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This paper considers a rest-to-rest spacecraft maneuver using two variable-speed control moment gyros. Two methods of maneu-
vering time minimization subject to physical constraints are used to derive angular momentum and gimbal angles over time. The first
is an analytical method using variational calculus: from the analytical solution, the dynamic characteristics of the attitude maneuver
are easily understood, but attitude errors are caused due to the approximations used. These attitude errors can be eliminated by using
a numerical method. The numerical method uses a combination of a bisection method and Newton ’s method. These attitude errors
are eliminated by a Newton ’s method calculation using the analytical solution as initial values, while the maneuvering time is mini-
mized by the bisection method. The analytical and numerical calculations are executed in all the directions of the attitude maneuver,
validating the effectiveness of successful completion of the intended maneuver.
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Nomenclature

J : inertia of spacecraft
ω : angular velocity
ht : total angular momentum of spacecraft
q : Euler parameters of spacecraft attitude
q f : target attitude of spacecraft
α̂ : unit vector of spacecraft’s rotational axis
θ : rotational angle of spacecraft
α̂ f : target of α̂
θ f : target of θ
ϕi : gimbal angle of VSCMG i
h : initial angular momentum of VSCMG

hwi : angular momentum of VSCMG i
∆hwi : variation of hwi from initial value

t f : maneuvering time
Subscript

i : number of VSCMG (i = 1, 2)

1. Introduction

A control moment gyro (CMG) is an actuator used for space-
craft attitude control. It exchanges angular momentum with the
spacecraft by changing the direction of the angular momentum
vector of its gimballed wheel. There are two types of CMGs:
one is a single-gimbal control moment gyro (SGCMG) with one
degree of freedom; another is a double-gimbal control moment
gyro (DGCMG) with two degrees of freedom. CMGs have the
advantage of generating an output torque that is larger than the
input torque. However, CMGs have gimbal angles where the
attitude control torques cannot be exactly generated. These sin-
gular states are a critical problem for spacecraft attitude control
by CMGs.

In order to avoid the singularity problems of CMGs, a
variable-speed control moment gyro (VSCMG) has been stud-
ied.1–5) The wheel speed of a VSCMG is allowed to vary con-
tinuously, whereas the wheel speed of a CMG is kept constant.

Thus, a VSCMG has one more a degree of freedom than a CMG
and can be considered as a hybrid actuator between a CMG and
a reaction wheel (RW). A VSCMG has several advantages over
CMGs with the same degrees of freedom such as low cost, low
power consumption, low weight, and small size.

Singularity avoidance utilizing the mechanical characteristics
of the torque vector generated by a RW, which is always per-
pendicular to that generated by a CMG, has been studied.1–5) In
other research, a smaller number of VSCMGs have been made
to control the spacecraft attitude than would have been needed
if CMGs were used. Taking this process further, the spacecraft
attitude can be controlled using one double-gimbal variable-
speed control moment gyro (DGVSCMG), which is an actua-
tor with three degrees of freedom. Spacecraft attitude control
using a DGVSCMG has also been extensively researched.6–11)

In the case of a single-gimbal variable-speed control moment
gyro (SGVSCMG), spacecraft pointing is achieved using two
degrees of freedom.12, 13)

This paper discusses a rest-to-rest spacecraft maneuver using
two SGVSCMGs. Time trajectories of angular momentums and
gimbal angles are derived analytically and numerically with the
goal of minimizing maneuvering time subject to a set of phys-
ical constraints. The analytical and numerical calculations are
executed in all the directions of the attitude maneuver. The an-
alytical and numerical solutions are almost the same in maneu-
vering time and the maneuvering time surface is asymmetric.
The characteristics of that asymmetry are also discussed in this
paper.

2. Equation of motion

Two SGVSCMGs are arranged as shown in Fig. 1, where
each SGVSCMG is identified as either VSCMG1 or VSCMG2.
The x, y, and z axes in Fig. 1 constitute coordinates of a
spacecraft-fixed frame. The VSCMG1 is arranged such that the
gimbal axis and the angular momentum vector in its nominal
gimbal angle are aligned with the +z-axis and +x-axis, respec-



tively, whereas the VSCMG2 is arranged such that the gimbal
axis and the angular momentum vector in its nominal gimbal
angle are aligned with the +y-axis and −x-axis, respectively.
The total angular momentum of the spacecraft is expressed as

ht = Jω + hw1

cos ϕ1
sin ϕ1

0

 + hw2

− cos ϕ2
0

sin ϕ2

 . (1)

The angular velocity of the spacecraft is assumed to be zero at
the initial state, and the gimbal angles of the VSCMGs are in
the nominal position (the gimbal angles are 0 degree) at the ini-
tial state. The angular momentum of the VSCMGs cancel each
other at the initial state, thus the total angular momentum of the
spacecraft is conserved at zero during the attitude maneuver.
The equation of motion is expressed as

Jω̇ + ω × ht = Bu, (2)

where B and u are given by

B = −
cos ϕ1 − sin ϕ1 − cos ϕ2 sin ϕ2
sin ϕ1 cos ϕ1 0 0

0 0 sin ϕ2 cos ϕ2

 , (3)

u =
[
ḣw1 hw1ϕ̇1 ḣw2 hw2ϕ̇2

]T
. (4)

The spacecraft attitude is expressed by the Euler parameters q.
This is expressed as

q =
[
q1 q2 q3 q4

]
,T (5)

where q1, q2, q3, and q4 are given byq1
q2
q3

 = α̂ sin
θ

2
, q4 = cos

θ

2
. (6)

The Euler parameters are related to the angular velocity of the
spacecraft by the following equation:

q̇ =
1
2

q ⊗ ω, (7)

where ⊗ denotes a quaternion multiplication.
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Fig. 1. Arrangement of VSCMGs.

3. Optimal trajectories

3.1. Rest-to-rest maneuvering
In this paper, rest-to-rest attitude maneuvers using two

SGVSCMGs are considered. The initial and final angular ve-
locities of the spacecraft are both zero. In order for the CMGs
to output sufficiently large torque values, the magnitude of the
wheel angular momentums must be maintained within a cer-
tain range, as it is proportional to the torque exerted by CMGs.
Moreover, there are constraints on both the gimbal rates and the
wheel torques because of mechanical limitations.

The target attitude of the spacecraft, q f , is expressed as

q f =
[
q1 f q2 f q3 f q4 f

]
,T (8)

where q1 f , q2 f , q3 f and q4 f are given by[
q1 f q2 f q3 f

]T
= α̂ f sin

θ f

2
, q4 = cos

θ f

2
. (9)

3.2. Approximation of the model
In order to obtain analytically the optimal trajectories of the

gimbal angles and the wheel angular momentums, the varia-
tions of the Euler parameters q, the gimbal angles ϕi, and the
wheel angular momentums hwi from the nominal values are as-
sumed to be small. Based on these assumptions, the input ma-
trix B is rewritten as

B = −
 1 −ϕ1 −1 ϕ2
ϕ1 1 0 0
0 0 ϕ2 1

 . (10)

Eq. (7) is solved for ω as

ω = 2q̇† ⊗ q, (11)

and it is simplified to

ω = 2

q4q̇1 − q1q̇4 − q2q̇3 + q3q̇2
q4q̇2 − q2q̇4 − q3q̇1 + q1q̇3
q4q̇3 − q3q̇4 − q1q̇2 + q1q̇2

 . (12)

The angular velocity ω is approximated to

ω = 2

q̇1
q̇2
q̇3

 . (13)

By substituting Eq. (13) into Eq. (2), the following equations
are obtained:

2J1q̈1 = −ḣw1 + ḣw2 + hw1ϕ1ϕ̇1 − hw2ϕ2ϕ̇2, (14)

2J2q̈2 = −ḣw1ϕ1 − hw1ϕ̇1, (15)

2J3q̈3 = −ḣw2ϕ2 − hw2ϕ̇2. (16)

Here, the inertia tensor of the spacecraft is assumed to be diag-
onal

J = diag (J1, J2, J3). (17)

By integrating both sides of Eqs. (14), (15), and (16), they are
rewritten as



q̇1 = −
1

2J1
(∆hw1 − ∆hw2) +

h
4J1

(
ϕ1

2 − ϕ2
2
)
, (18)

q̇2 = −
h

2J2
ϕ1, (19)

q̇3 = −
h

2J3
ϕ2, (20)

where

∆hw1 = hw1 − h, ∆hw2 = hw2 − h. (21)

3.3. Analytical method for resolution of optimal trajecto-
ries

This subsection proposes an analytical method by using vari-
ational calculus. In this approach, in order to minimize the total
energy for the attitude maneuver, ϕ̈i and ∆ḧwi are minimized be-
cause hwiϕ̈i and ∆ḧwi mean the energy per unit time. This varia-
tional calculus is divided into two steps by separating Eq. (18)
and Eqs. (19) and (20) because it is difficult to simultaneously
determine ϕi and ∆hwi.

First, ϕ̈i are minimized by using Eqs. (19) and (20). The gim-
bal angles ϕi are determined by minimizing the cost function L1

given by

L1 =

∫ t f

0

(
ϕ̈1

2 + ϕ̈2
2
)

dt. (22)

Boundary conditions are set as

q2(0) = 0, q3(0) = 0,

ϕ1(0) = 0, ϕ2(0) = 0, ϕ̇1(0) = 0, ϕ̇2(0) = 0,

q2(t f ) = q2 f , q3(t f ) = q3 f ,

ϕ1(t f ) = 0, ϕ2(t f ) = 0, ϕ̇1(t f ) = 0, ϕ̇2(t f ) = 0. (23)

From this step, time trajectories of the gimbal angles are ex-
pressed by polynomial functions as follows:

ϕ1 = −
60J2q2 f

ht5
f

(
t4 − 2t f t3 + t f

2t2
)
, (24)

ϕ2 = −
60J3q3 f

ht5
f

(
t4 − 2t f t3 + t f

2t2
)
. (25)

Second, the terms ∆ḧwi are minimized by using Eq. (18).
Equation (18) is a linear differential equation of q1, therefore
q1 is represented by the sum of the responses by the first and
second terms on the right-hand side. The response by the first
term depends on the values of ∆hw1 and ∆hw2 and is denoted as
q̂1. The response by the second term depends on the values of ϕ1

and ϕ2, which are determined in the first step. The component
q1 is rewritten as follows using q̂1:

q1 = q̂1 +
h

4J1

∫ t f

0

(
ϕ1

2 − ϕ2
2
)

dt. (26)

The component q̂1 only depends on the values of ∆hw1 and ∆hw2

from Eq. (18) as

˙̂q1 = −
1

2J1
(∆hw1 − ∆hw2) . (27)

The terms ∆hwi are determined by minimizing the cost function
L2 given by

L2 =

∫ t f

0

(
∆ḧw1

2
+ ∆ḧw2

2) dt. (28)

In the variational calculus analysis, boundary conditions are set
as

q̂1(0) = 0,

∆hw1(0) = 0, ∆hw2(0) = 0, ∆ḣw1(0) = 0, ∆ḣw2(0) = 0,

q̂1(t f ) = q1 f −
h

4J1

∫ t f

0

(
ϕ1

2 − ϕ2
2
)

dt,

∆hw1(t f ) = 0, ∆hw2(t f ) = 0, ∆ḣw1(t f ) = 0, ∆ḣw2(t f ) = 0.
(29)

From this step, time trajectories of the wheel angular momen-
tums are expressed by polynomial functions as follows:

∆hw1 = −
30J1q̂1 f

t5
f

(
t4 − 2t f t3 + t f

2t2
)
, (30)

∆hw2 =
30J1q̂1 f

t5
f

(
t4 − 2t f t3 + t f

2t2
)
. (31)

The analytical solutions are expressed as Eqs. (24), (25),
(30), and (31). Next, the spacecraft maneuvering time is mini-
mized in order that the wheel angular momentums ∆hwi, wheel
torques ∆ḣwi, and the gimbal rates ϕ̇i are within the constraints
shown in Table 2. However, there are attitude errors in the an-
alytical solution due to its approximations. The attitude errors
are eliminated by the following numerical method.
3.4. Numerical method for resolution of optimal trajecto-

ries
This subsection proposes a numerical method using the com-

bination of a bisection method and Newton’s method. The ana-
lytical solution is used as initial values of the Newton’s method
approach, where the coefficients of the polynomial functions are
selected as adjustable parameters. The attitude errors of the an-
alytical solution are converged to zero by the Newton’s method
approach and the maneuvering time is minimized by the bisec-
tion method. The details of the numerical method are shown in
Fig. 2.

4. Numerical examples

4.1. Comparison of trajectories
This subsection illustrates the trajectories of the rest-to-rest

maneuvers based on both the analytical and numerical methods
proposed in the previous section. Table 1 shows the proper-
ties of the spacecraft, VSCMG1, and VSCMG2. Table 2 shows
the constraints of the gimbal rates, wheel angular momentums,
and wheel torques. As a target attitude, the unit vector along
the spacecraft’s rotational axis α̂ f , and the rotational angle of
spacecraft θ f , is selected as

α̂ f =
[

1√
3

1√
3

1√
3

]T
, θ f = 10 [deg]. (32)

Figure 4 shows the calculations resulting from both the analyt-
ical and numerical methods. In Fig. 4, the broken lines and the
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Fig. 2. Flowchart of numerial method.

solid lines show the results of analytical method and those of the
numerical one, respectively. Figures 4(a), 4(b), 4(c), 4(d), 4(e),
and 4(f) show the attitude, the angular velocity, the gimbal an-
gles, the gimbal rates, the wheel angular momentums, and the
wheel torques, respectively. The black horizontal dotted line
in Fig. 4(a) denotes the target attitude. The black horizontal
lines in Figs. 4(d), 4(e) and 4(f) denote the upper and lower
constraints of the variables. The final attitude errors observed
in the analytical solution are eliminated in the numerical solu-
tion as shown in Fig. 4(a). As shown in Figs. 4(d), 4(e), and
4(f), the constraints of the wheel angular momentums, wheel
torques, and gimbal rates are all satisfied.

Table 1. Spacecraft and VSCMGs properties.

inertia of spacecraft J = diag(10, 10, 10) kgm2

initial angular momentum
h = 1 Nms

of VSCMG

Table 2. Constraints.
wheel angular momentum |∆hwi| ≤ 0.3 Nms
torpue of wheel |∆ḣwi| ≤ 0.1 Nm
gimbal rate |ϕ̇i| ≤ 1.0 rad/s

4.2. Maneuvering time surfaces
The analytical and numerical calculations are executed in all

the directions of the attitude maneuver, and the maneuvering
time in each direction is plotted so that the direction from the
origin to the plotted point represents that of the rotational axis,
and the distance between the origin and the point is proportional

to the maneuvering time. Figure 3 shows an example of a ma-
neuvering time surface. Figures 5 and 6 show the maneuvering
time surface based on the analytical method and that based on
the numerical one, respectively. As shown in these Figures, the
analytical solutions and numerical ones are almost the same in
the maneuvering time, which shows that the analytical solution
from Eqs. (18), (19) and (20) almost expresses the attitude ma-
neuver of the spacecraft using two SGVSCMGs. The maneu-
vering time is longer in the direction of x-axis than that in the
other direction because the torque in this direction is generated
by the RW and is relatively smaller than that generated by the
CMGs. The maneuvering time surface is asymmetric in both
the analytical and numerical methods. Figures 7 and 8 are the
x-y section of the maneuvering time surface generated by the
numerical solution, and its x− z section, respectively. As shown
in Fig. 7, the maneuvering time is longer on the side of −x than
that of +x, while as shown in Fig. 8, the maneuvering time is
longer on the side of +x than that of −x. The reason for this
asymmetry is explained qualitatively by the dynamic character-
istics of the analytical solution. As shown in Eq. (19), the gim-
bal angle of VSCMG1 has an effect on q2, and as shown in Eq.
(20) the gimbal angle of VSCMG2 has an effect on q3. Thus,
the gimbal of VSCMG1 is driven in the case where the unit vec-
tor along the spacecraft’s rotational axis α̂ f has y-component,
whereas the gimbal of VSCMG2 is driven in the case where α̂ f

has z-component. Moreover, as shown in Eq. (18), the gimbal
angle of VSCMG1 and that of VSCMG2 have effects on +q1

and −q1, respectively. The asymmetry is due to the difference
between the effects of the gimbal angle of VSCMG1 and that
of VSCMG2 on q1. For example, consider the case where α̂ f

has x and y components. In this case, the gimbal of VSCMG1 is
driven for the rotation in the y-direction, while at the same time,
q1 moves in the positive direction due to the influence on +q1.
Due to the influence of the VSCMG1 gimbal angle, the maneu-
vering time is shortened in the case where the target value of
q1 is positive, whereas the maneuvering time is extended in the
case where the target value of q1 is negative. This is the rea-
son for the asymmetry in Fig. 7. Similarly, consider the case
where α̂ f has x and z components. In this case, the gimbal of
VSCMG2 is driven for the rotation in the z-direction, and at the
same time, q1 moves to a negative direction due to the influ-
ence on −q1. Because of the influence of the VSCMG2 gimbal
angle, the maneuvering time is shortened in the case where the
target value of q1 is negative, whereas the maneuvering time is
extended in the case where the target value of q1 is positive.
This is the reason for the asymmetry in Fig. 8.

𝑡𝑓ෝ𝜶

Fig. 3. Example of maneuvering time surface.
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Fig. 4. Time trajectories.

5. Conclusion

In this paper, the spacecraft attitude maneuver by using two
SGVSCMGs is optimized with the goal of minimizing maneu-
vering time by both the analytical and numerical methods. The
trajectories of the gimbal angles and the wheel angular mo-
mentums are derived within the constraints of the gimbal rates,
the variation of the wheel angular momentums, and the wheel
torques. The analytical and numerical calculations are executed
in all the directions of the attitude maneuver, which validates
the effectiveness of the trajectory generation technique. Maneu-
vering times are plotted as a maneuvering time surface, where
a point on the surface corresponds to the direction of the rota-
tional axis and the maneuvering time. The asymmetry of the
surface is observed in both the analytical and numerical calcu-
lations, and a qualitative explanation is given by the dynamic
characteristics of the analytical solution. Further studies are
needed in order to verify the optimal trajectories experimentally

by designing a feedback control law based on the calculated op-
timal trajectories.
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