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Abstract
Because of the potential of the Lunar Gateway for cislunar operations, in particular missions to
Mars, there is a growing interest in designing trajectories from lunar orbits. This work deals with
the development of a low-energy transfer to Mars from a lunar Distant Retrograde Orbit, relying
exclusively on the Circular Restricted Three-Body Problem (CR3BP). The full five-body prob-
lem (Moon-Earth-spacecraft-Sun-Mars) is decomposed into three different CR3BPs. In each of
them, parts of the trajectory are built exploiting invariant manifolds stemming from Lyapunov
orbits. These segments are then linked together successively, overlapping the three systems
while considering the ephemerides. Dealing with date restrictions for the required configura-
tion of the Earth and Mars, a period from 2027 to 2034 was investigated. Resulting trajectories
demonstrate the convenience of the strategy: despite a long time of flight, this approach allows
to design low-energy trajectories for cargo missions.
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Context

As the Lunar Gateway will pave the way for cislunar operations, the red planet is one of the main
target of space agencies. Exploring and sending humans to Mars will call for cargo missions to
deliver experiment and robotic devices and eventually build a permanent base. Maximizing the
payload mass of spacecraft and following low-energy trajectories is key to making future mis-
sions possible. Relying on the Circular Restricted Three-Body Problem (CR3BP) instead of the
usual Two-Body Problem opens approaches to develop energy efficient trajectories. There is a
clear interest in developing such trajectories from lunar orbits. Among these, Distant Retrograde
Orbits (DROs) present interesting features: they exhibit long-term stability and ease of access
in terms of gravity. Investigated for the first time in 1969 by Hénon [1], DROs are a family of
planar solutions of the CR3BP. With near-rectilinear halo orbits, one of which being planned
to host the Lunar Gateway, they represent some of the most suitable orbits to locate space in-
frastructure such as a propellant depot, allowing a cargo mission to be refuelled [2]. Also, they
could offer the possibility of assembling large spacecraft in orbit, thus removing launch vehicle
constraints. Studies, namely byMurakami and Yamanake, already describe solutions to perform
rendezvous between a future possible DRO station and visiting vehicles [3].

This study concerns the development of a trajectory from a lunar DRO to the vicinity ofMars.
It relies exclusively on the CR3BP theory. It extends previous works on transfers conducted
by overlapping two three-body problems. In this work, three three-body problems have been
exploited: Earth-Moon-spacecraft, Sun-Earth-spacecraft and Sun-Mars-spacecraft. In each sys-
tem, different segments of the trajectory are built by propagating the invariant manifolds inherent
to the CR3BP theory. These segments are then linked together to obtain the full trajectory.
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Problem Statement

In the CR3BP, two primary masses m1 and m2 revolve on a circular orbit around their center
of mass and a third massless body moves under their mutual gravitational interaction. The
equations of motion are expressed with respect to the synodic frame, a rotating reference frame
centered at (m1, m2) barycenter. The x̂ axis is directed from m1 to m2, the ŷ axis is in the
plane of the primaries’ orbit and ẑ completes the right-handed triad. The frame coordinates
are non-dimensional, based on the characteristic distance between the two primaries. So is the
time, which is normalized by the period ofm2 in circular orbit aroundm1, in such way that the
universal constant is normalized to G = 1. The equations of motion involve the position of the
spacecraft R⃗ = [x, y, z]T and its velocity V⃗ = [ẋ, ẏ, ż]T , in terms of components in the synodic
frame:
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where U is the pseudo-potential function and can be written as:
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where r1 and r2 are the distances of the primaries with respect to their center of mass and
µ = m2/(m1 +m2), the mass parameter, is this non-dimensional system’s only parameter.

The CR3BP admits an integral of motion: the Jacobi constant C. The study of zero-velocity
curves shows the existence of five equilibrium points, called Lagrange points: L1, L2, L3 are
collinear with the primaries; L4 and L5 are at the vertex of two equilateral triangles, generated
with the primaries. These points correspond to the stationary points of the potential function,
their location being given by ∇U = 0. Around L1 and L2, there exist different families of
periodic or quasi-periodic orbits that can be either stable or unstable. In the latter case, it is
possible to developmanifolds, which are higher-dimensional surfaces that govern the asymptotic
nature of the flow toward or away from a periodic orbit, depending on whether they are stable
or unstable, respectively.

A family of unstable orbits is the set of Lyapunov orbits. They are CR3BP planar periodic
solutions, which exist around both L1 and L2. They overlap another family of planar solutions,
in geometry: the stable DROs. For a given DRO, it is possible to find tangential L1 and L2

Lyapunov orbits. Demeyer et al. [4], as well as Capdevilla et al. [5], have developed methods
to exploit the stable manifolds of a tangent L1 Lyapunov orbit to have access to the intended
DRO. It seems possible to use a similar strategy also to leave a DRO. In addition, Lyapunov
orbits can be used in interplanetary trajectories: studies have shown that unstable and stable
manifolds associated with these orbits in two different three-body systems (with one common
body) can be exploited for interplanetary transfer [6].

Strategy

To design the trajectory, two major simplifying hypothesis were formulated: the orbits of the
planets around the Sun and the Moon’s one around the Earth were considered circular and lying
in the same plane, the ecliptic. The problem has been solved into three main steps.
• In the Earth-Moon system, a lunar DROwith a planar extension1 Ax ≈ 70,000 kmwas chosen.
This choice was inspired by the mission analysis made for the cancelled Asteroid Redirect
Mission [7], yet the influence of Ax on the required ∆V is discussed later in this paper. The
1distance between the second primary, of x-coordinate 1 − µ, and the intersection of the orbit with the x̂ axis,

towards the first primary
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L2 Lyapunov orbit tangential to the DRO was found, accepting a tolerance equal to 10-7 in the
computation of the crossing point. Then, the associated unstable manifold was developed to
leave this first system.

• In the Sun-Earth system, the transfer starts from a stable manifold that gives access to a L2

Lyapunov orbit. Again, the unstable manifold stemming from this orbit was used to leave the
system.

• In the Sun-Mars system, the purpose is to arrive at one of the orbits belonging to the L1

Lyapunov family, exploiting again the associated stable manifold to have access. This orbit
should be as near as possible to Mars to facilitate a final transfer to a LowMars Orbit (LMO).
For this reason, the chosen Lyapunov orbit has a planar extension of 400 millions kilometers.

Fig. 1: Overview of the strategy.

It is possible to find an intersection between the unstable manifold of the Earth-Moon L2

orbit and the stable one associated to the Sun-Earth L2 orbit; thus, the transfer can be performed
with a single impulsive burn. However, there is no link between the unstable manifold of the
Sun-Earth L2 orbit and the stable one of the Sun-Mars L1 orbit. Following previous works
conducted by Topputo et al. [6], the manifolds have been linked by a Lambert arc. This term
refers to the solution of the Lambert’s problem, concerned with the determination of the path
between two points in space with a given time of flight (TOF). The transfer through the Lambert
arc is the most expensive and its cost is highly dependent on time. For this reason, the transfer
between the Sun-Earth system and the Sun-Mars system was built first, thus influencing the
design of the full trajectory. The study was conducted for a period covering 2027 to 2034,
considering a hypothetical timeline for the Lunar Gateway and the following cislunar operations.

Computations were carried out using Matlab, reusing and adapting codes developed in pre-
vious works [8]. The computation of the orbits and invariant manifolds relies on the differential
correction method, whose methodology is detailed by Koon et al. [9] and Gordon [10]. The dif-
ferential correction method is used also to solve the Lambert’s problem, following the procedure
by Topputo et al. [11].

Results

Trajectory computation results

The Earth-Moon L2 Lyapunov orbit, tangent to the selected DRO (Ax = 70,000 km), is char-
acterized by an estimated planar extension of 10,647 km and a Jacobi constant equal to C =
3.1678. The transfer from the DRO to this orbit requires an impulsion of ∆V = 0.3641 km/s.

The Sun-Earth L2 Lyapunov orbit’s size was treated as a parameter. The objective was to
minimize the ∆V required for the transfer at the intersection point between its stable manifold
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and the unstable manifold of the Earth-Moon L2 Lyapunov orbit. Only the orbits for which the
intersection point exists were taken into consideration: performing a maneuver at such point is
less costly than linking the manifolds through a conic. The existence of the intersection point
and the required ∆V depend on the position of the Moon around the Earth, thus on time. The
∆V tends to increase as the Sun-Earth Lyapunov orbit’s planar extension increases (Fig. 2).

There is no intersection between the unstable manifold of the Sun-Earth L2 Lyapunov orbit
and the stable manifold of the Sun-MarsL1 Lyapunov orbit. Thus, a Lambert arc was generated.
The times of extension of themanifolds and the TOF along the Lambert arc have been considered
as variables. In fact, the energy required for this last transfer is largely influenced by the time at
which it is performed. Starting this transfer, the angle θ defined by the Earth and Mars position
vectors in the Sun-centered inertial frame, must verify: θ ∈ [150°; 160°] or θ ∈ [200°; 210°].
Fulfilling this condition yields a value of ∆V that is comparable to results from other works
regarding cargo missions (Fig. 3) [6][11][12].

Scheduling a departure in 2027, the selected transfer is summarized in Table 1 and shown on
Fig. 3 and 5. Yet, the next occurrences of the favorable reciprocal position of the Earth andMars
allowed to investigate two other time windows: 2029-2031 and 2032-2034. The corresponding
Sun-Earth L2 Lyapunov orbits are reported in Table 2. Results show that there is no significant
difference between the optimal transfers’ costs in the different time windows (Fig. 6).

Departure December 2027
Lunar DRO Ax = 70,000 km C = 2.9405
Transfer to tangent Lyapunov orbit ∆V = 0.3641 km/s TOF = 0 s
Earth-Moon L2 Lyapunov Orbit Ax = 10,647 km C = 3.1678
Earth-Moon to Sun-Earth system ∆V = 0.3509 km/s TOF = 340.52 days
Sun-Earth L2 Lyapunov orbit Ax = 56,327 km C = 3.0009
Sun-Earth to Sun-Mars system ∆V = 4.6887 km/s TOF = 761.50 days
Sun-Mars L1 Lyapunov orbit Ax = 400,000 km C = 3.0002
Total transfer ∆V = 5.4037 km/s TOF = 1,102 days

Table 1: Characteristics of the selected 2027-2029 transfer.

Period Ax (km) C
2029-2031 32,163 3.0009
2032-2034 68,408 3.0009

Table 2: Selected L2 Lyapunov orbits for additional time windows.

Influence of the DRO extension

The influence the initial lunar DRO’s size was analyzed by testing different planar extensions:
the considered range, Ax ∈ [40,000;80,000] km, corresponds to DROs for which there exists a
tangent L2 Lyapunov orbit. The optimal transfer was searched for each DRO. The results show
how this parameter impact on costs is negligible (Fig. 7): the size of the DRO has no significant
influence on the required energy. In terms of TOF, only approximately 100 days differentiate
the shorter transfer from the longer one and this difference is not significant with respect to the
total average transfer time.

Transfer to a Low Mars Orbit (LMO)

A Hohmann transfer was envisaged to join a Low Mars Orbit (LMO) from the selected L1

Lyapunov orbit, to obtain an order of magnitude for the ∆V and TOF necessary to reach the
red planet. For the calculations, the targeted LMO was arbitrarily chosen with an altitude of
1,000 km. Several strategies could be adopted; one possibility is to exploit a part of the unstable
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Fig. 2: Trajectory costs for different planar
extensions of the Sun-Earth L2 Lyapunov orbit.

Fig. 3: Comparison of costs between the
proposed solution and other studies
(Sun-Earth to Sun-Mars transfer).

Fig. 4: Transfer between the Earth-Moon
system and the Sun-Earth system, seen in the
Earth Centered Inertial reference frame.

Fig. 5: Transfer between the Sun-Earth system
and the Sun-Mars system, seen in the Sun

Centered Inertial reference frame.

Fig. 6: Costs of the optimal trajectories
at the variation of the analyzed time windows.

Fig. 7: Costs of the optimal trajectories at the
variation of the initial DRO planar extension.

manifold stemming from the Lyapunov orbit and then engage the Hohmann transfer. A first
∆V at the selected point of the manifold is needed to join the osculating orbit. This departure
point could be the periapsis, yet another point seems more interesting in terms of∆V and TOF.
Indeed, a departure at approximately 8% of the length of the manifold (propagated for one Mars
period) gives the shortest TOF (375.83 days) and second smaller ∆V (1.5299 km/s).

Conclusion: Future Work

This paper demonstrates the feasibility and the convenience of relying exclusively on the CR3BP
theory to design an interplanetary Moon-Mars transfer. The decomposition of the five-body
problem into three three-body problems and the exploitation of Lyapunov orbits’ invariant mani-
folds allow to find low-energy trajectories. The most critical segment of the transfer in terms of
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cost and choice of the most suitable time window is the one from the Sun-Earth system to the
Sun-Mars system. The period from 2027 to 2034 was investigated, yielding three convenient
time windows. On average, the required ∆V is 5.5 km/s and the TOF is 1,120.2 days.

Later on, further studies could be useful to bring about important improvements, such as
introducing the eccentricity of the orbits and their inclination with respect to the ecliptic as per-
turbations, or adoptingmore refined techniques, like an optimization through a genetic algorithm
to select the intermediate Lyapunov orbit and the Lambert arc.

Fig. 8: Full trajectory, seen
in the Sun Centered Inertial

reference frame.
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