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Abstract 

 
The DSST includes comprehensive models for both the mean-element and the short-periodic 
motions of an artificial Earth satellite orbit. These models are developed in the equinoctial 
orbital elements via Perturbation Theory, in particular the classical Method of Averaging.  
The development assumes a near identity transform to the osculating elements from the mean 
elements and an expansion for the mean element equations of motion. The constants in the 
DSST are the mean equinoctial elements at an arbitrary epoch. The DSST includes the partial 
derivatives of the osculating elements at an arbitrary output time with respect to the epoch 
values of the mean equinoctial elements and the dynamical parameters. The partial derivative 
calculation includes variational equations constructed from the mean element equations of 
motion. 
 
Keywords: semi-analytical theory, mean equinoctial elements, short-periodic motion, partial 
derivatives, orbit estimation, long-term orbit. 
 

Introduction 
 
DSST is a semi-analytical orbit propagator, whose original Fortran 77 version exists in two 
forms, one as an option within the Massachusetts Institute of Technology (MIT) version of the 
Goddard Trajectory Determination System (GTDS) computer program [1] and the other as a 
standalone orbit propagator package [2]. DSST has also recently been implemented in the 
open source Orekit Flight Dynamics library (Java) [3], and in the C/C++ version of the DSST 
Standalone (currently in testing) [4]. 
 
The evolution of DSST Standalone is described in Ref. 2. The development of the DSST 
Standalone started in 1983. Later, between 1990 and 1994, it was modified by the Draper 
Laboratory technical staff to be used as the orbit propagator in the Mission Support Program 
for both the Landsat 6 and Radarsat-1 missions [2, 5]. The design of this version is described 
in detail in Ref. 6. The main contribution of the early 1990s focused on the top-level interface, 
which was reimplemented to be file driven.  
 
During the late 1990s, additional improvements were made to DSST Standalone, including:  

• Updates to improve the maintainability of the source code, including the replacement 
of common blocks with structured records and modules. This improvement implies 
unique variable names, which helps avoid confusion within the subroutines.  

• Solar and Lunar solid-Earth tide model in the mean element equations of motion.  
• Integration using the FK5 (J2000.0) coordinate frame.  
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• Geopotential size expanded to a degree and order of 50.  
• Short-periodic tesseral linear combination terms.  
• Short-periodic lunar-solar terms.  
 

Semi-analytical propagators combine the characteristic speed of analytical propagation and 
the accuracy of numerical propagation. They are based on the concept of expressing the 
orbital state as the addition of two components: one with slow dynamics and other that 
collects the fast variations. The first one includes the secular and long-period terms, thereby it 
represents a centered or mean model. As its rate of change is slow when compared to the 
orbital period, a numerical integration can be performed with very long steps, which implies 
fast computation. The other component, the fast one, collects the short-period terms, hence it 
represents the difference between the osculating and the mean parameters. This component is 
computed only at the final epoch, in order to recover the osculating ephemeris from the mean 
values. 
 
The necessary equations to deal with both components can be derived from asymptotic 
expansions, both for the mean-element equations of motion and for the short periodic motion 
[7]. Their terms can be either computed analytically or represented as Fourier series.  
 
Semi-analytical propagation is fast because it only requires a numerical integration of the 
slowly-varying component through long steps, together with a closed-form evaluation of the 
fast-dynamics component at the final epoch. In addition, the short-period expansions include 
coefficients that vary slowly, which allows being interpolated on a grid, similarly to the 
numerical integration of the mean elements. At the same time, semi-analytical propagation is 
also accurate, because it includes a wide range of perturbations [8].  
 
Both Batch Least Squares and Kalman Filter processes estimate the DSST mean elements 
from the observation data [9].  The Extended Semi-analytical Kalman Filter (ESKF) employs 
analytical re-linearization on the observation grid [10].   
 
It is worth noting that the step size in the case of the slow-dynamics component integration 
assumes that the mean element motion frequencies due to the zonal harmonics in the 
geopotential are slow relative to the frequencies due to the lunar perturbations. The integration 
step for a LEO orbit is usually around half a day, which corresponds to several revolutions. 
However, as the orbital period increases, the step size remains the same because the lunar-
solar frequencies do not change, although the number of steps per revolution may be different 
due to the variation in the revolution duration.  
 
The outline of this paper is as follows. First, the mean-element equations of motion are 
derived, and the perturbation models considered in DSST are described. Then, a brief 
introduction to DSST semi-analytical least square orbit determination is presented. After that, 
some numerical tests are discussed. Finally, we summarize this paper. 
 

Mathematical Preliminaries 
 
The theory underlying DSST makes use of non-canonical elements and is based on the 
Generalized Method of Averaging (GMA), an introduction to which can be found in Section 
5.2.3 of Ref. 11, and Section 5.3 of Ref. 12. The GMA supports both the mean-element 
motion and the short-periodic motion, although in this section we will only focus on the 
mean-element equations of motion.  
 
There are different forms of the Method of Averaging development for the cases of multiple 
small parameters and for time dependencies [13]. Both the Lagrange and Gauss forms of 
variation of parameters (VOP) are employed. The Lagrange form is used for the conservative 
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terms: geopotential, lunar-solar point masses, and the solid Earth tides. This leads to the 
averaged disturbing potential. The Gauss form is used for the atmospheric drag and the solar 
radiation pressure (SRP). For drag and SRP, the integrals are evaluated by means of numerical 
quadrature. This approach facilitates the inclusion of complex atmosphere densities and 
spacecraft models in the DSST.   
 
The short-periodic models are developed as a Fourier series in a rapidly varying phase angle; 
the phase angle is chosen to obtain closed forms for the Fourier series for the zonal and lunar-
solar short-periodic motion [14]. The Fourier coefficients are functions of the mean 
equinoctial elements. The tesseral resonance and tesseral short-periodic models employ Jacobi 
polynomials and Hansen coefficients [15].  The detailed models emphasize the application of 
recursions. The calculations employ numerical interpolation techniques so that the detailed 
evaluations of the mean element rates and the Fourier coefficients are done only on large time 
grids.  
 
A list of the force models for the mean-element and short-periodic motions is summarized in 
Table 1. 
 

Table 1: Force model formulation for the Draper Semi-analytical Satellite Theory 
 

Mean-element motion 

(Averaged VOP equations) 

Short-periodic motion 

(Mean-to-osculating equations) 
Recursive zonals in closed form and J22 up 
to first order in eccentricity 
J22via numerical quadrature [16] 

Recursive zonals in closed form and J22 
up to first order in eccentricity 

Recursive tesseral resonance (en, n>20) up 
to 50 x 50 geopotential 

Recursive tesseral m-dailies in closed 
form 
Recursive tesseral linear combinations 
(en, n>20) 
Recursive J2 secular / tesseral m-daily  
coupling in closed form 

Recursive Solar-Lunar single averaged 
(time independent) in closed form 
Recursive Solar-Lunar double averaged 

Recursive Solar-Lunar in closed form 
 
Recursive Solar-Lunar double averaged 
(weak time dependent) in closed form  

Solid Earth tide in closed form  
Atmospheric drag via numerical quadrature 
 
J2 – drag coupling terms via numerical 
quadrature 

Atmospheric drag numerical 
computation 

Solar radiation pressure via numerical 
quadrature 

Solar radiation pressure numerical 
computation 

 
The following physical perturbations will be considered as small parameters: both the zonal 
and the resonant tesseral harmonics in the non-spherical gravitational potential field, and the 
lunar-solar point mass factors. The resonant tesseral harmonics are those in which a 
commensurability between the periodic component of the perturbation, related to the central 
body rotation rate, and the mean motion of the satellite can be found, thus converting such 
periodicity into a steady variation. The slowly-varying resulting terms survive the averaging 
process of the GMA [17].  
 
McClain [7] provides a derivation of the mean-element equations of motion for the case of 
two perturbing functions. The osculating equations of motion are given by  
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where the quantities ε and ν are the small parameters and a = (a1,...,a5). The ai (i = 1,2,...,5) 
represent the equinoctial elements a, h, k, p, and q. The phase angle l is the mean longitude. 
The GMA involves the assumption of a transformation from the osculating mean elements,  
 

 
to the osculating elements, and an assumed form for the mean-element equations of motion,  
 

 
The functions ψi,j,k depend on the mean elements 𝒂", 𝑙 ̅ and are 2π periodic in the mean fast 
variable, 𝑙.̅ The functions Bi,j,k only depend on the slowly varying elements 𝒂". The identity 
transformation is Eq. (2) and the assumed mean-element equations of motion are Eq. (3). For 
lunar-solar perturbations, the ψi,j,k and the Bi,j,k may also have dependencies on the lunar-solar 
ephemeris, not just the mean equinoctial elements.  
 
At the conclusion of McClain’s derivation, the mean-element equations of motion to first 
order reduce to  

 
 
Eq. (1) through Eq. (4) can be generalized to an arbitrary number of perturbing functions in a 
straight-forward manner. The mean-element equations of motion in the DSST software 
correspond to the generalization of Eq. (4).  
 

Orbit Determination with DSST 
 
A Batch Least Square (BLSQ) orbit determination (OD) method is applied extensively in 
most existing orbit determination systems for catalogue maintenance. The intention of this 
part of the work is to reduce the computational effort in this process; for this purpose, the 
DSST has been coupled with the BLSQ orbit determination method. A semi-analytical way of 
computing partial derivatives for a perturbed object which is compatible with the DSST was 

are slow relative to the frequencies due to the lunar perturbations. The integration step for a LEO
orbit is usually around half a day, which corresponds to several revolutions. However, as the orbital
period increases, the step size remains the same because the lunar-solar frequencies do not change,
although the number of steps per revolution may be different due to the variation in the revolution
duration.

In this paper, we address another of the tasks that were outlined in Reference 1: the migration of
DSST from its original source code in Fortran 77 to C/C++. In the first stage of this project, we are
producing C/C++ code that respects the original Fortran 77 design as much as possible, in order to
benefit from all the validation and verification that has taken place during the last decades.
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dt
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The identity transformation is Eq. (2) and the assumed mean-element equations of motion are
Eq. (3). For lunar-solar perturbations, the  i,j,k and the Bi,j,k may have dependencies on the lunar-
solar ephemeris, not just the mean equinoctial elements.

At the conclusion of McClain’s derivation, the mean-element equations of motion to first order
reduce to

dāi
dt
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dl̄

dt
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Eq. (1) through Eq. (4) can be generalized to an arbitrary number of perturbing functions in a
straight-forward manner. The mean-element equations of motion in the DSST software correspond
to the generalization of Eq. (4).

OVERALL ARCHITECTURE OF FORTRAN 77 DSST STANDALONE

In this section we will describe the primary structure of the DSST Standalone program by means
of several diagrams created in LATEX using the Tikz package⇤.

Figure 1 gives the top-level design of DSST Standalone. Basically, the main program orbit -
propagator services reads a data record from the standard input file, calls the integer func-
tion SATELLITE, which provides the mean elements, the mean element rates, and the perturbed
position and velocity at the time requested by the user and, finally, writes a data record to a standard
output file.

The subroutine SATELLITE, in turn, calls other important subroutines which are responsible for:

• Initialization of constants. The subroutines involved in this task are: GETENV, MP READ -
PMEF, GET CSCONS, READ EPOT

• Initialization of quantities that depend on the initial time. This process is carried out by the
subroutine INTANL

• Initialization of quantities that depend on the values of the orbital elements at the epoch time
(this portion of the initialization will be repeated at the start of each Differential Correction
iteration). This process is carried out by the subroutine BEGANL

⇤https://sourceforge.net/projects/pgf/
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formulated by Green [9]. This section provides a brief insight into the selected part of Green’s 
work. 
 
For a given initial condition of a space object, with state Xt0 associated with covariance Pt0, 
and for an available arc of observations, BLSQ provides the best estimate at the epoch state,  
 

 
This is carried out in an iterative process by solving a Normal equation 
 

 
where A is the partial derivative matrix, W is the weighting matrix and b represents the 
residual vector. 
 
The derivation and preparation of the components of the Normal equation are described in 
[15]. The partial derivative matrix, A, is usually composed of the ‘observation matrix: H’ and 
the ‘state transition matrix: Φ’ (STM), 
 
 

 
Φt,0 can be computed by finite differencing method or by integrating the variational equations. 
Φt,0 provides the slope and direction to the least square system towards convergence. To reach 
convergence (best estimate) in a smaller number of iterations, one has to include the major 
perturbing forces while establishing Φt,0.  
 
A runtime profiling of an OD system showed that the computation of the STM was one of the 
major resource consuming parts of that OD software. The profiling was carried out on a 
BLSQ program which used the numerical propagator, and the same is assumed to be true for 
other OD processes. The DSST-OD computes the STM in a semi-analytical fashion, thereby 
intending to reduce the computational load of the OD.  
 
DSST employs propagation in the mean-element space, while the observations are in the 
osculating space. To map the mean space to the observed osculating space, the STM is further 
divided into two components, as follows 
 

 
Here, Xt represents the osculating positions and velocities and c(t) represents the osculating 
equinoctial elements at an arbitrary time, t. G represents the perturbed partial derivatives, 
which are expressed as  
 

 
with �̅�𝟎 as the epoch mean equinoctial elements, and p as the vector composed of the 
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way, matrix G is further expanded as  
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= "hFi(ā, l̄)il̄ + ⌫hGi(ā, l̄)il̄ (i = 1, 2, . . . , 5), (4)

dl̄

dt
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B1 and B4 represent the short periodic portion of the semi-analytical partial derivatives, which 
are computed at the observation time intervals.  
 
Matrices B2 and B3 are governed by linear differential equations, which are computed on the 
mean-element integration time grid. For the DSST, this is usually on the order of a half or one 
day step sizes.  
 

Numerical results 
 

With the aim of verifying the long-term propagation capabilities of DSST, we will present two 
cases that correspond to orbits with high eccentricities: a Molniya and a Super-GTO. Both 
cases are taken from [18]. The Molniya case is shown in Figure 1. This test case includes J2-J8 
zonal harmonics, lunar and solar masses and solar radiation pressure, and was propagated 
using GTDS/DSST in J2000 coordinates. Only mean eccentricity and inclination are 
displayed. The initial orbit is 45800 km x 7460 km in apogee and perigee. The eccentricity is 
0.72 at 63.4 degrees of inclination (critical). The periodic behavior in eccentricity and 
inclination indicates a period of approximately 8.33 years. Differences in along and cross 
track stay below 40 km and 10 meters, respectively, over a 50-year span, showing good 
agreement between NASA FDF and TRAMP files [19, 20, 21]. 
 

 
 

Fig. 1: Molniya mean eccentricity and inclination with J2-J8, L-S point masses, and SRP 
propagated in J2000 coordinates 

 
The SuperGTO case is shown in Figure 2. This case includes J2-J8 zonal harmonics, J2-
squared using a quadrature model, lunar and solar point masses, and solar radiation pressure. 
This case was propagated using the GTDS/DSST in J2000 coordinates and, as the previous 
case, only mean eccentricity and inclination are displayed. The initial orbit is 96380 km x 
6678 km in apogee and perigee. The periodic behaviors in eccentricity and inclination are 
similar, approximately 8 years. The initial eccentricity is 0.87 at 30 degrees of inclination. 
Differences between the propagations using NASA FDF and TRAMP files remain under 0.1 
meters for the first 3 years where real A.1-UT1 data is available.  The differences in radial, 
along and cross track stay below 10 km, respectively over a 14-year span. This shows good 
agreement between NASA FDF and TRAMP files. 
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Fig. 2: SuperGTO mean eccentricity and inclination with J2-J8, J2-squared, L-S point masses, 
and SRP propagated in J2000 coordinates 

 
 

Conclusions 
 
This paper provides a short review of the Draper Semi-Analytical Satellite Theory (DSST) 
and some of its main features, such as the use of mean equinoctial elements as the state 
variables of the theory, or the interpolation system, which provide an efficient evaluation 
system of the mean elements and short-period terms. 
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