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Formation flying in Space-Borne Artificial Magnetic Dipole Field
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In this paper, we consider a new dynamical scenario in which a constantly charged spacecraft (follower) moves near a leader

spacecraft, which follows a circular Keplerian orbit around the Earth and generates a rotating artificial magnetic dipole. Considering

three general orientations of the dipole: normal, radial and tangential, we study the dynamics of the system and its application potential

in formation flying. For this purpose, the critical points of the system and their stabilities are explored, the different families of periodic

orbits around each equilibrium point are computed, as well as the stability, possible bifurcations and terminations(if exist). By selecting

suitable periodic orbits, two formation flying configurations are briefly explored, in which satellites are placed at the periodic orbits

around two or four symmetric equilibrium points of the system.
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Nomenclature

q

m
: charge-to-mass ratio

β : angular ratio

Subscripts

n : normal case

r : radial case

t : tangential case

1. Introduction

The Lorentz force perturbation on the charged spacecraft

by geomagnetic field was firstly studied by Hough,1) then the

concept of Lorentz Augmented Orbit(LAO) was introduced by

Peck,4) which, afterwards has drawn more and more attention.

A charged spacecraft experiences Lorentz force while moving

in a magnetic field, the propellantlessness of Lorentz force of-

fers more advantage than the traditional chemical propulsion,

and makes it a promising meaning for space missions.

Previous work mainly focused on the natural magnetic fields,

such as geomagnetic field2) or other planetary magnetic filed.5)

Plenty of applications of LAO have been studied, such as new

synchronous orbits by the geomagnetic Lorentz force,6) forma-

tion flying7),16) Jovian orbit insertion8) and Gravity-Assist ma-

noeuvre.9) Several control strategies have been considered for

different kinds of relevant missions10)11)12) .

Vokrouhlicky1989

With regard to the artificial magnetic field, Kong13) intro-

duced the idea of Electro-Magnetic Formation Flight(EMFF),

which uses the intersection between the eletromagnetic field

of several satellites to control the configuration and altitude of

the formation flying. Umair14) designed the control strategy

for Electromagnetic Satellite Formations in Near-Earth Orbit.

Kwon15) explored the applicability of EMFF for attitude and

translation control of close proximity formation flying.

Inspired by the previous work, a new dynamical scenario

was proposed by Peng,3) where a charged spacecraft(follower)

moves around a chief spacecraft which produces a rotating mag-

netic dipole. And the dipole is supposed to be produced by three

concentric and orthogonal High Temperature Superconducting

coils (HTS), thus in principle, any orientation of the dipole can

be achieved by adjusting the charge in the three HTS wires.

While Paper3) only considered the dipole to be pointing along

the radial direction, this paper aims to extend the dynamical

study of this model in such a way that three possible orientations

of the dipole, that are normal, radial and tangential, are consid-

ered. However, our main attention lies on dynamical analysis,

followed by the exploration of application potentials, therefore,

we will not go into engineering details of the construction of

HTS, or the strategy to charge electro-statically the satellites.

And the numerical simulation will be based on the assumption

that all the proposed magnetic filed or charge-to-mass ratio can

be satisfied, which although might beyond the state-of-art tech-

nology, but can be realized in the near future.

The paper is organised as follows, in Sect. 2. the dynamical

model is built, including the differential equations of motion

and their symmetry properties. In Sect. 3. we study the equilib-

ria and their stability behaviour. Sect. 4. explains the method to

compute symmetric and asymmetric periodic orbits emanating

from equilibria, and the numerical results are shown in Sect.5..

The applicability of this model is demonstrated in Sect. 6., by

designing two formation flying configurations. Finally, Sect.7.

contains a brief conclusion.

2. System model

2.1. Differential equations

We assume the mass of the follower is negligible compared

with that of the leader, which is supposed to move in a high-

Earth orbit (such as GEO), so the Lorentz force on the follower

due to the geomagnetic field can be ignored. As a consequence,

the follower is subjected to both gravitational force by the Earth

and Lorentz forces by the artificial magnetic dipole. The coordi-

nates system is chosen to be the local-vertical-local-horizontal

(LVLH) coordinates, see Fig. 1. The origin is located at the

chief, the x-axis (er) points from the Earth to the leader, the z-
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axis (en) is along the leader’s orbital momentum vector, and the

y-axis (et) completes the right-hand coordinate system.

Fig. 1.: The Local Horizontal and Local Vertical Coordinate system.

The equations of motion can be expressed using the well-

known Hill-Clohessy-Wiltshire equation:

ẍ − 2nẏ − 3n2 x = fx

ÿ + 2nẋ = fy

z̈ + n2z = fz

(1)

where n is the mean motion of the chief’s circular orbit around

the Earth. [ fx fy fz]
T are the three component of the acceleration

force acting on the follower, in this study, they are modelled as

Lorentz force fL, and can be given by:

fL =
q

m
ur × B =

q

m
· (ṙ − ωc × r) × B (2)

where ur is the relative velocity of the charged follower with

respect to the chief’s rotating magnetic field, r and ṙ are the

follower’s position and velocity relative to the chief.
q

m
is the

charge-to-mass ratio of the follower.

B is the artificial magnetic field, which rotates in an angular

velocityωc. By classical electrodynamics, B is defined in terms

of a vector potential A:

B = ∇ × A (3)

where A is given by :

A =
B0

r2
(N̂ × r̂) =

B0

r2

[

(zN̂y − yN̂z) (xN̂z − zN̂x) (yN̂x − xN̂y)
]T

(4)

where r̂ = [r̂x r̂y r̂z]
T is the unit vector of the spacecraft position,

N̂ = [N̂x N̂y N̂z]
T is the dipole direction unit vector, and B0 is

the magnetic dipole moment (unit Wb � m):15)

B0 =
µ0

4π
ncicπR

2
c (5)

where µ0 = 4π×10−7N/A2 is the vacuum permeability, nc is the

loops in the coil, ic is the current flown in, and Rc is the radius.

Once the size of the coil is fixed, the magnetic dipole moment

will be determined by the value of current passing through,

which, according to the material of the coil and working temper-

ature, will be limited by the current density of the coil. Never-

theless, we assume the coil can carry enough current to produce

the required magnetic moment.

We assume that the magnetic dipole is rotating in the same

direction as the dipole direction unit vector:

ωc = ωc[N̂x N̂y N̂z]
T (6)

where ωc is the dipole’s rotational angular rate.

Substituting Eq.(3)-(6) into Eq.(2), we obtain

fLx =
q

m

B0

r3

[

3(N̂ · r̂)(ẏr̂z − żr̂y) − ωc(xN̂z − zN̂x)
(

3(N̂ · r̂)r̂z − N̂z
)

+ żN̂y − ẏN̂z + ωc(yN̂x − xN̂y)
(

3(N̂ · r̂)r̂y − N̂y
)

]

fLy =
q

m

B0

r3

[

3(N̂ · r̂)(żr̂x − ẋr̂z) − ωc(yN̂x − xN̂y)
(

3(N̂ · r̂)r̂x − N̂x
)

+ ẋN̂z − żN̂x + ωc(zN̂y − yN̂z)
(

3(N̂ · r̂)r̂z − N̂z
)

]

fLz =
q

m

B0

r3

[

3(N̂ · r̂)(ẋr̂y − ẏr̂x) − ωc(zN̂y − yN̂z)
(

3(N̂ · r̂)r̂y − N̂y
)

+ ẏN̂x − ẋN̂y + ωc(xN̂z − zN̂x)
(

3(N̂ · r̂)r̂x − N̂x

)

]

(7)

We note that, in principle, the three orthogonal superconduct-

ing wires can produce magnetic field in any direction, but we

will only consider the simplest cases, in which the orientation

of the dipole points to three basic axes, as listed below:

1. Norma case. N = [0 0 1]T , the dipole is parallel to en.

2. Radial case. N = [1 0 0]T , the dipole is parallel to the

chief’s orbital radius vector er.

3. Tangential case. N = [0 1 0]T , the dipole is parallel to et.

To simplify the equations of motion, we introduce the fol-

lowing unit sets for rescaling: time unit τ = n · t, length unit a

that satisfies a3 = |B0
q

m

ωc

n2 | = |
B0

n

q

m
1
β
|with β = n

ωc
as the angular

quotient, and derivative with respect to τ, ()′ = ()

dτ
= n(̇).

The radial case has been explored partly in,3) including the

eigenvalues, the stability characteristics. In this paper we will

extend the research on this case, furthermore, we consider the

other two cases with different orientations of the dipole, and do

a deeper exploration on the dynamics and stability analysis for

future potential in formation flying missions.

First we consider the case that the dipole direction unit vector

is N = [0 0 ±1]T , which means the dipole axis is perpendicular

to the chief’s orbital plane, and we have

fLx = ±
q

m

B0

r5

[

− (x2 + y2 − 2z2)ẏ − 3yzż ± ωc x(x2 + y2 − 2z2)
]

fLy = ±
q

m

B0

r5

[

(x2 + y2 − 2z2)ẋ + 3xzż ± ωcy(x2 + y2 − 2z2)
]

fLz = ±
q

m

B0

r5
· 3z
[

yẋ − xẏ ± ωc(x2 + y2)
]

(8)

where ′±′ is the direction of the dipole with ’+’ refers to the

positive z− axis, and ’-’ to the negative z− axis.

Since the charge q and angular rate ωc can be both positive

and negative real numbers, the same results can be obtained

with different combination of positive or negative values of q

and ωc. We stress that the main attention is focused more on the

qualitative study rather than too many duplicated computations,

so only the case with ’+’ sign, in the normal case N = [1 0 0],

will be taken into consideration, the other cases with ’-’ can be

studied using the same methodology.

After rescaling with the new unit sets, the equations of rela-

tive motion of the follower in normal case can be written as

X′′ − 2Y ′ − 3X = sgn · −β(X
2 + Y2 − 2Z2)Y ′ − 3βYZZ′ + X(X2 + Y2 − 2Z2)

R5

Y ′′ + 2X′ = sgn · β(X
2 + Y2 − 2Z2)X′ + 3βXZZ′ + Y(X2 + Y2 − 2Z2)

R5

Z′′ + Z = sgn ·
3Z
[

βYX′ − βXY ′ + (X2 + Y2)
]

R5

(9)

where R =
√

X2 + Y2 + Z2, sgn is the sign of the charge on the

follower, and so q/m. It is noted that, after the rescaling, only

one system parameter remains, that is the angular quotient β.

The system admits a constant integral, referred as Energy,

Hn = 3X2 − Z2 − sgn · 2(X2 + Y2)

R3
− (X′2 + Y ′2 + Z′2) (10)
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For the radial case, we give the equations of relative motion

in dimensionless unit, only for completeness of this paper,

X′′ − 2Y ′ − 3X = sgn ·
3X
[

βZY ′ − βYZ′(Y2 + Z2)
]

R5

Y ′′ + 2X′ = sgn · −β(Y
2 + Z2 − 2X2)Z′ − 3βXZX′ + Y(Y2 + Z2 − 2X2)

R5

Z′′ + Z = sgn · −β(Y
2 + Z2 − 2X2)Y ′ − 3βXYX′ + Z(Y2 + Z2 − 2X2)

R5

(11)

which also admits an integral constant, and is expressed as

Hr = 3X2 − Z2 − sgn · 2(Y2 + Z2)

R3
− (X′ 2 + Y ′ 2 + Z′ 2) (12)

For the tangential case, the dimensionless equations of rela-

tive motion are given by:

X′′ − 2Y ′ − 3X = sgn · β(X
2 + Z2 − 2Y2)Z′ + 3βYZY ′ + X(X2 + Z2 − 2Y2)

R5

Y ′′ + 2X′ = sgn ·
3Y
[

βXZ′ − βZX′ + (X2 + Z2)
]

R5

Z′′ + Z = sgn · −β(X
2 + Z2 − 2Y2)X′ − 3βXYY ′ + Z(X2 + Z2 − 2Y2)

R5

(13)

the corresponding energy is denoted as Ht, and is given by

Ht = 3X2 − Z2 − sgn · 2(X2 + Z2)

R3
− (X′ 2 + Y ′ 2 + Z′ 2) (14)

To study the stability of the equilibria from dynamical point

of view, it is convenient to write the equations of motion in gen-

eral form of 1st-order differential equations. Denote the state

vector as χ = (X,Y,Z, X′, Y ′,Z′), Eq. (9) can be rewritten as

χ′ = f (χ) (15)

where χ′ = [X′,Y ′,Z′, X′′,Y ′′,Z′′]T is the derivative of the state

vector with respect to the time unit τ, f = [ f1, f2, f3, f4, f5, f6]T

is the vector field, and can be expressed as

f1 = X′

f2 = Y ′

f3 = Z′

f4 = 3X + 2Y ′ + sgn · −β(X
2 + Y2 − 2Z2)Y ′ − 3βYZZ′ + X(X2 + Y2 − 2Z2)

R5

f5 = −2X′ + sgn · β(X
2 + Y2 − 2Z2)X′ + 3βXZZ′ + Y(X2 + Y2 − 2Z2)

R5

f6 = −Z + sgn ·
3Z
[

βYX′ − βXY ′ + (X2 + Y2)
]

R5

(16)

where sgn, as referred before, is the sign of charge on the

deputy. The 1st-order differential equations for radial and tan-

gential cases can be written similarly.

2.2. Symmetries of the system model

The symmetries of the system will be explored by looking

for transformations with a general form

P(t, x, y, z) := (Dt, Ax, By,Cz) (17)

under which the coordinates of the image will be (t̄ = Dt, x̄ =

Ax, ȳ = By, z̄ = Cz).

Provided that the image is also a solution, the equations of

motion will be invariant under the transformation (17). By sub-

stituting the coordinates of the image into system equations, and

setting the corresponding coefficients be identical to each other,

the suitable solution sets for A, B,C and D can be obtained. For

the normal case, we have: A2 = 1, B2 = 1, C2 = 1, D = AB,

the other two cases can be studied similarly.

The symmetry properties of the three cases, and the corre-

sponding transformation sets are listed Table 1. For the normal

case, the symmetric elements include all possible cases: three

basic axes, three basic planes and the origin. It indicates that

once we obtain a basic trajectory, all the possible kinds of im-

ages also exist, and can be computed simply by the transforma-

tion specified by the corresponding set of (A, B, C, D).

The symmetries (In, IIn, VIn, VIIn, Ir and It) with opposite

time sense, as will be shown in Section 4., can be taken ad-

vantage to compute the symmetric periodic orbits when there is

centre part around the equilibria, while the ones (IIIn, IVn and

Vn and Vn, IIr, IIIr and IIIt), together with with the original or-

bit, can provide perfect nominal orbits with same period for a

formation fly configuration.

Table 1.: The symmetries exhibited by the equations of motion in the three cases,

together with the corresponding transformation sets, symmetric elements and the time

sense with respect to the original orbit.

Symmetric

Type

Symmetric

element( A, B, C, D) Sense

In ( 1,−1,−1,−1) X axis Opposite

IIn (−1, 1,−1,−1) Y axis Opposite

IIIn (−1,−1, 1, 1) Z axis Same

IVn (−1,−1,−1, 1) Origin Same

Vn ( 1, 1,−1, 1) X − Y plane Same

VIn (−1, 1, 1,−1) Y − Z plane Opposite

VIIn ( 1,−1, 1,−1) X − Z plane Opposite

Ir ( 1,−1, 1,−1) X − Z plane Opposite

IIr (−1, 1,−1, 1) Y axis Same

IIIr (−1,−1,−1, 1) Origin Same

It (−1, 1, 1,−1) Y − Z plane Opposite

IIt ( 1,−1,−1, 1) X axis Same

IIIt (−1,−1,−1, 1) Origin Same

3. Equilibrium points and their stability behaviour as a

function of β

In this section, we are going to study the equilibria, and

their stability behaviour as a function of an important param-

eter β = n
ωc

, which stands for the angular quotient between the

mean motion of the leader around the Earth and the dipole’s ro-

tational rate. By setting X′ = Y ′ = Z′ = 0, X′′ = Y ′′ = Z′′ = 0

in the equations of motion, we obtain the location of equilibria.

For the normal case, we obtain the rearranged equations

from Eq(9) that are only dependent on the position coordinates

(X, Y,Z),

3X + sgn · X(X2 + Z2 − 2Y2)

R5
= 0

Y(X2 + Y2 − 2Z2)

R5
= 0

−Z + sgn · 3Z(X2 + Y2)

R5
= 0

(18)

Solving the above equations, we obtain the coordinates of

ten equilibria, with different sign of charge, as listed in Table 2,

together with the equilibria in other two cases., the location of

them is displayed in Fig.2. In each case, they are classified into

three kinds according to the energy level.

3.1. Linear stability of the equilibria

Next, the stability of the equilibria is explored using dynam-

ical system theory by looking at their linear resembles in a lo-

cal neighbourhood of the critical points, around which the lin-
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Table 2.: The equilibrium points in the three cases,classified into 3 kinds according to

the energy level

Index X Y Z sgn(
q

m
) H

1n 0 ±
√

2Z ±( 2

3
√

3
)

1
3 + -1.587401

2n ±( 1

12
√

6
)

1
3 0 ±

√
5X + -0.629960

3n ±( 1
3
)

1
3 0 0 − 4.326748

1r 0 0 ±1 + −3

2r ±( 2

9
√

3
)

1
3 ±

√
2X 0 − 2.289428

3r ±( 1

4
√

2
)

1
3 0 ±

√
X − 1.88988

1t 0 0 ±1 + -3

2t ±0.6934 0 0 − 4.326748

3t 0 , 0 0 ± 0

Fig. 2.: The location of equilibria in norma (left), radial (middle) and tangential

case(right).

earised (first-order) equation can be written as,

ξ̇ = D f � ξ (19)

where ξ is the perturbation w.r.t. an equilibria χeq, D f is the

Jacobi matrix, i.e., the derivative of f w.r.t. the state vector χ

evaluated at the equilibrium point χeq, and

D f =













































0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

f4X f4Y f4Z f4X′ f4Y ′ f4Z′

f5X f5Y f5Z f5X′ f5Y ′ f5Z′

f6X f6Y f6Z f6X′ f6Y ′ f6Z′













































(20)

where the second subscript stands for the variable w.r.t. which

the derivative is computed. The first three rows of D f share the

fixed form, while the last three rows can be expressed as

D f (4 : 6, :) =
d fL

dχ
+



















3 0 0 0 2 0
0 0 0 −2 0 0
0 0 −1 0 0 0



















where
d fL

dχ
is the derivative of fL w.r.t. the state vector χ.

For a given equilibrium point, the Jacobi matrix D f is only

dependent on β, and due to the symmetry of the system, its

characteristic polynomial can be expressed in a general form

with only odd-order terms:

λ6 + bλ4 + cλ2 + d = 0 (21)

where b, c, d are either functions of β or constants. Denoting

κ = λ2, it can be further simplified into a cubic polynomial

κ3 + bκ2 + cκ + d = 0 (22)

and its discriminant is given by18)

∆ = 18bcd − 4b3d + b2c2 − 4c3 − 27d2 (23)

and the forms of roots can be classified according to the value of

∆: if ∆ > 0, we have three distinct real roots; and if ∆ = 0, we

have multiple root and all of them are real; while with ∆ < 0,

we have one real root and two complex conjugates.

As the square root of κ, the eigenvalues always come in pairs,

i.e., for real ones we have ±λ with λ ∈ R, while for complex

ones we have conjugated pair (λ, λ̄) with λ ∈ C.

The eigenvalues of D f indicate the stability of the equilib-

rium at which it is evaluated.17) Paper3) provided the sufficient

and necessary conditions for ten cases of equilibria according

to the sign of ∆ and b, c, d. In this paper, while following

the rule in,3) we draw our main attention on the qualitative re-

sults. Moreover, we explore numerically the evolution of all the

eigenvalues as a function of β, to provide more straightforward

information. With regard to the value of range of β, we would

like the dipole rotates at a reasonably low rate, thus only small

values are considered, for instance, β ∈ [−40 : 40].

For equilibria of Index 1n, we take the positive value for both

Y and Z coordinate, and obtain the last three rows of D f

D f (4 : 6, :) =















































3 0 0 0 2 −
√

2

2
β

0
2

3
−2
√

2

3
−2 0 0

0 − 2
√

2

3
−5

3

√
2

2
β 0 0















































(24)

The characteristic polynomial is of the same form for the four

equilibria of this type, regardless of the signs, and is given by

λ6 + (
β2

2
+ 2)λ4 +

−β2 + 8β + 5

3
λ2 + 6 = 0 (25)

Setting ∆ = 0, we get two roots β1 = −4.6645 and β2 =

18.7239. Despite the varying of β, the equilibria are always

of type saddle /saddle/centre, which implies these equilibria

are unstable, as well as the existence of one family of periodic

orbits around each of the four equilibrium points. We note that

β ∈ [−4.6645, 18.7239], the saddle part is complex quadruple.

Table 3 lists the dimension of the manifolds associated to all

kinds of equilibria in all the three case, as a function of β. Fig.

3 displays the behaviour of three kinds of eigenvalues in nor-

mal case (taking the one with positive coordinates as represen-

tation), in form of real and imaginary part as a function of β.

Table 3.: The different cases of the dimension of manifolds associated with the equi-

libria of index 1n, 1r , 3r and 1t as β varies the value

Equilibria β dim WS ,U WC

Index 1n

β ∈ (−∞,−4.6645) 2(real) 2

β ∈ (−4.6645, 18.7239) 2(complex quadruple) 2

β ∈ (18.7239,∞) 2(real) 2

Index 1r

β ∈ (−∞,−1.5604) 2(real) 2

β ∈ (−1.5604, 1.5604) 2(complex quadruple) 2

β ∈ (1.5604,∞) 2(real) 2

Index 3r

β ∈ (−∞,−0.9516) 0 6

β ∈ (−0.9516, 0.0732) 2(complex quadruple) 2

β ∈ (0.0732, 1.5326) 2(real) 2

β ∈ (1.5326, 3.4525) 2(complex quadruple) 2

β ∈ (3.4525,∞) 0 6

Index 1t

β ∈ (−∞,−4.3643) 2(complex) 2

β ∈ (−4.3643, 4.3643) 2(real) 2

β ∈ (4.3643,∞) 2(complex) 2

For the four equilibria of index 2n, the characteristic polyno-

mial is also identical, and is given by

λ6+ (14β2+12β+8)λ4+
−40β2 + 80β − 1

3
λ2−60 = 0 (26)
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Since we have ∆ < 0 and b = 14β2+12β+8 > 0, d = −60 < 0

despite the value of β, there are always two pairs of imaginary

eigenvalues and one pair of real eigenvalues. Therefore, the di-

mension of the associated stable and unstable manifolds is one,

while that of the centre manifold is four. The corresponding two

families of periodic orbits will be computed later.
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Fig. 3.: As a function of β, the behaviour of eigenvalues associated to equilibria of

index 1n(left), 2n(middle) and 3n(right), in form of real (top) and imaginary (bottom)

part, only the non-zero ones are plotted.

For the two equilibria of index 3n, the characteristic polyno-

mial are identical as

λ6+(9β2+12β+8)λ4+(90β2+120β−47)λ2−270 = 0 (27)

Since ∆ > 0 holds for all value of β except at β1 = −1.8823

and β2 = 0.5490, at which we have ∆ = 0, together with the fact

that the two coefficient b = 9β2 + 12β + 8 > 0 and d = −270 <

0. We have two couples of purely imaginary eigenvalues and

one pair of real ones. Thus, the dimension of the associated

stable and unstable manifold WS ,U is one, while that of centre

manifold is four, which embed two families of periodic orbits,

the same pattern can be observed in Fig. 3, where one pair of

pure imaginary eigenvalues remain constant, and the two pairs

of purely imaginary eigenvalues collide when ∆ = 0.
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Fig. 4.: In radial case, the behaviour of eigenvalues associated to the three kinds of

equilibria( 1r , 2r and 3r from left to right) as a function of β , in top (real part) and in

bottom (imaginary part)

The corresponding numerical results for radial and tangen-

tial cases are displayed in Fig.4 and 5, respectively. For the

equilibria of index 2r, the dimension of centre manifold is al-

ways four, which embeds two families of periodic orbits; while

that of the stable and unstable manifold is one. We note that

one pair of pure imaginary eigenvalues remain constant except

around β = 0, see the middle plot of Fig.4.

The one attracts the most interests is index 3r, since with

β ∈ (−∞,−0.9516) ∪ (3.4525,∞), we have three families of

periodic orbit, which of course, may provide plenty candidates

for nominal orbits of future missions.

We note that the equilibria of index 3t are quite specular,

which include the whole Y− axis except the origin. We will not

discuss this kind of equilibria in the following section, since the

energy Ht = 0, and they are not of much practical meaning.

The results for index 1t and 2t equilibria are show in Fig. 5.

The patterns are similar to the first two kinds of equilibria in the

radial case (Fig. 4), and are coherent with Table 2.
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Fig. 5.: As a function of β , the behaviour of the eigenvalues (real and imaginary part)

associated to equilibria(left two index 1t , and right two for index 2t)

4. Computation of periodic orbits emanating from the

equilibrium point

In this section, a systematic determination of the families of

symmetric and asymmetric periodic orbits of the system defined

by Eq.(9) and (11) has been done. The initial guess is given by

the linearised differential equation around the equilibrium point

being considered, a continuation method based on Adam pre-

dictor followed by a differential corrector procedure is applied

to obtain the whole family of the periodic orbit; both use the

linear variational equations.

The idea of computing one periodic orbit is as follows:19)

given an initial guess of the periodic orbit, we integrate up to a

specific epoch or a specified crossing through a certain Poincaré

section, then use differential correction procedure implemented

by Newton Method, to satisfy the periodicity condition.

For a symmetric periodic orbit, we usually take the initial

guess on the symmetric element (plane or axis) with initial ve-

locity perpendicular to it, and the periodic condition is we return

to the same reference plane or axis with perpendicular velocity

after half (or a quarter) of the period (according the the symme-

try type). While for an non-symmetric one, we have to integrate

a full period until we return to the initial point.

4.1. Initial guess of the periodic orbit around the equilib-

rium points

The general solution of the differential equation of 6-degree-

of-freedom like Eq.(19) can be written as x(t) = c1eλ1tu1 +

c2eλ2tu2 + · · · cneλ6tu6, where λi(i = 1 ∼ 6) are the eigenvalues

and ui, (i = 1 ∼ 6) are the respective eigenvectors, ci(i = 1 ∼ 6)

are constants.

Since we are interested only in the case that there exist peri-

odic orbits, we will assume that at least two eigenvalues (in pair)

are imaginary λ1,2 = ±
√
−1s = ±is, and set c3 = c4 = c5 = c6 =

0, in this way, we can write ξ = c1esitu1 + c2e−sit ū1 where ū1 is

the conjugate of u1. If we denote u1 = v
r
1
+ vi

1
(vr

1
∈ R, vi

1
∈ R),

then ξ can be rewritten as

ξ = c1
(

vr1 cos(st) + vi1 sin(st)
)

+ c2
(

vr1 sin(st) − vi1 sin(st)
)

= Aξ
(

vr1 cos(st − ϕ) + vi1 sin(st − ϕ)
)

(28)

where c1, c2 are arbitrary constants, Aξ =

√

c2
1
+ c2

2
, sin ϕ = c2

Aξ
.

The guess for the initial configuration of the periodic orbit is:

X0 = [X0
1 , X

0
2 , X

0
3 , X

0
4 , X

0
5 , X

0
6]T = Xeq + ϵ ·

ξ

∥ξ∥
(29)

where Xeq is the state vector of the equilibrium point, and ϵ is

a small distance along the solution ξ. In order not to violate
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the linear assumption, we take the value to be 1 × 10−3. If the

dimension of the centre manifold is bigger than two, the other

family of periodic orbit can be obtained in the same way by set-

ting the coefficient ci = 0, where i is the index of the coefficients

that are not related to the considered centre part.

4.1.1. Initial guess for symmetric periodic orbits

According to Robin and Richardson,19) the problem of the

determination of symmetric periodic orbits can be reduced to

find a set of initial conditions satisfying a mirror configuration,

which, upon integration of the equations of motion up to a spec-

ified epoch, yields a second mirror configuration.

Assume the initial configuration is (X0, Y0,Z0, Ẋ0, Ẏ0, Ż0),

and can be rewritten as (X0
1
, X0

2
, X0

3
, X0

4
, X0

5
, X0

6
) with the com-

ponent labelled in this way. We denote non-zero components

as (X0
i
, X0

j
, X0

k
) with i < j < k, while the other components

(X0
l
, X0

m, X
0
n) with l < m < n are zeros, such that we have

{l,m, n} ∩ {i, j, k} = {1, 2, 3, 4, 5, 6}. We summarise the different

cases of the value of the index (i, j, k), the corresponding sym-

metric element and the required type of mirror configurations,

as seen in Table.4. Case 1,2 and 3 exhibit plane-symmetry,

while case 4,5 and 6 possess axis-symmetry.

To obtain certain form of solution by Eq. (28), we can take

st+ϕ = 0(or pi/2), to keep only the part of vr
1

or vi
1

that satisfies

the corresponding initial configuration.

Table 4.: Cases for periodic orbits with different kinds of symmetry, and the required

initial and final configration

Type of mirror

configuration at

initial/final epoch

Elapsed

time

Symmetric

element
Case (i, j, k)

1

A / A T/2

X− axis (1, 5, 6)

2 Y− axis (2, 4, 6)

3 Z− axis (3, 4, 5)

4

P / P T/2

(Y − Z) plane (2, 3, 4)

5 (X − Z) plane (1, 3, 5)

6 (X − Y) plane (1, 2, 6)

4.2. A differential corrector algorithm

Imposing the periodicity condition and taking the Poincaré

section to be Xl = 0, we integrate from the initial configura-

tion upon the first crossing through the Poincaré section, and

arrive at the final configuration (X
f

1
, X

f

2
, X

f

3
, X

f

4
, X

f

5
, X

f

6
), which

is of the same form as the initial configuration, such that we

have the zero components (X
f

i
, X

f

j
, X

f

k
) and non-zero compo-

nents (X
f

l
, X

f
m, X

f
n ), with {l,m, n} ∩ {i, j, k} = {1, 2, 3, 4, 5, 6}.

Taking case 4 in Table 4 as an example, the system is sym-

metric with respect to X −Z plane, so we have (i = 1, j = 3, k =

5), and initial configuration is in form of [X0, 0, Y0, 0, Ẏ0, 0]T .

The problem can be simplified to a two-point boundary value

problem, and the free parameter X, is X = [X0
i
, X0

j
, X0

k
]T , with

(i, j, k) as the indexes associated to the non-zero component in

the initial condition, whose value can be specified by the last

column in Table 4 according to the type of symmetry.

Since the final configuration is achieved by the crossing

through the Poincaré section, X
f

l
= 0 is satisfied by the al-

gorithm. Due to the symmetry, to have a periodic orbit, it is

sufficient that

F(X) = 0 =⇒














F1(X0
i
, X0

j
, X0

k
) = X

f
m = 0

F2(X0
i
, X0

j
, X0

k
) = X

f
n = 0

(30)

where, (m, n) are the indexes of the zero components in the final

condition.

By imposing the symmetry, the dimension of the problem to

be solved by Newton method can be reduced by at least one

half. With three unknowns (X0
i
, X0

j
, X0

k
) in the initial condition,

and two Equations in (30) as the final constraints, we apply the

modified Newton Method to refine the periodic orbit. The least-

square solution can be expressed iteratively as

XK = Xn−1 + δXK−1

δXK−1 = −GT (GGT )−1 · F(XK−1)
(31)

where, K = 1, 2, · · · , n is the step of iteration, G is the Jacobian

matrix of F with respect to (x0
i
, x0

j
, x0

k
), and is given by

G =

[

Φ(m, i) Φ(m, j) Φ(m, k)

Φ(n, i) Φ(n, j) Φ(n, k)

]

− 1

Ẋ
f

l

·
[

Ẍ
f
m

Ẍ
f
n

]

[

Φ(l, i) Φ(l, j) Φ(l, k)
]

where, Φ is the 6 × 6 state transit matrix, which satisfies Φ̇ =

DX · Φ, DX =
∂ f

∂χ
with the initial value Φ0 = I6×6 and DX is

the differential of the vector field with respect to the state vector.

Repeat the correction process until the constraints are met

within error tolerance 1 × 10−11, the same value is used for the

determination of Poincaré section crossing. Finally we get the

period: Tp = 2t f , where t f is the time elapsed from the initial

point to the first intersection with Poincaré section.

4.3. The continuation method

Eq. (30) describes the characteristic curve of the family in

the three-dimensional space of initial conditions. The deter-

mination of the characteristic curve can be done using a con-

tinuation method and the arc-parameter, s, of the curve. It is

easy to verify that the characteristic curve of initial conditions

(Xi(s), X j(s), Xk(s)) fulfils

dXi

ds
=

A1

A0

,
dX j

ds
=

A2

A0

,
dXk

ds
=

A3

A0

(32)

where A0 = (A2
1
+ A2

2
+ A2

3
)1/2, A1 = (F1

X j
F2

Xk
− F1

Xk
F2

X j
), A2 =

−(F1
Xi

F2
Xk
− F1

Xk
F2

Xi
), A3 = −(F1

Xi
F2

X j
− F1

X j
F2

Xi
). And F

1(2)

Xi(X j,Xk)

is the partial derivative of F1(2) with respect to Xi(X j, Xk).

The integration of Eq. (32) is done using an Adams predic-

tor method of one, two, three or four steps, depending on the

number of points on the curve available.17) Tf we suppose that

some points X1, X2, · · · , XK ,K > 1 on the characteristic curve

are known, the Adams method gives a new point X0
K+1

near the

curve. The point X0
K+1

must be refined in order to obtain a new

p.o. XK+1, using the differential corrector.

With regard to the step size ∆s to be used along the contin-

uous arc, we follow the strategy of an automatic control ex-

plained in.20) ∆s should be not too big to guarantee a smooth

curve, either too small to make the continuation fast.

4.4. Compuation of asymmetric periodic orbits

It happens that the centre-eigenvector does not satisfy any

symmetric configuration in Table 4, then the above refinement

strategy for will no longer be suitable. We can adjust the pe-

riodicity condition to be returning to the same initial point af-

ter a full period, the corrector and continuation method being

adjusted correspondingly. In principle, we have 7 unknowns

X = [X0,Y0, Z0, X′0,Y ′0,Z′0, T ]T (6 state vector + period), and

6 equations X f − X0 = 0.
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To improve convergence we add one more equation to fix

one coordinate of the initial configuration, for example, Y0 = 0.

Consider that the energy is preserved during the integration, we

can eliminate one of the constraint on final state, i.e., Z′ f −Z0 =

0. As a consequence, we have a system of 6 unknowns and 5

equations to solve. The Jacobi matrix G in Eq. (31) is a 6 × 5

matrix, and is given by G = Φ− I, and eliminating the 6-th row

to remove constraint Z′ f − Z0 = 0, and the second column to

remove the correction on initial component Y0.

For the continuation procedure, the key point is to compute

the vector field ualong the characteristic curve, as in Eq. (32),

which is also the kernel of G, can be expressed by

u = [A1, A2, ..., A6]T , i = 1, .., 6, u ⊂ ker(G) (33)

where Ai is the submatrix of G by eliminating the i- column of

G, and u is then normalized u =
u

||u||
to obtain a unit vector..

4.5. Linear stability of periodic orbit

The linear stability of periodic orbits can be approximated

by the Monodromy matrix M = ϕTp
(χ), that is the variational

matrix after one full period Tp. There are some basic proper-

ties of the eigenvalues of M, the so-called characteristic multi-

plier:17) the multipliers come in couples, if λ is an eigenvalue,

then 1/λ, λ̄ and 1/λ̄ are also eigenvalues with the same multi-

plicity ; det(M) = 1, so 0 is not a multiplier, and 1 is one with

at least multiplicity 2.

Since we have three couples of multipliers, denoted as

(λ1, λ
−1
1

), (λ2, λ
−1
2

) and (λ3 = λ
−1
3
= 1). The stability of pe-

riodic orbits can be clarified by checking the value of trace

Tri = λi + 1/λi, i = 1, 2. For simplicity, we will always as-

sume Re(λi) >= Re(λ−1
i

), and denote λ = a + bi. We follow

the rules in Paper17) to study the stability of one periodic orbit,

which can be concluded briefly as: the periodic orbit is unsta-

ble when |Tr| > 2, and stable with |Tr| < 2, when the Tr = ±2

always imply a bifurcation or the termination of the family.

5. Numerical results of periodic orbits

In this section, we compute all the families of periodic or-

bits that emerge from the centre manifold, if exists, around the

computed equilibria, and study the stability behaviour, as well

as the termination of each family.

5.1. Around the equilibria of index 1n

For all value of β, the four equilibria of index 1n are always of

type saddle/ saddle/centre, only one family of periodic orbits

exists. Type VI symmetry is considered since equilibria 1n are

on (Y − Z) plane. We consider only the equilibrium point with

Y > 0,Z > 0, the cases for other three can be obtained by

imposing symmetry of type IIIn, IVn and Vn, respectively.

Taking β = 2 as example, the eigenvalues are

(±0.6509, ±1.0291i,±1.6520i), the eigenvector asso-

ciated to the centre part ±1.6520i is ωc = ωc
r ± ωc

i

with ωc
r = [0.2477, 0, 0, −0.1968, 0.7250]T , ωc

i
=

[0, 0.1191, −0.4389, 0.4092, 0, 0]T . Since ωc
i

satisfies

a P configuration with indexes of non-zero components as

(i = 2, j = 3, k = 4), it is taken as ϵ for the guess of initial

mirror configuration in Eq. (28), the periodic orbit obtained

is shown in Fig. 6, as well as the continuation of this family.

A connection is observed between two equilibrium points of

index 1n located at (0,
√

2Z, ( 2

3
√

3
)

1
3 ) and (0,−

√
2Z, ( 2

3
√

3
)

1
3 ),

and the family of periodic orbits terminates at the second one.
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Fig. 6.: With β = 2, left: the periodic orbit emanating from equilibria 1n(X > 0,Z >

0), associated to λ = ±1.6520i. right: the continuation family in 3D view(colored)

with the three 2D projections(gray), a connection is detected between two symmetric

equilibira (black points).

We display the characteristic curve (energy vs. period) and

the trace as a function of energy for the stability analysis, see

Fig.7. The periodic orbits and the characteristic curve are plot

in different colors according to their topology type. Two bi-

furcations are detected when the real part of the trace crosses

Re(Tr) = −2, demonstrated as vertical dashes line. For en-

ergy level below Hn = −1.8491, the orbits(in green) is stable

and totally elliptic. A saddle-node bifurcation occurs at energy

Hn = −1.8491, after which the orbits(organe) become unsta-

ble, and transits to hyperbolic × elliptic. A second saddle-node

bifurcation happens at energy level Hn = −1.6147, after which

the orbits are hyperbolic. For the right-most small segment(red)

in bottom-left plot in Fig. 7, where the energy Hn > −1.6 and

the two traces merge in real part, that is because we have the

multiplier as complex quadrupole in form of (a± bi, 1/(a± bi)),

which makes the traces complex conjugate.

Due to type VII symmetry and the fact that those two equilib-

ria are symmetric with respect to (X − Z) plane, the left branch

of this family, the ones in the left of the middle orbit(green) can

be seen as the type VII images of the right branch(in the right

of the middle green periodic orbit). As a consequence, the very

periodic orbit in the middle is symmetric with respect to both

(X−Z) plane and (Y−Z) plane, and is ”almost” parallel to X−Y

plane, with the maximum Z− amplitude in order of 1 × 10−5,

which proves perfect nominal orbits for a displaced observation

mission, a two-satellite configuration is to be studied later.
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Fig. 7.: The continuation family of peroidic orbits associated to Fig. 6. Left: the

characteristic (energy vs period) curve; Different colors indicate different topology

types, with stable ones in green and unstable ones for other colors, and the trace as a

function of energy, in real (middle) and imaginary (right) part, the intersections with

dashed vertical lines imply bifurcations.

The connection happens for the other two equilibria

(0,±
√

2Z,−( 2

3
√

3
)

1
3 ), see Fig. 9(left). This holds for other val-

ues of β > 0, that is when the dipole rotates in the same sense

as the chief’s motion around the Earth.

However, when the dipole rotates oppositely as the chief’s

motion around the Earth, that is β < 0, we observe a different

phenomena. The connection between two equilibria disappears,

instead, the period tends to π as the energy decreases. An ex-

ample with β = −2 is shown in Fig.8. It can be seen that the Z-

amplitude becomes rather large while the period tends to a limit

of π. The family is unstable, although the topology type of the

multiplier has three transitions between real and complex space.
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The isolation between two families of periodic orbit emerging

from different equilibria is displayed in Fig. 9(right).

Fig. 8.: With β = −2, the family of periodic orbit emerging from equilibrium point 1n

(Y > 0,Z > 0). Top left: the periodic orbits, all of them are unstable, different colors

are of different topology types; Top middle: the characteristi (energy vs period) curve;

The real part (top right) and imaginary part(bottom left) of the trace as a function of

energy Hn, together with a magnification(real part in bottom middle and imaginary

part in bottom right) within the region Hn ∈ [−13 : −1].
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Fig. 9.: The two connections between equilibria of index 1n with β = 2 (left); and two

isolated familes of periodic orbits with β = −2 (right).

By applying symmetry of type IIIn and Vn, all families of pe-

riodic orbits emanating from equilibria 1n can be obtained, see

Fig. 9. We note that, the other values of β provides qualitatively

the same results according to the sign of β. The periodic orbits

associated to other equilibria of the same kind, if not shown,

can be obtained by imposing the respective symmetry.

5.2. Around the equilibria of index 2n

The centre manifold associated to equilibria 2n is of dimen-

sion 4, which always embeds two families of periodic orbits.

The results for β = 2 are shown in Fig. 10 and 11.

The first family(purple) degenerates to another equilibria,

while the second one (green) terminates when the complex con-

jugate multipliers turn to one of multiplicity 2, which makes

the multiplier 1 in total of multiplicity 4. For both families, a

monotonous dependence between energy and period is demon-

strated, and all the orbits are of type hyperbolic × elliptic.

The periodic orbits associated to other three equilibria can be

obtained by applying symmetry IIIn, IVn and Vn, see Fig. 12

(right). We stress that, for this kind of equilibria, there is no

qualitative difference with other values of β. From now on, for

the simplicity without losing generality, we will only display

the results for one equilibria point, at one or several values of β,

if there is no qualitative difference.

Fig. 10.: The first family of periodic orbits emanating from equilibrium point of type

2n (X > 0, Z > 0) with β = 2, the periodic orbit(left), the period-energy curve(middle)

and the trace (real) curve (right).

Fig. 11.: The second family of periodic orbits associated to equilibrium point of type

2n (X > 0, Z > 0), from left to right: the periodic orbit, the characteristic curve, the

trace(real) curve, with the magnification (rightmost) of the region before termination.

Fig. 12.: With β = 2, Left: the two families associated to equilibria of type 2n with

(X > 0, Z > 0). Right: all families of peroidic orbits emerging from this kind of

equilibria obtained by imposing symmetry IIIn, IVn and Vn.

5.3. Around the equilibria of index 3n

The centre manifold around equilibria of index 3n is of di-

mension four, and contains two families of periodic orbits. In

this case, the qualitative behaviour of the periodic orbits is

independent of the sign of β. The eigenvalues are of form

(±λ1i,±λ2i,±λ3) with λ1,2,3 ∈ R.

Taking β = 2 for demonstration purpose, we obtain λ1 =

7.6460, λ2 = 3.1623, λ3 = 0.6796. The first family associated to

λ1 is planar, see Fig. 13. A saddle-node bifurcation is detected

at Hn = 3.8272 , before which the orbits are of type hyperbolic

× elliptic, and transits to totally elliptic afterwards.

Fig. 13.: The planar family emanating from type 3n (X > 0) equilibria, left: the

periodic orbits (stable in green and unstable in pruple). Middle: the characteristic

curve. Right: the trace(real) curve, a birfucation occurs at the vertical dashed line

For the second family associated to λ2 = 3.1623, it degen-

erates into a planar orbits at Hn = 3.868084 (marked as A),

see Fig. (14), along with the characteristic curve and the trace

curve. The shape and evolution of periodic orbits and their sta-

bility behaviour in this family are rather complicated, several

bifurcations are detected, which will be studied in detail.

Fig. 14.: The second family of periodic orbits associated to λ2 = 3.1623 before the

first bifucation(top) and after the first bifurcation(bottom). Form left to right we have:

the 3D view (stable in green) and the three 2D projections(gray), the characteristic

curve, the trace curve (tr1 in purple and tr2 in green) in real part and imaginary part.

If we proceed the continuation along the new branch at the

degenerated point, we obtain another family, see Fig. 14 (bot-

tom). Three bifurcations are detected when the trace curve cross

Tr = 2 line, indicated as vertical dashed line. A node-saddle bi-

furcation is detected at Hn = 3.56957, the evolution of the size

and shape of the orbits before and after the first bifurcation is

displayed in Fig. 15, the loops within one revolution change

from two to six. An overlap of two families of periodic orbits

shows clearly two intersections, see Fig.16 (left), which corre-

sponds to A and B in Fig.14.
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Fig. 15.: Orbit samples with different loops before(left) and after (middle) the first

bifurcation, and the ones after the second bifurcation(right), the evolution goes in order

purple→ green→ dashed black (bifurcation point). The solid black orbits (if exists)

are the termination point.

Fig. 16.: Left: the overlap of two families of periodic orbits emananting from equlib-

rium point 3n (X > 0), two intersections (black curves) are detected. Middle: the two

families of periodic orbits in radial case with β = 2, around the equilibria of index 3r ,

with two connections detected. Right: A connection between two equilibria 3r , the

intersection occurs at the orgin.

5.4. Around equilibria of Index 1r

For this type of equilibria, the centre manifold is of dimen-

sion 2, the embedded family of periodic orbits with β = 2 is

displayed in Fig. 17. Similar to the family shown in Fig.8, the

size of the orbit grow to be very large as the energy decreases,

but the period tends to an upper limit of π. For demonstra-

tion purpose, we only display a small portion of the trace curve

when the energy is above −3, afterwards the same trend contin-

ues while the value of the trace tend to −∞.

Fig. 17.: The family of periodic orbits emanating from equilibria 1r (X, Y > 0). Left:

periodic orbits, middle: characteristic curve, right: trace (real) curve.

5.5. Around equilibria of Index 2r

We always have two families of periodic orbits emanating

from each equilibria 2r, since the centre manifold is of dimen-

sion 4 regardless of the value of β. Fig. 18 displays the re-

sult for β = 2, and the eigenvalues are (λ1 = ±4.3528i, λ2 =

±1.2784i, λ3 = ±0.7624).

Fig. 18.: The two family of periodic orbits emanating from equilibria 2r (X > 0, Y >

0). The family assciated to λ1 = ±4.3528i (top) degenerates to to another equilibria

(X < 0, Y > 0), and second is to λ2 = ±1.2784i (bottom). Left: periodic orbits,

middle: characteristic curve, right: trace (real) curve.

The periodic orbits around the other two equilibria can be

obtained by apply type Ir, IIr and IIIr, see Fig.16(middle).

5.6. Around equilibria of index 3r

For this kind of equilibria, we have three pairs of imaginary

eigenvalues, and three families of periodic orbits. Take β =

6 as example, and consider the two symmetric equilibria with

X = Z,X > 0, we obtain the eigenvalues of the Jacobi matrix

(±16.912393i,±1.376370i,±0.257753i). The numerical results

of periodic orbits and their stability behaviour are shown in Fig.

19.

Fig. 19.: Three families of periodic orbits emanating from equilibria of index 1r with

X = Z, assciated to λ1, λ2 and λ3 from top to bottom. left: periodic orbits, middle:

characteristic curve, right: trace curve.

A connection between two families of periodic orbits has

been detected see Fig.16(right), which belongs to the top left

plot in Fig. 19 and its image symmetric w.r.t. the origin. For

this kind of equilibria, the two with X = Z have the same char-

acteristic polynomial and the stability behaviour while the other

two with X = −Z possess different one, see Fig. 20.

Fig. 20.: The family emanating from equilibria 1r with X = −Z, assciated to λ1 (top),to

λ2(middle) and to λ3(bottom). From left to right: periodic orbits, characteristic curve,

and trace curve in real part(and imaginary part if its not equal to 0)

6. Suitable Formation flying configuration design

In this section, we will propose several formation flying con-

figurations using the periodic orbits computed as the nominal

orbits. With the most kinds (seven) of symmetry, the normal

case draws our main attention, in which the magnetic field B is

perpendicular to the orbital plane. Considering the fact that in

some symmetries (types In, IIn,VIn and VIIn) the sense of orbit

is reversed, which will destroy the formation configuration as it

evolves with time, we only apply the others(types IIIn, IVn and

Vn) in which the sense is preserved. These last three ones will

be, in principle, more suitable for a formation.

Using the two green periodic orbits in Fig. 12 that are ”al-

most” parallel to (X − Y) plane, we design a two-satellite con-

figuration, with one satellite placed on one orbit. For missions

that require the distance between two satellites to be constant,

these two periodic orbits provide perfect nominal orbits. We
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display the configuration at four epochs during one period, see

Fig. 21, the sense of satellites’ motion is counter-clockwise.
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Fig. 21.: The configuration of two-satellite at several epoches T/4∗(i−1), (i = 1, 2, 3, 4)

where T is the period. In black are the segments of the configuration, marked as stars

are the spacecrafts, and in colored(purple and green) lines are the two periodic orbits

where the spacecrafts are located on. The points are two equilibria of index 1n
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Fig. 22.: The configuration at several epoches ti = T/4∗ (i−1), (i = 1, 2, 3, 4) from left

to right, where T is the period. In black are the segments of the configuration, marked

as points are the spacecrafts, and in colored(green, orange, blue and purple) lines are

the four periodic orbits where the spacecrafts are located on. The four round points

are the four symmetric equilibria of index 2n.

Another possible configuration is to place four satellites on

four symmetric periodic orbits. We consider the second family

associated to equilibria of index 2n as shown in Fig.9(green).

Note that these orbits are obtained using the symmetries of type

IIIn, IVn and Vn.

The above configurations are designed based on the assump-

tion that all the satellites are identical in mass and charge, and

so
q

m
. If we adjust the charge on one or more satellites through

an electron beam, new periodic orbits of same period, but in

different size can be obtained. As a consequence, once a simple

configuration is designed in non-dimensional unit, a same con-

figuration of different size or a combination based on original

one of any number, in any size, can be easily obtained.

7. Conclusion

In this paper, we have studied the relative motion of a charged

spacecraft around any chief spacecraft, when the chief is orbit-

ing around the Earth, with a rotating artificial magnetic dipole

deployed on. Three general cases of the orientation of the

dipole have been considered. From the dynamical system the-

ory point of view, we computed the equilibria and their stability

behaviour with respect to parameter β. The phase space around

each equilibria is explore in such a way that different families

of periodic orbits, their continuation, bifurcation, linear stability

and termination are also studied. Two formation flying config-

urations are designed using the symmetric periodic orbits ob-

tained, which proves the great potential of the plenty periodic

orbits as the nominal orbits for formation flying missions.
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