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    Zero-Propellant Maneuver (ZPM) is an advanced concept of attitude control, which has been applied on the 

International Space Station. But the existence of the ZPM maneuver path has not been studied. First, dynamic models of a 

spacecraft using CMGs (Control Momentum Gyro, CMG) are constructed. A projection function of angular momentum is 

established, containing the angular momentum of spacecraft, the CMG and the gravity gradient. After that, a general energy 

function is deduced, which contains the kinetic energy, the gravitational potential, the centrifugal potential of spacecraft, 

and the energy of the gyros. Then, based on the projection function, the first ZPM existence condition is proposed by 

analyzing the angular momentum at initial and terminal moment of the attitude mission. Furthermore, a second condition 

based on the general energy function is raised, considering the threshold rotational rate of gimbal during maneuver. 

Effectiveness of the existence conditions is verified by path planning examples. The proposed existent conditions can 

provide a convenient and effective method to determine whether the ZPM path exists, which can be applied to any angle 

maneuver mission and can provide a significant theoretical support for zero propellant maneuver technology in the future. 
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1.  Introduction 

 

  Zero-propellant maneuver (ZPM) is an advanced concept of 

attitude control using only control moment gyroscopes 

(CMGs). By using CMGs, mount of propellant can be saved 

and gas contamination to the solar panel and other exposed 

device could be avoided. Moreover, it can be a backup for 

attitude-control thrusters. This technology will enhance 

orbiting lifetime of spacecraft, and improve the maneuver 

security and reliability effectively. 

  The concept of ZPM is first proposed by Bedrossian [1] at 

1996. The core idea is to establish the frame of optimal 

control for attitude maneuver and plan maneuver path by 

making full use of environment torques. Then the spacecraft 

maneuver along the planned path using CMGs only, without 

any fuel consumption. On November 5. 2006, the ZPM was 

first demonstrated on the International Space Station (ISS). 

The ISS rotated 90° without consuming any propellant in 

7200s. On March 3. 2007, a ZPM of 180° rotation was 

achieved, saving 50.76kg propellant at an estimated cost of 

US$1,100,000[2-3]. 

  However, the total angular momentum that the CMGs can 

store is limited, and when this threshold is reached, the CMGs 

turn saturated. Saturation precluded CMGs from generating 

torques in certain direction, and may lead to the loss of 

attitude-control ability. Once he CMG saturate, thrusters need 

to work instead of CMGs. So whether the attitude maneuver 

mission can be achieved without CMG saturated is a judging 

condition for ZPM. Various approached have been explored 

so far to deal with the saturation problem, and most of there 

previous studies concentrated on the attitude stability control 

problems. For example, Wie used a Linear Quadratic 

Regulator (LQR) method to design a quadratic optimal 

controller for the saturation problem [4]. Vadali put forward a 

nonlinear controller by constructing a Lyapunov function 

consisting of both the attitude and momentum [5]. However, 

researchers seldom considered the existence of unsaturated 

path for a given maneuver mission. Until now, only Zhao er at 

gave a preliminary analysis based on the conservation of 

unsaturated path for a given maneuver mission. But the 

existence conditions proposed by Zhao can be appropriate 

only for attitude maneuvers between torque equilibrate 

attitudes, and the initial momentum of CMG is assumed to be 

zero, which limit the application to a great extent [6]. 

  The existent conditions proposed in this paper can be 

applied to any angle maneuver mission, and there is no 

limitation to the initial momentum of CMGs. The main 

contributions of this paper are three folds: The main 

contributions of this paper are four folds: 1) Establish the 

projection function of angular momentum and the general 

energy function of a spacecraft with CMGs as the only actor. 

2) The first ZPM existence condition is proposed by analyzing 

the angular momentum at initial and terminal moment. 3) The 

second existence condition, considering the threshold 

rotational rate of gimbal during maneuver is proposed. 4) The 

effectiveness of the existence conditions is verified by path 

planning examples. 

 

 



 

 

 

2 

2.  The projection function and energy function 

 

  This investigation is focused on the spacecraft that is a 

finite-sized rigid body, taking a circular orbital motion. In Fig. 

1, the orbital frame Ol1l2l3 is fixed at O, the center of mass of 

the spacecraft. The three unit component vectors of the orbital 

frame are demoted as l1, l2, and l3. Vector l1 is pointing to the 

direction of velocity, and vector l3 points to the mass center of 

the Earth. The third vector l2 completes a right-handed set of 

orthogonal axes with l1 and l3. 
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Fig. 1.  The orbital frame. 

  The local frame Ob1b2b3 is fixed in the rigid body, attached 

to O. Three unit component vectors demoted as b1, b2, and b3 

are along the principal axes of inertia of the spacecraft. 

Principal inertias are I1, I2, I3, respectively. The local frame 

and the orbital frame are related by yaw angle ψ, pitch angle θ 

and roll angle φ with a rotation sequence of 3-2-1. When the 

two frames are parallel, the Euler angle satisfies ψ = θ = φ = 0. 

The direction cosines of axes bi in the orbital frame 

cos( , )ij i ia l b  can be written as 
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The elements in Eq. (1) constitute the transformation matrix 

3 3 [ ]ija A  from the orbital frame to the local frame. Thus 

unit component vectors l1, l2, and l3 can be expressed in local 

frame as 
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  The angular velocity of spacecraft relative to the inertial 

space can be divided into two parts, ωo and ω′, where ωo is the 

convected angular velocity, which is resulted from the orbit 

motion of the spacecraft, and ω′ is the spacecraft’s angular 

velocity relative to the orbital frame. Thus, the angular 

velocity in local frame is 
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After algebra operation, the following expressions can be get 
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  Assume that the spacecraft is influenced only by the Earth. 

Other environmental torques, such as aerodynamic torque, can 

be treated as perturbations. The attitude dynamics equation 

based on the theorem of moment of momentum can be 

expressed as 

gyro gg CMG

d

dt
  

ω
I τ τ τ             (7) 

where I is the inertia matrix of the spacecraft in diagonal form. 

τgyro, τgg and τCMG are the gyroscopic torque, the gravity 

gradient torque and the control torque from CMGs, 

respectively, taking the following forms 
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where H is the angular momentum of CMGs. Thus, the Euler 

Equantion (7) turns to  
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Euler’s Eq. (9) and kinetic Eq. (3) described above together 

decide the attitude motion of the spacecraft using CMGs as 

the only actor. 

1) The project function 

  To get the project function of angular momentum, first 

multiple both sides of Eq. (9) with 
T

2l  in the left, then 

multiple Eq. (5) with Iω, H in the right, respectively. After 

algebra operations, the following form can be obtained 

0
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o
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Eq. (10) is the projection of angular momentum to the 

direction of 2l  

2) The energy function 

  To get the general energy function of angular momentum, 

first multiple both sides of Eq. (9) with Tω  in the left, then 

multiple Eq. (5) with o Iω , o H  in the right side, multiple 

Eq. (6) with 2

o 33 Il  in the right side, respectively. Plus these 

equations together and after some algebra operations, the 

generalized integral of energy function can be obtained as  
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Eq. (11) is actually an improved form of angular momentum 

of the spacecraft carrying CMGs. Terms in Eq. (11) represent 

the kinetic energy of spacecraft reference to the orbit, the 

centrifugal potential of spacecraft, the gravitational potential 

of spacecraft and the kinetic energy of the CMGs, 

respectively. 

 

3.  The boundary ZPM existent condition 
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3.1.  Ignore environmental effect 

  Obviously, if ignore the effect of environment, the integral 

term in the project function disappears. The project function at 

initial and terminal moment can be denoted as 

T T

0 20 0 20 0

T T

2 2f f f f f

 

 

P l Iω l H

P l Iω l H
             (12) 

Subscript 0 and f represent initial and terminal moment, 

respectively. The five-pyramid SGCMG (Single Gimbal Control 

Momentum Gyro, SGCMG) is concerned in present research, 

consisting of 6 SGCMGs. The angular momentum of 

five-pyramid SGCMGs can be expressed as 

  0sin cos h H A δ B δ E            (13) 

where h0 is the angular momentum of a single SGCMG, δ  is 

diagonal matrix consist of frame angles of SGCMGs. A and B 

are matrixes of 3×6 dimension, decided by the install direction 

on the spacecraft. E is a matrix of n×1 dimension, consisted of 

unit values, denoted as [1, 1 ,1, 1, 1, 1]T. The derivation of 

angular momentum can be written as 

  0cos sin h H A δ B δ δ           (14) 

For a SGCMG cluster, the angular velocity of each frame is 

always constrained by a maximum value. 

  The CMGs work within its angular momentum envelope. 

For different configurations of SGCMG cluster, workspace 

can be defined together as 

CMG 0k hH                (15) 

where kCMG is a coefficient decided by the configuration of 

SGCMG cluster. For example, the workspace for pyramid 

SGCMGs is CMG2.56 3.3k  , and five-pyramid SGCMGs 

works within CMG4.35 4.77k  . The envelope of momentum 

of a five-pyramid SGCMGs is almost the same as a sphere, as 

shown in Fig. 2. 

 
Fig. 2.  The envelope of five-pyramid SGCMGs. 

Once a maneuver mission is given, the initial and terminal 

attitude parameters are determined, including T

20l ,
T

2 fl , 0ω , fω

and 0H . Existence conditions can be obtained by judging 

whether Hf falls into the envelope in Fig. 2. When ignore the 

effect of environment, the initial and terminal project function 

equate. Thus, the following relation can be obtained 

 T T T T

2 20 0 20 0 2f f f f  l H l Iω l H l Iω         (16) 

The right side of the Eq. (16) is a known scalar quantity. It 

can be known from linear algebra that when and only when 

vector Hf is along the direction of l2f, the module of Hf takes a 

minimal value. Since l2f is a unit vector, the boundary existent 

condition takes the following form 
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3.2.  Consider the gravity gradient torque 

  Environmental factors, especially gravity plays a significant 

role to the attitude motion of a spacecraft at low orbits. Taking 

the gravity gradient torque into account, the boundary project 

function turns to 

0
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Actually, the ZPM exists most likely when the gravity 

gradient torque plays an assistant role to help SGCMGs 

absorb angular momentum of the spacecraft. In other words, 

the gravity gradient torque works to uninstall the SGCMGs, 

thus increasing the ability to exchange angular momentum 

with the spacecraft. This proposes the most possibility to 

achieve ZPM. 

  The concrete form of τgg in the local frame is 
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The integral term above represents accumulative effect of 

energy by gravity. Put Eq. (1) into Eq. (2), the following form 

can be obtained 
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Substitute into Eq. (18), the integral term turns into 
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The maximum value of is depended on the evaluation of I1, I2 

and I3. Denote the maximum absolute value of 2 T

0 2 3 3 l l Il as 

max . Fig. 3 shows the change of max  respect to 

parameters (I3 - I2) and (I3 – I1). From Fig. 3, it can be observed 

that when (I3 - I2) and (I3 – I1) both equals to zero, the max

takes the minimum value. But when (I3 - I2) and (I3 – I1) takes 

the different sign, the value reaches its maximum. 

  Combining the conclusions in section 3.1, existent 

conditions considering gravity gradient torque can be obtained 

as 
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Fig. 3.  The maximum value of 2 T

0 2 3 3 l l Il . 

If the maneuver path would take the most advantages from 

gravity gradient torque, h0 will take the minimum value in Eq. 

(22) That is to say, the gravity gradient torque will assists 

CMGs to complete the maneuver mission under certain case, 

depending on the maneuver path. 

 

4.  The process ZPM existent condition 
 

  Initial and terminal state of maneuver mission are combined 

to drawn the boundary conditions. Furthermore, the exchange 

of energy between spacecraft and CMGs during maneuver 

should also be taken into consideration.  

  In the process of maneuver, the exchange rate of energy 

from CMG is limited by the rotational rate of gimbal and the 

maximum required angular velocity of the spacecraft. Denote 

the threshold value of rotational rate as max and the 

maximum required angular velocity as max . Substitute Eq. 

(14) into the integral term in Eq. (11), the integral term can be 

written as  
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As  cos sinA δ B δ and  sin cosA δ B δ takes the same 

envelope, Eq. (23) can be rearranged as 
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Substitute Eq. (24) into Eq. (11), the process conditions can 

be obtained as 
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  To sum up in conclusion, ZPM existent conditions 

considering boundary and process constrains can be 

reorganized to the following form
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5.  Simulations 

 

  To verify the correctness of the proposed existent 

conditions, a large amount of simulations have been carried 

out for both situations that ignoring and considering the 

environmental effects. 

  5.1.  Situation 1: Small-angle maneuver missions 

  Assume that the spacecraft flies in a circular orbit with an 

altitude of about 380 km, and the primary inertia of the 

spacecraft is diag[3 5 8]×106 kg.m2. According to the deduced 

existent conditions, the minimum value of h0 in different 

small-angle maneuver missions are listed in Tab. 1. 

  To insure the proper operation of SGCMGs, the forecast of 

saturation is usually necessary. The most commonly used 

indicator to measure the degree of saturation is the 

saturation-value, denoted as 

 

Table 1.  Parameters of small-angle maneuver missions. 

  , ,s s s   , ,f f f    
Δt 

(s) 0h (N.m.s) 0h (N.m.s) 

(°) (°) (ignore) (consider) 

1 [0 0 0]° [0 0 5]° 200 251.4 223.3 

2 [0 0 0]° [0 10 0]° 200 289.9 267.1 

3 [0 -5 0]° [5 0 0]° 200 278.4 256.3 

4 [5 0 0]° [0 0 -5]° 200 264.9 289.1 

Tdet( )d QQ                (27) 

where cos sin Q A δ B δ . When the SGCMGs turn or 

approach saturation, the value of d will be 0 or extremely 

approach 0. Under this situation, the SGCMGs can’t work 

normally. Choose angular momentum h0 of a single SGCMG 

as variety and change the value of h0 in the neighborhood of 

the marginal value. Figure 4 shows the minimum value of d 

during the 4 attitude missions, where the maneuver path is 

planned by pseudo-spectral method [7-9]. 
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(a) The No. 1 maneuver mission. 

 
(b) The No. 2 maneuver mission. 

 

(c) The No. 3 maneuver mission 

 

(d) The No. 4 maneuver mission 

Fig. 4 The change of saturation-value for the 4 maneuver missions. 

  Fig. 4 shows the changing of singular-values during the 

maneuver missions. It can be discovered that no matter ignore 

or consider the effect of gravity, when h0 is smaller than the 

marginal value, the minimum value of d is always zero, which 

means that saturation occurs during the maneuver. Along with 

the grow of h0, the minimum value of d changes larger, 

keeping away from zero. It shows that no saturation seems to 

happen as h0 grows larger than the marginal value. The 

simulation results verified the proposed existence conditions 

well. Compared with the two situations in each attitude 

mission, it can be discovered that the marginal momentum of 

a single SGCMG is always smaller when considering gravity 

gradient torque due to its assistant effect during maneuver. 

  5.2.  Situation 2: Large-angle maneuver missions 

  Suppose the orbital and inertia parameters are the same with 

Situation 1. Different from Situation 1, some large-angle 

maneuver missions are listed in Tab. 2. This maneuver missions 

contains typical yaw, roll, pitch maneuver and some other 

random missions. According to the deduced existent conditions, 

the minimum value of h0 in different maneuver missions are also 

listed. 

 

Table 2.  Parameters of large-angle maneuver missions. 

 
 , ,s s s  

(°) 

, ,f f f    

(°) 

Δt 

(s) 
0h (N.m.s) 

(ignore) 

0h (N.m.s) 

(consider) 

1 [0 0 0]° [0 0 90]° 1000 560.4 543.3 

2 [0 0 0]° [0 180 0]° 1000 478.3 437.1 

3 [-45 0 0]° [0 0 130]° 1000 789.4 656.4 

4 [5 120 0]° [-6 0 30]° 1000 810.3 745.1 

Fig. 5 shows the minimum value of d during the 4 attitude 

missions. The variation trend of the curves is similar with that in 

Fig. 4. It can be discovered that the saturation indicator d goes 

away from zero slower than the curves in Fig. 4. That’s because 

during the large-angle mission, the exchanged angular 

momentum may run into some peak value that can’t reflected in 

the boundary conditions. Thus, for large-angle maneuver 

missions, some spare momentum should be left to ensure the 

achievement of large-angle maneuver mission. 

 

6.  Conclusion 

   

  In this study, existence conditions for zero-propellant 

maneuver are proposed according to the deduced project function 

and energy function. First, dynamic models of spacecraft using 

control momentum gyros are constructed, based on which the 

project function and general energy function is established. Then 

the first ZPM existence condition is proposed by analyzing the 

projection of angular momentum at the initial and terminal 

moment. Furthermore, a second condition is raised, considering 

angular velocity and the threshold rotational rate of gimbal during 

maneuver. Effectiveness of the existence conditions is verified by 

path planning examples. The proposed existence conditions can 

provide a convenient and effective method to determine whether 

the ZPM path exists, which can be applied to any angle maneuver 

assignment and can provide significant theoretical support for 

zero propellant maneuver technology in the future.. 
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