nominal in-
ertial matrix of the totals Jtn and the actual inertial matrix of the
totals Jt are as follows:

Jt = Jtn +

∆Jxx 0.0 0.0
0.0 ∆Jyy 0.0
0.0 0.0 ∆Jzz

 . (31)

We assumed the required pointing accuracy of the antenna
within 0.05 deg this simulation. We suppose that the space-
craft moved over a geostationary orbit. We assume that angular
momentum change to low frequency by the disturbance torque
such as gravity-gradient torque and the solar radiation pressure.
In addition, we assume that the error of the inertial matrix of the
body is about 0.5% of the actual inertial matrix of the totals Jt

based on precision of the measuring equipment.14) Each param-
eter of this simulation is listed in Table 2. In a similar way, each
parameter of the control system is listed in Table 3. Sampling
period is 100 ms.
5.2. Result

The simulation result of the output h1, h2 and the point error
of the antenna are depicted in Fig. 5, 6, 7. The simulation re-
sult of the compensation gain of the proposed method and input
u1, u2 are depicted in Fig. 8, 9, 10. Then, blue line expresses the
ideal case of without the model error, green line expresses the
case of without applying MEC when the model error exists, red
line expresses the case of applying the proposed method when
the model error exists.
5.3. Discussion

From Fig. 5, 6, both h1 and h2 becomes vibrational and can-
not become a zero when w/o MEC. Whereas, we confirm that
the actual output close to the ideal output by suppressing the in-
fluence of the model error when we apply the proposed method.
From Fig. 7, we cannot achieve control objective when w/o
MEC. However, the proposed method can point the antenna to

Table 2. Simulation parameters

[xr0, yr0, zr0] = [1, 2, 3]
θ0 = 30 deg

Jbn = diag(4000, 5000, 6000) kgm2

Jw1 = diag(0.45, 0.225, 0.225) kgm2

Jw2 = diag(0.225, 0.45, 0.225) kgm2

h0x(t) = 0.05 sin(2π × 10−4t) Nms
h0y(t) = 0.05 cos(2π × 10−4t) Nms
h0z(t) = 0.05 sin(2π × 10−4t) Nms

H0n(0) = [0.0, 0.0, 0.0]T Nms
∆Jxx = 20.003 kgm2, ∆Jyy = 25.003 kgm2, ∆Jzz = 30.002 kgm2

u1 = [1.0, 0.0, 0.0]T, u2 = [0.0, 1.0, 0.0]T

Table 3. Parameter of control system

Feedback gain F1 0.0009
Feedback gain F2 0.0009
Oblivion coefficient λ 0.995
Initial correlation matrix P1(0) diag(100.0, 100.0)
Initial correlation matrix P2(0) diag(100.0, 100.0)
Coefficient of the low-path filter κ 0.45
Initial compensation gain K1(0) [0.0 0.0]
Initial compensation gain K2(0) [0.0 0.0]
Thresholdψ1 0.00012
Thresholdψ2 0.00012
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the target direction by suppressing the influence of the model
error. The reason why the proposed method is able to suppress
the influence of the model error is that the compensation gain is
updated consecutively in Fig. 8. As a result, input is modified in
Fig. 9, 10. As explained above, we can point the antenna to the
target direction because the influence of the model error is con-
trolled by applying the proposed method for the attitude control
of the 2-wheel spacecraft when a model error exists.

6. Conclusion

This paper proposed applying a model error compensator
based on FRIT to underactuated 2-wheel spacecraft in order to
suppress the influence of the model error. In addition, this paper
verified the effectiveness of the proposed method in simulation.
As a result, proposed method was able to point the antenna to
the target direction when the model error exists by suppressing
the influence of the model error. This is because, the input was
modified by MEC structure. Moreover, the compensation gain
was automatically tuned by FRIT consecutively.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  5000  10000  15000  20000

O
u
tp

u
t 
h

1

Time [s]

Ideal w/o MEC Proposed

Fig. 5. Output h1

-0.02
 0

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

 0  5000  10000  15000  20000

O
u
tp

u
t 
h

2

Time [s]

Ideal w/o MEC Proposed

Fig. 6. Output h2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5000  10000  15000  20000

A
n
g
le

 [
d
e
g
]

Time [s]

Ideal w/o MEC Proposed

Fig. 7. Pointing error of antenna

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000

C
o

m
p

e
n

s
a

ti
o

n
 g

a
in

Time [s]

K11 K12 K21 K22

Fig. 8. Compensation Gain K

Pd 5



Trans. JSASS Aerospace Tech. Japan Vol. 14, No.ists31 (2017)

-0.3

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 0  5000  10000  15000  20000

In
p
u
t 
u

1

Time [s]

Ideal w/o MEC Proposed

Fig. 9. Input u1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  5000  10000  15000  20000

In
p
u
t 
u

2

Time [s]

Ideal w/o MEC Proposed

Fig. 10. Input u2

References

1) Purdy, W. E., Gaiser, P. W., Poe, G. A., Uliana, E. A., Meissner, T.,
and Wentz, F. J. ,Geolocation and pointing accuracy analysis for the
WindSat sensor. IEEE transactions on geoscience and remote sensing,
vol.44, no.3, 496-505,2006.

2) NASA (National Aeronautics and Space Administration) Website,
Kepler Spacecraft Status, https://kepler.nasa.gov/news/index.cfm?
FuseAction=ShowNews&NewsID=272 (accessed Jan. 12, 2017)

3) Y.Katsuyama, K.Sekiguchi and M.Sampei,Spacecraft attitude control
by 2 wheels with total angular momentum, SICE Annual Conference
2013, pp.1890-1895, 2013.

4) H. Okajima，Y. Nishimura，N. Matsunaga，A new approach of feed-
back linearization for non-lineaar systems (in Japanese)，2012.

5) H. Okajima，H．Umei，N. Matsunaga and T．Asai, A Design
Method of Compensator to Minimize Model Error,Industrial Elec-
tronics Society, SICE Journal of Control, Measurement, and System
Integration，vol.6，no.4，pp.267-275，2013.

6) H. Okajima，Y. Nishimura and N. Matsunaga, A Feedback Lineariza-
tion Method for Non-linear Control System Based on Model Error
Compensator (in Japanese)，2014.

7) T. Sugano，H. Okajima and N. Matsunaga, A Feedback Linearization
Method for Non-linear Control System Based on Model Error Com-
pensator (in Japanese),Industrial Electronics Society, IECON 2015 -
41st Annual Conference of the IEEE，pp.256-261，2015.

8) H. Endo and K. Sekiguchi and K. Nonaka, Controller design for Ac-
robot based on combining orbital feedback linearization and model
error compensator (in Japanese)，2016.

9) H. Endo and K. Sekiguchi and K. Nonaka，Attitude control based
on hierarchical linearization of two wheel in consideration of a model
error (in Japanese)，2016.

10) Isidori, Alberto. Nonlinear control systems. Springer Science & Busi-
ness Media, 2013.

11) Y．Wakasa，R．Azakami，S．Masuda，K．Tanaka and S．
Nakashima，Online Controller Tuning via FRIT and Recursive
Least-Squares，2013.

12) S．Masuda，A Model Reference Adaptive Control Based on On-line
Frit Approaches Using a Normalized Recursive Least Square Method，
IEEJ Transactions on Electronics, Information and Systems，vol.133，
no.10，pp.1950-1956，2014.

13) H．Nakatsuka, T．Sato, T．Yamamoto，N．Araki and Y．Konishi,
Feedforward Controller Tuning Method based on Online FRIT with
Control Performance Evaluation, Transactions of the Institute of Sys-
tems, Control and Information Engineers, vol.26, no.6, pp.221-223,
2013.

14) JAXA (Japan Aerospace Exploration Agency) Website,
http://shiken.jaxa.jp/facility11.html (in Japanese) (accessed Jan.
15, 2016)

Pd 6


	ISTSProgramNumber: 
	0: 
	6991280499304467: ISTS-2017-d-153／ISSFD-2017-153




