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Abstract 
 
This work addresses the two-way conversion between osculating and mean orbital elements, 
as required by orbital elements-based onboard guidance navigation and control algorithms for 
near-circular formation flying missions in low Earth orbits. With regard to the non-
homogenous Earth mass distribution perturbation, the developed algorithm merges a 
Hamiltonian approach applied to the J2 problem with Kaula’s linear perturbation method for 
the remaining terms of the geopotential. Adopting such transformations, the relative motion – 
analytically propagated in the domain of the linearized mean problem – remains accurate over 
several orbits periods of time, regardless the time when the initialisation occurred. The paper 
presents the modelling accuracy that can be achieved under realistic operational conditions. 
 
Keywords: Formation Flying, Mean Orbital Elements, Analytical Orbital Theories, Relative 
Motion, Autonomy. 
 

Introduction 
 
In formation flying applications, orbital elements-based parametrisations of the relative 
dynamics are often employed to develop Guidance Navigation and Control (GNC) algorithms 
since they offer several practical advantages, among which the reduction of linearisation 
errors when expanding the motion with respect to the orbit of the chief satellite, and the 
exploitation of celestial mechanics methods to introduce the effects of orbit correction 
manoeuvres. In this framework, working in the domain of mean Orbital Elements (OEs), 
intended as the elements’ set where short- and long-term periodic oscillations generated by a 
given orbital perturbation are removed, is very convenient since the relative dynamics has 
only to reflect the remaining relative secular variations. In the case that the perturbation is 
solely the one produced by the first not null zonal term of the Earth geopotential (i.e., the J2), 
for example, the first order expansion of the time derivatives of mean OEs generates a 
linearised dynamics for which a closed-form state transition matrix can be written, as shown 
in Refs. 1 and 2, depending on which OE-based state variable is used and on additional 
assumptions on the eccentricity of the chief’s orbit. Subsequently, for guidance and control 
purposes, the Gauss’s variational equations can be used for the mean dynamics, exploiting the 
fact that the Jacobian expressing the transformation between osculating and mean orbit 
elements can be reasonably approximated by the identity matrix, as the off-diagonal terms are 
of order of J2 or smaller [3]. As a result, efficient GNC algorithms can be designed as the ones 
used by the NASA’s MMS (Magnetospheric Multiscale) mission [4] or the ones by DLR’s 
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AVANTI (Autonomous Vision Approach Navigation and Target Identification) in-orbit 
demonstration of autonomous noncooperative rendezvous [5]. 
In the low Earth orbit (LEO) region, the absolute motion of a satellite is generally estimated 
by onboard filtering the GPS-based position data, using numerical integration of the equations 
of motion, to provide the absolute Cartesian state in an Earth-centred inertial reference frame 
[6]. In principle, one could directly estimate the mean elements [7], but the first way is a very 
established approach, often already available in a satellite embarking a GPS receiver with no 
need to develop any ad-hoc additional flight software. Thus, if one considers that an 
estimation of the absolute orbit of the chief satellite is accessible and an OE-based 
formulation is used for the relative GNC algorithms, a proper interfacing is then needed to 
bridge such functionalities. Interfaces include the handling of rotations to/from the involved 
reference systems, the computation of osculating OEs, and the two-way osculating/mean OEs 
conversions. 
The computation of mean OEs is based on averaging techniques and nowadays it is required 
for simultaneous precise long-term orbit propagation of several satellites exploiting semi-
numerical and semi-analytical techniques. The survey in Ref. 8 presents an overview of 
available analytical orbital theories depending on included perturbations and orbit typologies. 
Compared to this customary use, the computation of mean OEs for formation flying 
applications, can accept a less accurate result. On the one hand, in fact, the satellites lie in 
neighbouring orbits and, therefore, part of the conversion-error cancels as soon as one regards 
the relative mean OEs. On the other hand, the typical propagation time-scales between orbit 
corrections rarely exceed few days, especially when the satellites are very close to each other. 
On the contrary, the most critical requirement for close formation flying applications is related 
to the high level of autonomy of the onboard relative GNC system. Accordingly, simple and 
computationally light algorithms are preferred also for carrying out the OE conversions. 
As this work focuses on the LEO region, only the orbital perturbations due to the non-
homogenous Earth mass distribution is considered. Moreover, the orbits are characterized by 
small values of eccentricity, making it reasonable to exploit the near-circular orbit 
assumption. The presented algorithm adopts the non-singular set of OEs (i.e., zero-
inclinations orbits are hardly used in LEO), with the mean argument of latitude for the 
satellite anomaly component. This set, in fact, allows a straightforward interfacing to the 
relative GNC algorithms developed in the Relative Orbital Elements (ROEs) as defined in 
Ref. 2 and used within AVANTI [5]. 
The paper is structured as follows. First, the interfacing function of the osculating/mean OE 
conversions is recalled, emphasizing their impact on the realistic assessment of the accuracy 
of the relative motion modelling. Second, a comparison of the conversion accuracy through 
different satellite theories is performed, when only the J2 term is considered. Based on this 
trade-off, the proposed algorithm is explained. It employs a second-order Lie-series based 
approach, analytically derived up to certain order expansion of the e J2 term (being e the chief 
orbit eccentricity), to cancel the short- and long-periodic terms due to the dominant J2 
coefficient. Afterwards, the semi-major axis component only is refined through the first-order 
Kaula method up to the required order and degree term of the geopotential. Last, the paper 
provides the achievable relative position and velocity error, measured against a given 
reference dynamics, depending on the geopotential terms accounted in the transformations, 
for 1-day and 2-day long propagation legs. Once computed the initial mean ROEs, the relative 
motion uses two possible fist-order closed-form state transition matrices. The errors are 
measured through an index that accounts for the worst-case error in the initial conditions 
within one orbit, thus providing a realistic conservative assessment of the accuracy achievable 
by spaceborne executions. 
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Body of the Paper 
 
Osculating/Mean Orbital Elements Conversions 
 
Fig. 1 presents the functional overview of a GNC system where the chief orbit is given as 
position and velocity state in an Earth-centred inertial system, whereas the relative algorithms 
– represented by white-background boxes – are developed in OEs [9]. The double-colour-
background boxes identify the bridging blocks that encode time synchronisation, reference 
systems’ conversions, OEs computation from/to inertial state, and osculating/mean OE 
conversions. This work focuses on the latter task and for any component κ of the OE set, the 
osculating (i.e., osc) value is related to the mean one according to: 

κosc = κ0 + (𝛿𝛿κ)sp + (𝛿𝛿κ)lp + κ̇sec𝑡𝑡    (1) 

where the subscripts sec, sp, and lp respectively denote secular, short-periodic and long-
periodic contributions, function of the mean elements, generated by a given orbital 
perturbation. The computation of the osculating set z = 𝑓𝑓(𝒙𝒙), with x indicating the mean OEs, 
using Eqn 1 is referred as to direct transformation (i.e., mean-to-osculating or m2o in Fig. 1). 
On the contrary, the extraction of the mean elements from the osculating set is referred as to 
the inverse transformation (i.e., osculating-to-mean or o2m in Fig. 1). By following the 
connections linking the blocks, of the guidance (i.e., view a) or of the navigation (i.e., view b) 
sets-up, one can visualize the different sources of modelling errors that affect the overall 
accuracy of the system. Here the focus is on minimizing the error sources ε1 and ε4, which 
generate an artificial error component in the initial conditions of the relative dynamics (i.e., 
ε1), as well as a contribution to the (𝑦𝑦�EME − 𝑦𝑦EME) or (ℎ� − ℎ) errors (i.e., ε1 and ε4 cumulative 
effect). 

 

a) Guidance set-up 

 

b) Navigation set-up 

Fig. 1: Need of osculating/mean conversions to interface the chief absolute orbit  
to OE-based relative GNC system [9]. 
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Comparison of considered approaches 
 
This section presents a set of possible approaches to perform the osculating/mean OE 
transformations. To the end of comparing their accuracy, the focus is restricted to the J2 
problem, thus accounting for only the order-2 degree-0 (i.e., the -C20 using Kaula notation 
[10]) term of the geopotential. 
The first approach investigated, labelled as M-1st, is the first order mapping described in 
Appendix F of [3] and used in the flight software of the AVANTI experiment [5]. Such 
method is based on Brouwer’s satellite theory [11] with Lyddane’s modification [12] to 
accommodate small eccentricity and small inclination orbits. Due to the first order truncation, 
direct and inverse transformations simply differ by a sign. 
The remaining considered approaches either require a numerical iterative computation for the 
inverse transformation or an analytical derivation of some intermediate steps. Both are 
detailed in the following. 
 
Iterative method 
 
The numerical method used in this paper is based on classical fixed-point iterations as 
originally proposed by Refs. 13 and 14. Accordingly, 

𝒙𝒙𝑛𝑛=0 =  𝒛𝒛target                                   
𝒙𝒙𝑛𝑛+1 =  𝒙𝒙𝑛𝑛 −  λ�𝑓𝑓(𝒙𝒙𝑛𝑛) − 𝒛𝒛target�

    (2) 

where the loop is initialized using the known ztarget osculating elements, λ=I1x6 [14], and the 
function f, encoding the direct transformation, can derive from different orbital theories. In 
order to ease the convergence process, the non-singular OEs set with mean argument of 
latitude as last component is used. Moreover, the semi-major axis component (i.e., a) is 
normalized using the known osculating value. In this way the threshold determining the 
terminating condition 𝑚𝑚𝑚𝑚𝑚𝑚 (�𝒛𝒛target −  𝒛𝒛𝑛𝑛�) can be set to 1e-8 and generally satisfied within 
three iterations. 
Regarding the comparison the following theories are considered: Brouwer (labelled B-I) [11], 
Kaula linear method (labelled K-I) [10], and Eckstein near-circular formulation (labelled E-I) 
[15]. In the labels I stands for iterative. More in details, 
• In B-I, the short- and long-periodic corrections of Eqn 1 are taken from Ref. 11 though 

using Lyddane’s modification. As here the conversion at same time is addressed, the 
secular motion is not considered. The periodic corrections are due to J2 to the first order. 
The formulation cannot be used in the vicinity of the critical inclination and the solution of 
Kepler’s equation is needed at every iteration. 

• In K-I, the short- and long-periodic corrections of Eqn 1 are taken from the linear 
perturbation method of Ref. 10 generated only by the order-2 degree-0 term and written in 
the non-singular elements’ formulation. Although the direct and inverse transformations 
differ simply by a sign, the direct function f is embedded in the iterative set-up. As it will 
be shown in the sequel, this allows enforcing – up to the fixed threshold – the maximum 
cumulative two-way transformation error in the inertial state. 

• In E-I, the short- and long-periodic corrections of Eqn 1 are taken from Ref. 15 which 
presents a second order satellite theory suitable for near-circular orbits (eccentricity of the 
order of the J2), improving the one originally developed by Ustinov in [16]. Although Ref. 
15 is developed to consider zonal terms up to order-6 and tesseral terms up to oder-4 
degree-4, here only the corrections related to the J2 are considered. In particular, short-
periodic corrections include terms of 𝐽𝐽2, 𝐽𝐽2𝑒𝑒, and 𝐽𝐽22 (this latter only for the semi-major 
axis); whereas the long-periodic ones include terms of 𝐽𝐽2 and 𝐽𝐽2. 
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Analytical method 
 
The analytical solution of the J2 problem is computed using Hamiltonian perturbation theory 
by Lie transforms [17]. In particular, three consecutive canonical transformations are applied 
to obtain the secular terms of the solution up to the third order of J2, whereas the periodic 
terms are computed up to the second order of J2. 
Thus, the elimination of the parallax [18, 19, 20] is applied first to remove non-essential short-
period effects from the original Hamiltonian. This pre-processing casts the Hamiltonian into a 
suitable form that eases the complete removal of the mean anomaly up to higher orders in a 
following Delaunay normalization [21]. A final Lie transformation eliminates the remaining 
long-period terms, which are related to the argument of the perigee, yielding a completely 
reduced, integrable Hamiltonian from which the secular frequencies are easily derived. 
The analytical solution constructed in this way is free from singularities related to equatorial 
or circular orbits, yet it cannot cope with the critical inclination resonance. All the 
transformations have been computed in closed form of the eccentricity. However, in view of 
the solution is only applied to the case of low Earth orbits, for better efficiency in the 
evaluation the periodic corrections have been expanded in powers of the eccentricity. Thus, 
the first order corrections are accurate to the order of 𝐽𝐽2𝑒𝑒3, whereas the second order 
corrections are accurate to the order of 𝐽𝐽22𝑒𝑒. 
In the following, the analytical transformations including solely the first order corrections are 
labelled A-1st, whereas the ones up to second order are labelled A-2nd. In the labels A stands 
for analytical. 
 
Comparison results 
 
In order to compare the performances of the approaches, a reference scenario of a near-
circular (i.e., e = 0.001) orbit at 500 km of height is considered. This orbit is propagated 
through numerical integration (DO-PRI8, fixed step of 10 s) of the equations of motion 
subject to J2 only. At each step, the inertial state, in the True-Of-Date (TOD) reference 
system, is transformed into osculating elements, which then represent the true set  𝒛𝒛target(𝑡𝑡). 
The cumulative error in position and velocity introduced by the sequence of inverse and direct 
transformations is then computed as: 

   𝒆𝒆(𝑡𝑡) =  𝒚𝒚TOD(𝑡𝑡) − 𝑔𝑔 �𝑓𝑓�𝒙𝒙(𝑡𝑡)�� ,  𝒙𝒙(𝑡𝑡) =  𝑓𝑓−1�𝒛𝒛target(𝑡𝑡)�   (3) 

Here g denotes the computation of the inertial position and velocity state from the osculating 
OEs, whereas f--1 is the inverse transformation through a given method. 
Fig. 2 shows the error of Eqn 3 obtained over one orbital period. Of course, when an iterative 
approach is used, the error is met to the prescribed tolerance. Thus, only the first-order 
mapping M-1st and the analytical methods may introduce an error greater than the considered 
tolerance threshold to terminate the iterative loop of Eqn 2. 
Fig. 3 shows the corresponding mean elements x, resulting from the inverse transformation at 
each step. One can note that their values vary over the one orbit period time, as result of the 
transformation error and of the matching imposed by the iterative process. The fact that the 
conversion error depends on when it is carried out is a relevant aspect for those spaceborne 
GNC algorithms executed at non-recurring time ticks. In addition, the size of the error 
depends on the accuracy of the transformation method, with the two second-order approaches 
(i.e., E-I and A-2nd) achieving better results. For the anomalies, the plot shows the values to 
the net of the secular effect, which is obtained through linear fitting of the corresponding data.  
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Fig. 2: Position and velocity error (TOD) from inverse-direct transformation chain. 

 
Fig. 3: Mean elements over time (1 orbit) obtained from inverse transformation. 
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a) All considered methods. b) Only 2nd order methods. 

Fig. 4: Semi-major axis component, plotting its value minus mean value at initial time. 
  

Dealing with formation-flying, the focus is on the relative motion and thus on the difference 
of the transformation error between the chief and the deputy orbits. Clearly, part of the 
absolute conversion error is cancelled by the fact that the orbits are indeed similar. 
Nevertheless, the bigger the oscillation in mean-value the larger the relative error may be. 
With reference to Fig. 3, the variation of mean-values for all the components except for the 
semi-major axis is indeed negligible. An error in the relative semi-major axis, instead, turns 
into an error in the secular component of the relative motion (a kind of an artificial drift) 
degrading remarkably the overall accuracy of the model. 
Fig. 4 addresses the semi-major axis component only, as being the one responsible for the 
change in phasing among the chief and the target, showing the evolution of the mean value 
with respect to the value obtained at the first step 𝑎𝑎�(𝑡𝑡0) = 𝑎𝑎�0. In the left view all the 
approaches are depicted, whereas in the right one the focus is on the second order methods. 
This allows comparing their performances and visualizing the effects introduced by the 
simplification of terms performed in E-I, where the second order J2-solution is not fully 
consistent as 𝐽𝐽22 terms were neglected everywhere except for in the semi-major axis [22]. 
 
Implemented Algorithm 
 
The implemented algorithm finds its inspiration from the work of Ref. 22, devoted to ground-
based LEO orbits monitoring and maintenance. There, the mean OEs are computed through an 
iterative method cancelling the short-periodic terms due to J2 using Eckstein’s theory. And the 
periodic contributions due to the remaining terms of the geopotential are computed through 
the Kaula first order method. 
In this work the focus is on spaceborne applications, and, in light of the comparison just 
performed, the second order A-2nd method is selected to cancel the effect of the J2, since this 
provides better accuracy while avoiding a numerical iterative process. In addition, dealing 
with formation flying, a further refinement is only needed for the semi-major axis component. 
To this end, the Kaula method is also selected due to the fact that its formulation is very 
convenient for the recursive implementation of the higher order and degree components. 
Moreover, given their magnitude, indeed the geopotential terms of order greater than two can 
be accounted to the first order. The transformations so obtained are labelled KA-nxm, being n 
and m respectively order and degree of the geopotential terms accounted in the corrections. 
Note that as the algorithm is developed in non-singular elements, there is no need of solving 
the Kepler’s equation in the transformations, which is however needed afterwards to recover 
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the inertial state from the osculating OE set with mean argument of latitude. Moreover, no 
problems of singularity arise in the Kaula phase, since this is used only to correct the semi-
major axis (e.g., there are no issues due to the e at denominator of the ∆e part of the 
eccentricity vector correction, for the cases in which it does not simplify with the e coming 
from the eccentricity functions). The correction of the semi-major axis requires only the 
computation of inclination, short-, and long-periodic eccentricity functions but none of their 
derivatives with respect to their arguments. Finally, being a first order refinement, this is the 
same in both directions, with the sign related to the direction of transformation. 
In the remainder, the algorithm supports the corrections up to order-6 degree-6 (i.e, KA-6x6), 
with short-periodic eccentricity functions explicitly written up to e6. Dealing with spaceborne 
implementations one should regard the trade-off between the benefits provided by accounting 
higher-order terms versus the related computational cost. This topic is further developed in the 
next section. 
 
Results 
 
This section presents the numerical accuracy that can be achieved by adopting the proposed 
algorithm. To this end, the validation of the propagation of the relative motion is carried out 
using the guidance set-up of Fig. 1-a) with no additional G&C algorithms (i.e., depicted with 
white-dashed box). The reference states of the deputy and chief satellites 𝑦𝑦TOD are obtained 
expressing in TOD the ones out of the numerical integration in Earth-Mean-Equator (EME) 
2000. The modelled state of the deputy 𝑦𝑦�TOD, d is obtained applying the 𝑔𝑔 �𝑓𝑓�𝒙𝒙(𝑡𝑡)�� 
transformation of Eqn 3, where the mean OE set 𝒙𝒙(𝑡𝑡) is computed from the ROEs δα(𝑡𝑡) as 
defined in Ref. 2. The relative dynamics at later time is propagated according to: 

δα(𝑡𝑡) =  ΦM(𝒙𝒙0, 𝑡𝑡0, ∆𝑡𝑡) δα0,  ∆𝑡𝑡 = 𝑡𝑡 − 𝑡𝑡0    (4) 

Here ΦM is the closed-form State-Transition-Matrix (STM) of the considered model, as 
follows: 
• M1: first order expansion of deputy’s orbit w.r.t.to the chief, addressing only the secular 

terms due to J2 to the first order. By exploiting the near-circular orbit assumption, the 
STM reduces to the one used for the GNC of AVANTI, given in equation (6) of Ref. 5. 
Note that this corresponds to the STM (A6) in the Appendix of [23], when the terms 
proportional to e are neglected. 

• M2: first order expansion of deputy’s orbit w.r.t. the chief, addressing the secular terms 
due to 𝐽𝐽2, 𝐽𝐽22, 𝐽𝐽4 and 𝐽𝐽6. The closed-form STM is given in equation (13) of Ref. 9. It is 
obtained applying the same state transformation used in [23]; therefore, this STM is valid 
for whatever eccentricity of the chief’s orbit. 

The error in relative position and velocity at time t in the TOD frame is given by: 

δ𝒆𝒆(𝑡𝑡) = 𝒚𝒚�TOD, d(𝑡𝑡) − 𝒚𝒚TOD, d(𝑡𝑡),    (5) 

since the chief state – assumed to be known with the same accuracy of the reference – cancels 
out. The symbol δ is introduced to emphasize that e is a relative quantity. In the following, 
such error is weighted as: 

δ𝒆𝒆� =  Wδ𝒆𝒆,  W =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1,1,1,1/𝑛𝑛𝑐𝑐0, 1/𝑛𝑛𝑐𝑐0, 1/𝑛𝑛𝑐𝑐0) (6) 
using the chief’s mean motion nc0, to provide an error measured in meters.  
In order to assess the accuracy performance of the whole relative motion propagation set-up 
the index of merit ν over the fixed time duration ∆t is defined as: 

ν∆𝑡𝑡 = ν(∆𝑡𝑡) = max𝑡𝑡0,𝑖𝑖∈[𝑡𝑡0,𝑡𝑡0+Tref]�δ𝒆𝒆�(∆𝑡𝑡, 𝑡𝑡0,𝑖𝑖)�2 =  max𝑖𝑖 𝑣𝑣𝑖𝑖(∆𝑡𝑡)  (7) 



NON-PEER REVIEW 
 

18th Australian Aerospace Congress, 24-28 February 2018, Melbourne 
 

Accordingly, this index provides the maximum of the norm-2 of the weighted relative error in 
meters, over the given elapsed time ∆t, considering all possible i-th initial times t0,i contained 
in the reference interval Tref (typically equal to one orbital period). The index of Eqn 7 is 
inspired from the one defined in equation (8) of Ref. 24 and used to compare the several 
relative motion models surveyed there. Though, the adopted index extends the one of [24], by 
considering the effect of the initial conditions, introduced by the osculating/mean elements’ 
conversion errors. This aspect was regarded in the comparative work of Ref. 25, where for 
each given considered relative orbit, a set of 100 equally spaced initial conditions were 
propagated. As a result, the metric of Eqn 7 merges two fundamental aspects, namely: the 
quantitative result of the relative error expressed in meters (beneficial to size GNC hardware 
and algorithms), and the conservative principle of the worst-case condition (beneficial to 
provide a realistic assessment of the performance). 
The presented analyses are carried out assuming a scenario from the PRISMA (Prototype 
Research Instruments and Space Mission Technology Advancement) mission [26]. 
Accordingly, the orbit of the chief is taken as sun-synchronous, dusk-dawn, e = 0.001, and 
710 km of height. Moreover, for the inclusion of the effects of the non-conservative 
perturbations, the deputy and chief satellites are customized on the Tango and Mango 
spacecraft respectively. The PRISMA scenario has been chosen as representative of LEO 
orbits with a height where the effect of the differential aerodynamic drag is negligible (see 
section 7 of Ref. 2). Beyond pure formation flying applications, this orbital area is particularly 
interesting for future active debris removal activities. 
Regarding the relative motion, the two scenarios summarized in Table 1 are considered. There 
the relative orbits are defined through the relative semi-major axis δa, relative mean longitude 
δλ, magnitude of the relative eccentricity vector δe, and magnitude of the relative inclination 
vector δi. An (anti-)parallel relative eccentricity/inclination vector configuration is assumed. 
The first scenario (i.e., S1) presents a bounded trajectory displaced few kilometres away from 
the chief satellite in along-track direction. Therefore, S1 corresponds to the N2 case of [24], 
with relative orbit size of circa 300 m, though displaced in along-track. The second scenario 
(i.e., S2), instead, foresees a drifting relative motion, with larger orbit size, as typically used in 
the first phases of a far-range rendezvous (though in that case travelled to get closer to the 
target). S2 is introduced to investigate the difference between the M1 and M2 relative motion 
models, thought remaining in the domain of validity of the first order OEs expansion 
approach. 

Table 1: Definition of the relative orbits for each considered scenario. 
 

Scenario |aδa| |aδλ| ||aδe|| ||aδi|| 
[m] [m] [m] [m] 

S1 0 4500 250 300 
S2 200 4500 1500 3000 

 
The summary of the performed simulations is provided in Table 2 for the scenario S1 and 
Table 3 for the scenario S2. For each simulation, the Tref interval is taken as 5940 seconds that 
corresponds to circa the unperturbed orbital period of the chief satellite. By considering a time 
granularity of 1 minute for the initial times t0,i, a population of 99 different initial conditions is 
employed for each run. The value of the index ν is provided for two simulation legs, 
corresponding to 1-day (i.e., 14.5 Tref) and 2-day long (i.e., 29 Tref) time durations. 
In the cases of Table 2 the propagation of the relative motion adopts the STM of the model 
M1 for all the simulations. The osculating/mean OEs conversions, instead, make use of the 
different approaches listed in the first column (i.e., Transf.). The reference orbits are 
generated for three different orbital dynamics. In the first two cases the non-homogenous 
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Earth mass distribution is the solely perturbation accounted, respectively geopotential of 
order-6 degree-6 and order-30 and degree-30. In the last case, in addition to the 30 by 30 
geopotential all other orbital perturbations are included (e.g., aerodynamic drag, solar 
radiation pressure, third-body due to Moon and Sun, tidal and relativity effects). In all these 
three cases the reference orbits of the chief and deputy satellites are obtained with numerical 
integration in the EME2000 reference system. Finally, for each performed simulation the 
reference to the related plot is recalled (i.e., see the columns Ref. in Tables 2 and 3). 
 

Table 2: Summary of performed simulations for the Scenario 1.  
Index scores are given for the model M1. 

 
 Geopot. 6x6 Geopot. 30x30 Geopot. 30x30 & Others 

Transf. Ref. ν1day ν2day Ref. ν1day ν2day Ref. ν1day ν2day 
  [m] [m]  [m] [m]  [m] [m] 

M-1st  Fig. 5.a 46.50 61.51 - - - - - - 
A-2nd Fig. 5.b 20.69 41.29 - - - - - - 
KA-4x4 Fig. 6.a 16.19 31.12 Fig. 7.a 20.82 41.64 Fig. 8.a 36.05 106.76 
KA-6x6 Fig. 6.b 1.08 1.70 Fig. 7.b 14.25 28.14 Fig. 8.b 31.57 99.30 
 
The results of the comparison of different transformation methods in the osculating/mean 
conversions when dealing with the orbital dynamics perturbed by a degree-6 order-6 gravity 
field are presented in Fig. 5 and Fig. 6. The 99 cases are highlighted through different colours, 
and the y-axis shows the trend over time of each corresponding 𝑣𝑣𝑖𝑖(∆𝑡𝑡) as defined in Eqn 7. A 
remarkable improvement is already achievable by including J2 to the second order, as shown 
in the two views of Fig. 5. Then, a further improvement can be achieved with the full 
proposed algorithm, reaching the best possible performance in the case where the 
transformations account for the same geopotential terms of the environment (i.e., 6 by 6). In 
such limit case, the fully analytical propagation of the relative motion would remain accurate 
at meter level even after 2 days. 
Once verified the effectiveness of the proposed approach, the remaining simulations address 
the trade-off between transformation complexity (i.e., KA-4x4 or KA-6x6) and achievable 
accuracy performance when the dynamics resembles a more realistic environment. 
 

 
a) M-1st    ………… b) A-2nd 

Fig. 5: Reference orbits from numerical propagation in 6x6 gravity field. 
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a) KA-4x4 b) KA-6x6 

Fig. 6: Reference orbits from numerical propagation in 6x6 gravity field. 
 

 
a) KA-4x4 b) KA-6x6 

Fig. 7: Reference orbits from numerical propagation in 30x30 gravity field. 
 
By reading the results for each line of Table 2, it is possible to measure the degradation effect 
brought by higher terms of the potential and remaining orbital perturbations. For the latter 
contribution, the modelling error is also due to the lack of inclusion of the perturbations in the 
relative motion model. The related plots for the dynamics simply perturbed by a degree-30 
order-30 gravity field and by the general perturbed case are respectively shown in Fig. 7 and 
Fig. 8. 
The simulation results collected in Table 3 concern the relative orbit of scenario S2. In all 
these cases, the adopted osculating/mean OE conversion method is the KA-6x6. The first row 
presents the results obtained by modelling the relative motion with the M1 STM. By looking 
at the values obtained in the 6 by 6 gravity field, the marginal improvement achieved by M2 
can be appreciated. In this situation, in fact, since the transformations account for all the 
geopotential terms of the environment, it is possible to isolate the tiny relative effect of the 
higher zonal terms, for this size of relative motion. 
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a) KA-4x4 b) KA-6x6 

Fig. 8: Reference orbits from numerical propagation in 30x30 gravity field  
and remaining orbital perturbations. 

 
Table 3: Summary of performed simulations for the Scenario 2. 

Osculating/mean transformations with KA-6x6 only.  
 

 Geopot. 6x6 Geopot. 30x30 Geopot. 30x30 & Others 
Model Ref. ν1day ν2day Ref. ν1day ν2day Ref. ν1day ν2day 

  [m] [m]  [m] [m]  [m] [m] 
M1 Fig. 9.a 7.45 13.69 - 16.57 33.65 Fig. 10.a 33.96 102.11 
M2 Fig. 9.b 6.88 12.43 - 17.38 34.04 Fig. 10.b 34.77 104.44 
 
 
Indeed the M2 model provides an elegant and compact formulation to account for the general 
geopotential field. Nevertheless, in the generally perturbed case and in the considered relative 
motion domain (limited in size to use a model based on first order expansion w.r.t. the chief 
orbit) its improvement in accuracy is nullified by the error introduced by the remaining 
neglected perturbations. The plots related to these results are Fig. 9 and Fig. 10. Depending on 
the required accuracy, one should consider either to improve the model of the relative 
dynamics (e.g., also accounting for the perturbations currently not considered) or, at 
engineering level, it would not be justified the increase of complexity of the code of M2 
compared to M1. 

Conclusion 
 
This paper presented an algorithm to perform the two-may mean/osculating orbital elements’ 
transformations as required to support a relative orbital elements-based relative GNC system 
when the orbit of the chief satellite is known in an inertial frame. The treatment is confined 
into the low Earth orbit region with focus on the orbital perturbation due to the non-
homogenous terrestrial mass distribution. 
The proposed approach combines a Hamiltonian technique applied to the J2 problem with 
Kaula’s linear perturbation method for the remaining terms of the geopotential. The resulting 
algorithm is compact, fully analytical in both transformation directions, and free from 
singularities (but not applicable in the vicinity of the critical inclination). Thus it can serve a 
wide range of formation flying and active debris removal applications. 
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a) Model M1 b) Model M2 

Fig. 9: Reference orbits from numerical propagation in 6x6 gravity field. 
 

 
 

 
a) Model M1 b) Model M2 

Fig. 10: Reference orbits from numerical propagation in 30x30 gravity field  
and remaining orbital perturbations. 

 
The exploitation of the proposed algorithm improves the accuracy performances of analytical 
orbital elements-based relative motion models. To prove this, the paper presented the 
achievable relative position error results, depending on the geopotential terms accounted in 
the transformations, for 1-day and 2-day long propagation legs, into a high fidelity simulation 
environment. Accordingly, this analysis provides a realistic assessment of the achievable 
propagation performance, regardless the initialisation conditions. Moreover, with concern to 
spaceborne implementations, this analysis allows understanding what level of complexity is 
required to be included in the code, depending on the actual accuracy that is required by the 
mission task (e.g., GNC algorithm, sensors a/o actuator capabilities). 
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