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Abstract 

 

In our previous works [1-4] we discovered an efficient method of control of the inversion of the 

spinning spacecraft. This method was prompted by the “Dzhanibekov’s Effect” or “Tennis 

Racket Theorem” [4], which are often seen by many as odd or even mysterious. The proposed 

spacecraft inversion method does not employ conventional RWs, but, instead, is using proposed 

morphing of the inertial properties of the spinning spacecraft. It allows to completely stop 

flipping motion or activate flipping motion on the spacecraft, being in its stable spin.  

In this paper, we are considering a spacecraft, which has both, inertial morphing and RW, 

capabilities. It is believed that performance of the RW systems could be enhanced with the 

inertial morphing. For general formulation, we first assume ability of the spacecraft to change 

its inertial properties, associated with all three principal axes of inertia. Secondly, we also 

assume that the spacecraft is equipped with three control wheels, located along the x, y and z-

axes of the body-fixed frame. For simulation of these types of spacecraft systems, extended 

Euler’s equations are used and peculiar dynamics of the spacecraft is illustrated with a several 

study cases. We illustrate complex spacecraft attitude dynamics manoeuvres, using geometric 

interpretation, employing angular momentum spheres and kinetic energy ellipsoids. We 

demonstrate individual and aggregated contributions of the inertial morphing and RW to the 

changes of the shape of the kinetic energy ellipsoid and relate this to the resultant various feature 

manoeuvres, including inversion and re-orientation.  We discuss enhancements of each of the 

control capabilities, morphing and RW. For the periodic inversion motions, we perform 

calculation of the periods of the flipping motion, based on the complete elliptic integral of the 

first kind and present in a systematic way flipping periods for various combinations of inertial 

properties of the spacecraft. We discuss strategies leading to the increase or reduction of the 

flipping and/or wobbling motions. A discovered “asymmetric ridge" of high periods for peculiar 

combinations of the inertial properties is discussed in detail. Numerous examples are illustrated 

with animations in Virtual Reality, facilitating explanation of the analysis and control 

methodologies to a wide audience, including specialists, industry and students.     
 

Keywords: spacecraft attitude dynamics, Euler’s equations of motion, morphing spacecraft, 

reaction wheel (RW), angular momentum sphere, kinetic energy ellipsoid, flipping period. 
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Introduction 

 

The paper is aiming to contribute to the attitude dynamics and control of spacecraft and was 

prompted by an interesting phenomenon, known as “Dzhanibekov’s Effect” and “Tennis 

Racquet Theorem” [5]. Developing numerical simulation tools and analysis to explore these 

phenomenon and its geometric interpretation, it was possible to discover a new concept of the 

“inertial morphing” of the spacecraft systems to effectively control the “Dzhanibekov’s Effect”, 

presented in our recent works [1-4] and extend it further to enable attitude control of the 

spinning/tumbling systems, converting compound motions into simple spins about one of the 

selected/nominated body axes. 

 

Leonard Euler and his Famous Equations for the Rigid Body Dynamics 

 

Leonhard Euler (April 15, 1707 - Sept. 18, 1783) was a famous Swiss physicist and 

mathematician (the most eminent of the 18th century and one of the greatest in history), who 

made key contributions to various fields of mathematics and mechanics, leaving long-lasting 

heritage of more than 500 books and papers. (His portrait is presented in Fig. 1a).  

 

 

 

 

(b) 

 

 

 

(a) (c) 

Fig. 1: (a) Leonard Euler’s portrait from the University of Tartu collection [6]. 

(b) The title of the historic Leonard Euler’s work [7], dated by 1758. 

(c) Euler’s equations as they appeared in the original L.Euler’s work [8]. 

 

It has been computed that his publications during his working life averaged about 800 pages a 

year. Euler was one of the most eminent mathematicians of the 18th century, and is held to be 

one of the greatest in history. His “Euler’s identity” is considered an example of mathematical 

beauty: 

1 0ie                                                (1) 

 

called "the most remarkable formula in mathematics" by Richard P. Feynman [9], for its 

single uses of the notions of addition, multiplication, exponentiation, and equality, and the 

single uses of the important constants 0, 1, e, i and π.  
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In 1988, readers of the Mathematical Intelligencer voted it "the Most Beautiful Mathematical 

Formula Ever". In total, Euler was responsible for three of the top five formulae in that poll 

[10].  His interests are amazingly versatile. Even when dealing with music, Euler’s approach is 

mainly mathematical. His writings on music are not particularly numerous (a few hundred 

pages, in his total production of about thirty thousand pages), but they reflect an early 

preoccupation and one that did not leave him throughout his life. 

 

Among numerous Euler’s works, he developed rigid-body dynamics, very influential 

publication has a very special place in history. It presented Euler’s equations for the dynamics 

of a rigid body, widely used in modern engineering and science.  

 

Being always fascinated with Euler’s scientific work and heritage, the authors were delighted 

to find in the Euler’s archive his original work. It is with greatest pleasure and a profound sense 

of tribute to Great Euler, we are reproducing famous Euler’s equations, exactly as they appeared 

in Euler’s original work. 

 

In Fig. 1c we show the title of the publication, available from the Euler’s archive [8] and the 

Euler equations. 

 

Euler’s Dynamic Equations for the Motion of a Rigid Body 

 

The iconic Euler dynamic equations of motion of the rigid body with constant values of the 

principal moments of inertia, can be written as [7, 11]: 
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These differential equations could be easily solved numerically, if particular initial conditions 

are specified. One of the possible techniques is based on the Runge-Kutta methods, 

implemented in MATLAB and Cleve Moler, founder of Mathworks, provides with an amazing 

interactive tools implementing this strategy [12]. Another possibility is to re-write Eqs.(2) in 

terms of the quaternions and solve these resultant equations. 

 

Non-Dimensional Formulation of the Equations 

 

For the main derivations in this paper we will typically assume that the system has three distinct 

principal moments of inertia, which are arranged in the following order: xx yy zzI I I   . For 

more generic formulations, let us introduce two non-dimensional parameters,  and  , both 

restricted in their values within the range between 0 and 1: 

  ; ; (0 1; 0 1)
yy xxxx

zz zz xx

I II

I I I
   


     


                                                   (3) 

Parameter   in this case would have a similar meaning of the non-dimensional coordinate 

“counterpart” from the Finite Element Method, defining the current position within the finite 

element. In the context of our study,   is specifying the non-dimensional relative position 

coordinate of the intermediate value of the moment of inertia between the minimum value of 

the moment of inertia xxI and the maximum value of the moment of inertia zzI . In other words, 

it can be said that   is the non-dimensional parameter in the Hermite functions, enabling 

calculation of yyI  using xxI and zzI , using the following relationship: 
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 1yy xx zzII I           (4) 

Zero value of   would now correspond to Ixx and unit value of    would correspond to Izz  and 

any intermediate value of  , expressed via 0 <  < 1, would correspond to Iyy . With these 

notations, we can also derive several relationships, enabling useful conversions in the future: 

1
1 ; ;

yy xxxx
yy xx zz

zz xx

I II
I

I
II

I
 

 


   

 


 
 


     (5) 

For illustration purposes, we solve Euler’s Eqs.(2) for the same system with Iyy =2; Iyy =3; Iyy 

=4 [all in kg*m2], which correspond to  = 0.5 and  = 0.5, but consider three contrast cases of 

the initial conditions. Results of the numerical simulations for , ,x y z    are shown in Fig.2. 
 

 

 

 
Fig.2: Time histories for angular velocity components , ,x y z   for three contrast cases of 

initial conditions: (A) 0 0 0=0.01, =1.5,  =0;x y z    (B) 0 0 0=0.4, =1,  =0.8;x y z    

(C) 0 0 0=1.3, =0.6,  =0.3x y z    (here and further all angular velocities are given in rad/s). 

For more general interpretation, we are proposing to introduce non-dimensional angular 

momentum coordinates:  
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   (6) 

 

and show results in the , ,x y zH H H  coordinates. Fig.3 shows previous cases A, B and C as 

trajectories (shown with red color) of the tip of the non-dimensional angular momentum vector, 

H  , called polhodes [11]. Fig.3 also shows superimposed three quiver plots for H vectors. 



PEER REVIEW 

 

18th Australian International Aerospace Congress, 24-28 February 2019, Melbourne 

 

  

(a) (b) 

Fig.3: Polhodes: (a) for demo cases A, B and C in Fig.2;  

(b) examples of broad coverage of initial conditions. 

 

Polhodes and Separatrices 

 

Fig.3b shows that the polhodes can be split into four groups, separated by the (shown as bold 

black) lines, called separatrices. In case of Iyy being the intermediate moment of inertia, two 

separatcies intersect at the points on the y axis. It is possible to show that polhodes are seen on 

orthogonal projections as ellipses, hyperbolas and ellipses and separatrices are seen on the x-z 

projection as two lines, passing through the y axis, reduced on projection to a dot. We can 

calculate a very important characteristic of the rotational motion of the spacecraft,  - angle of 

inclination of the separatrix plane with respect to the z axis [2]: 

( )
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   (7) 

  
(a) (b) 

Fig.4: Changes in the angle  due to the variation in both,  and  : 

(a) 3D surface plot for ( , )    function with colorbar added; 

(b) 2D projection of the ( , )    surface with its contour lines: 0 : 0.1:1; 0 :10 :90   . 

 

Changes in the angle  due to the variation in both,  and , are shown in Fig.4. Note, that for 

convenience, values of  angles are presented in degrees. 
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The method, described in [2], was based on the calculation of the value of the intermediate 

moment of inertia Iyy for the specified angle   and known values of Ixx=2.4 and Izz=3.15. For 

this formulation, Eq.(7) can be re-written as follows: 

 
1

21 (tan ) /  


          (8) 

For the particular case, considered in [2], for Ixx=2.4 and Izz=3.15, the corresponding value of  

is equal to =0.7619; furthermore, Eq.(8) gives =0.5907, which (as per Eq. (3)), corresponds 

to Ixx= 2.8430. 

 

The generic graphical method, corresponding to this procedure, is illustrated in Fig.5, where 

angle    (shown in degrees) is plotted as a function of  for various values of =[.1, .2, .3, .4, 

.5, .6, .7, .8, .9, 1]. 

 

 
 Fig.5: Changes in the angle  due to the variation in   for selected values of =[1:10]/10. 

 

Kinetic Energy Ellipsoid and Geometric Interpretation of Polhodes 

 

Let us express the kinetic energy of the rotating body in terms of the angular momentum 

components: 
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                 (9) 

 

It would be essential, in the context of the “inertial morphing” concept (presented later in the 

paper), to consider the general case allowing for the principal moments of inertia of the 

system to change with time: 
22 2

( )( ) ( )
( )
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                                               (10) 

Being dedicated to the non-dimensional formulation, we divide both sides of this equation by 

constant 2 (0)H  and rearrange result in terms of non-dimensional quantities xH , yH and zH :  
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In view of Eqs (6), this equation can be rewritten in terms of the non-dimensional angular 

momentum components: 
22 2

2

( )

[ (0)]2 ( ) 2 ( ) 2 ( )
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               (12) 

 

Finally, last Eq. (12), can be written in its useful final form, used in this paper, as follows: 
22 2
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Case-A: 

  
 

(a) (b) (c) 

Case-B: 

  
 

(d) (e) (f) 

Case-C: 

  
 

(g) (h) (i) 

 

Fig. 6: (a),(d),(g) Angular momentum unit spheres (left column); (b),(e),(h) kinetic energy 

ellipsoids (middle column) for Cases-A,B,C; (c),(f),(i) Superimposed AMSs and KEEs. 
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Equation (13) corresponds to the ellipsoid in the xH , 
yH and zH axis, with the following 

values of the semi-major axes: 
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t
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
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         (14) 

Let us, in addition to the angular momentum spheres with specific polhodes for the cases A, B 

and C (Fig.6, left column), plot also corresponding kinetic energies ellipsoids (Fig.6, middle 

column). Then, combining the surfaces in these two columns, we can see that specific polhodes 

are, in fact, lines of intersection between corresponding AMSs and KEEs (Fig.6, right column). 

Utilising conveniences of the non-dimensional notations, we can illustrate influence of the 

variables  and  on the shapes of the kinetic energy ellipsoids and polhodes. Fig.7 presents 

nine contrast cases for the combinations of  =[0.1, 0.5, 0.9] and =[0.2, 0.5, 0.9]. 

 

 0.2    0.5   0.9   

 

 

 

.1    

   
 

 

 

.5    

   
 

 

 

.9    

   
 

Fig. 7: Contrast cases of simulations of the rotating rigid body with the same initial 

conditions ( 0 0 01; 0; 1.5x y z     - all in rad/s ) and 
22 kg mxxI    , illustrating changes 

of the shape of the kinetic energy ellipsoid due to the changes in  and . 
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“Dzhanibekov’s Effect” and Tennis Racquet Theorem 

 

Motion of the spinning rigid body, labelled as Case-A, has a very special significance, as it is 

related to the so called “Dzhanibekov’s Effect” and “Tennis Racquet Theorem” [5]. Let us 

present a brief history of this intriguing phenomenon, partially reproduced from [3]. 

 

 
 

Fig. 8: Dzhanibekov, V.A.: Interview at the “Secret Signs” TV Program, 

https://youtu.be/dL6Pt1O_gSE 

 

Vladimir Aleksandrovich Dzhanibekov (see Fig.8) is a USSR’s cosmonaut famous with his 5 

space flights, making him the Champion in this category. During his fifth space flight, on 25-

June-1985, he has discovered a spectacular phenomenon, when a spinning rigid body (being 

originally a wing nut) in its stable flight suddenly changed its orientation by 180 degrees and 

continued its flight backwards, simultaneously changing its direction of rotation to opposite! 

(By the way, wing nuts, shown in Fig. 8 and 9a, are widely used in space for fixing payloads: 

their shape enables removal of the wingnuts without special tools.) 

 

It was even more amazing to realize, that this pattern of motion has been repeated in the periodic 

sequence. Similar experiments have been run on-board of the International Space Station. 

Observing these experiments in space, it could be clearly seen that the spinning object always 

rotates in the same direction relative to the observation camera (fixed to the "inertial" 

coordinates frame): that means that in the reference frame of the rotating handle the direction 

of rotation flips each time its orientation flips. 

 

Surprisingly, the Dzhanibekov’s phenomenon, which initially was perceived by some as 

counter-intuitive or even mysterious, has been conceptually predicted in 1971 by Beachley [13], 

however this work for very long time has been left unnoticed and popular, in-depth explanation 

of the phenomenon has only been very recently presented in the journal publication [5]. 

“Dzhanibekov’s Effect” has been closely linked to the peculiar behaviour and explanation of 

the flipped tennis racket, which has received a special name, “tennis racket theorem”. 

 

Explanation of both, “Dzhanibekov’s Effect” and “Tennis Racket Theorem” is based on the 

great Euler equations, published in their canonical form in 1758 [7].  

https://youtu.be/dL6Pt1O_gSE
https://youtu.be/dL6Pt1O_gSE
https://youtu.be/dL6Pt1O_gSE
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Image Courtesy: 

http://www.physicalgeography.net/fundamentals/6h.html  

(a) (b) 

  
(c) (d) 

Fig. 9: Is our planet, Earth, flipping similar to the wingnut? (a) simple wingnut;  

(b) planet Earth; (c) Herodotes, famous Grrek historian; (d) imagined “flipped” Earth. 

 

Interestingly, Euler's equations paved the theoretical ground to many scientific manifestations, 

including Coriolis forces, predicted by Euler, but interpreted to the world many years later by 

French scientist Gaspard-Gustave de Coriolis in 1835. 

 

Entrancingly, that promotion of the “Dzhanibekov’s Effect” has prompted development of the 

theories, suggesting that our planet, Earth, is performing periodic flips, similar to the wing nut 

(see Fig. 9d). Some researchers in the media has suggested that our planet, Earth, having much 

more substantial properties 37 210  kg( )m8 /I  , is performing these flips with much higher 

period, estimated to be at the order of 12,000 years. There were even some substantiation 

http://www.physicalgeography.net/fundamentals/6h.html
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presented to justify this statement: firstly, periodicity in the changes in the magnetic field of the 

Earth, secondly, reference to the ancient Greeks historian, Herodotus (lived in the fifth century 

BC, c. 484–c. 425 BC, see Fig. 8c), and thirdly, references to the religious texts. For example, 

reference [14] states: “Herodotus wrote that Egyptian priests had told him that four times since 

Egypt became a kingdom “the Sun rose contrary to his wont; twice he rose where he now sets, 

and twice he set where he now rises.”  The Egyptians had a name for the Sun when it rose in 

the west, “Re-Horakhty”.  And the concept of the Sun rising in the west occurs in both Christian 

and Muslim literature.  There were also accounts of stars reversing the direction of rising, while 

various texts talk of north becoming south at a time of chaos.  This reversal also appears in 

Greek literature, most notably in the Statesman of Plato.” 

 

Demonstrations of the “Dzhanibekov’s Effect” on-board of the ISS 

 

Due to its simplicity and spectacular nature, the Dzhanibekov’s effect has been became one of 

the most popular educational and scientific experiments on-board of the ISS. Is has been 

reproduced with various rigid body objects and even liquids. Various videos on these 

experiments, available in the media and on the YouTube, are excellent educational resources. 

For example, influence of the shape of the rigid bodies, thus mass distribution in various rigid 

bodies, including cylinders, cubes and right rectangular prisms, was demonstrated on board of 

the ISS by Dan Burbank and Anton Shkaplerov (see Fig.10a), members of the 30-th expedition 

[15].  

 

American astronaut Kevin Ford (NASA), (34-th expedition) [16] (see Fig.10b) and Japanese 

astronaut Koichi Wakata (JAXA), (38-th expedition) [17] (see Fig.10c) experimented on-board 

of the ISS with nothing more complex that pliers. They used this adjustable geometry tool as 

an object, capable of intriguing spinning, flipping and tumbling in zero gravity. 

 

   
(a) (b) (c) 

 

Fig. 10: Demonstrations of the “Dzhanibekov’s Effect” on-board of the ISS. 

 

One of the most fascinating movies is a continuous short-period flipping of the T-handle on-

board of the ISS, fairly called as “dancing T-handle” [18] (see Fig.11). This is a wonderful 

demonstration of the “Dzhanibekov’s Effect”, which very convincingly illustrates instability of 

rotation of the rigid body with distinct principal moments of  inertia, if the main spin is provided 

about its principal axis, associated with intermediate moment of inertia. 

 

   
(a) (b) (c) 

 

Fig. 11: Dancing T-handle in zero gravity. 
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All these and other demonstrations can be explained with famous Euler equation. Of course, 

this is of great interest to be able to explain interesting phenomenon of the flipping spinning 

systems, however, we noticed new opportunities of controlling these peculiar motions and 

proposed a method of control, based on the inertial morphing, involving changes of the 

principal moments of inertia of the system. This concept will be explained later on in the 

paper. However, before this, let us discuss calculation of the period of the flipping motions in 

the Dzhanibekov’s Effect and Tennis Racquet Theorem demos. We present some interesting 

results and a relevant extract from our work [3]. 

 

Calculation of the Period of the Flipping Motion  

 

We assume, that yyI  is intermediate value of the principal moment of inertia. Then the period 

of the observed unstable motion can be estimated, using Eq. (37.12) in page 154 from the 

L.D.Landau reference [19]: 

If 2

02 ,yyKH I                                              (15) 

which is equivalent to 1ya   (see Eq. 12), then 
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which is equivalent to 1ya   (see Eq. 12), then 
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where K is complete elliptic integral of the first kind: 
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As an illustrative example, let us assume the following parameters of the system: Ixx = 0.3, Izz = 

0.4 (all in kg*m2), with the initial conditions iωx = 0.1, iωy = 15, iωz = 0.1 (all in rad/s). For this 

case we will use equations (15)-(19) and will illustrate the influence of the intermediate moment 

of inertia Iyy of the system on the period of the unstable flipping motion. Resulting plot is 

presented in Fig. 12. 

 

The shape of the plot in Fig. 12 is clearly asymmetrical, and could be easily seen by many as 

counter-intuitive, as there may be a wrongly perceived assumption of the “symmetrical” 

influence of Iyy on period T. 

 

Assuming Ixx =1, we can also calculate more generic plot, showing influence of two other 

principal moments of inertia on the period of the unstable motion. The resultant plot is shown 

in Fig. 13a, which is also repeated in Fig. 13b and 13c, giving higher resolution for smaller 

values of T by changing the T-axis limits. This is a very interesting plot, which shows more 

generic nature of the asymmetry, observed in Fig. 12. 
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Fig. 12: Period of the unstable flipping motion (“Dzhanibekov’s Effect” case) of the rigid 

body, as a function of its intermediate moment of inertia Iyy. 
 

 
(a) 

  
(b) (c) 

 

Fig. 13: Period of the unstable flipping motion (“Dzhanibekov’s Effect” case) of the rigid 

body, as a function of its moments of inertia Iyy and Izz: plots (b) and (c) are giving higher 

resolution along T axis. 
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Concept of the Inertial Morphing of the Spacecraft 

 

As an enhancement in the control capabilities of the spacecraft, in our previous works [1-4], we 

proposed a concept of inertial morphing: we showed that using special devices (with, for 

example moving masses) or other means and/or phenomena, (for example, moving liquids, 

mass evaporation, solidification, ablation), enabling controlled modifications of the principle 

moments of inertia characteristics, the attitude dynamics of the spacecraft could be efficiently 

controlled. 

 

Assume that the spacecraft has morphing capabilities, allowing independent controllable 

changes of the values of the principal moments of inertia. A basic model of the morphing 

spacecraft, involving three orthogonal dumbbells, each of which has negligible mass of the 

rod, connecting two equal concentrated masses at its ends, was considered in [4] and is 

reproduced in Fig.14. 

 

 
 

Fig. 14: Six-masses conceptual model of the morphing spacecraft. 

 

Let us also assume, for conceptual simplicity, that three dumbbells are connected at the middle 

points of their rods, and the corresponding masses mx, my and mz are located at the distances rx, 

ry and rz from the axes of rotation x, y and z, as shown in Fig. 14. In the illustrated conceptual 

design, morphing of the spacecraft is achieved via independent synchronized control of the 

position coordinates rx = rx(t), ry = ry(t) and rz = rz(t) of the masses mx, my and mz. 

 

Indeed, changing the distance between three pairs of the masses could be used to achieve any 

values of the principal moments of inertia Ixx, Iyy and Izz. For achieving this objective, it would 

be sufficient to move masses to the following radii: 

 

4 4
;

4
;

yy zz xx zz xx yy xx yy zz

x y z

zx y

I I I I I I I I I

m m m
r r r

     
             (20) 

 

For simulating the spacecraft systems with morphing capabilities, the Euler Equations must be 

modified to treat principle moments of inertia not as constants (assumed in the classical Euler 

equations), bus as variables.  
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These equations can be bundled with quaternions or Euler angles relationships. The version 

from [4] is presented below: 
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These equations have the following “mass matrix” format: 
.

[ ( , )]{ } { ( , )}M t f tx x x           (23) 

and can be solved numerically, using, for example, ode MATLAB Runge-Kutta solver, with 

“mass matrix” option. 

 

Basic Demonstration of the Inertial Morphing Capabilities: Stopping Flipping Motion in 

the Dzhanibekov’s Effect Demo [1] 

 

Let us assume, for the illustration purpose, that mx = my = mz = 1 kg, Ixx = 0.3 kg*m2, Iyy = 0.35 

kg*m2, Izz = 0.4 kg*m2. Then, equations (19) would enable us to determine the exact values of 

the initial radii rx, ry and rz, compatible with the requirements for the Ixx, Iyy, Izz values: 

 

rx = 0.2500 m; ry = 0.2958 m; rz = 0.3354 m.    (23) 

 

Note that in our example here Iyy has an intermediate value among all principal moments of 

inertia: Ixx < Iyy < Izz, therefore if the spacecraft is provided with the initial angular velocities 

x=z =0.1 rad/s and y =15 rad/s, with the prevailing rotation about y body axis, then the 

spacecraft rotation about this axis would be unstable and classical “Dzhanibekov’s effect” 

periodic flipping would be observed. 

 

Let us during the “flipping” motion, at the instant, when the angular velocities x and z are 

close to zeros, rapidly change the moment of inertia Iyy to its new value of f Iyy = 0.2 kg*m2.  

 

Then the moment of inertia Iyy stops being the intermediate value and the rotation about y body 

axis would becoming stable, without changes in the direction of y.  

 

It has been demonstrated in [1, 4], that there are two classes of solutions. The new values of the 

position radii, corresponding to the “solution-1”, can be calculated using Eqs. (19): 

 

rx = 0.1581  m; ry = 0.3536 m; rz = 0.2739 m.    (24) 

 

The spacecraft masses at these radius positions are shown in Fig. 15(a) with dark color. 
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The flipping motion can be also stopped, using “solution-2”. For the purpose of the illustration 

of the concept, let us consider rapid increase of the Iyy from its initial value of 0.35 kg*m2 to its 

new value of 0.5 kg*m2. The new values of the position radii, corresponding to the “solution-

2” can be calculated, using Eqs. (20): 

 

rx = 0.3162 m; ry = 0.2236 m; rz = 0.3873 m.    (24) 

 

The spacecraft masses at these radius positions are shown in Fig. 15(b) with dark color. 

 

  
(a) Solution-1 (b) Solution-2 

Fig. 15: Graphical representation of solutions for stopping “flipping” motion.  

White spheres – initial unstable configuration for y main rotation,  

black spheres – final stable configuration. 

 

Table 1: Numerical Values of the solutions for stopping “flipping” motion. 

Solution-1: 

 
Solution-2: 

 
 

The morphing of the spacecraft from the initially unstable configuration, associated with the 

“flipping” motion, to its final stable configuration and Solution-1 and 2 are shown in Fig. 15, 

where masses for the initial configuration are shown in white, whereas the masses for the final 

configuration are shown in black color. Summary for both solutions is presented in Table 1. It 

would be important to note, that in the presented cases, it was not obligatory during the 

morphing of the system and its transition from the “initial” to “final” states to keep both values 

of Ixx and Izz unchanged. However, it was done for purpose to emphasize the role of the Iyy in 

the process of stabilization of the system. 
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Results of the corresponding numerical simulations of these two solutions are presented in 

Fig.16-18. 

  
(a) Solution-1 (b) Solution-2 

Fig. 16: Graphical representation of solutions for stopping “flipping” motion:  

Time histories of the required controlled manipulation with the moment of inertia Iyy.  

 

  
(a) Solution-1 (b) Solution-2 

 

Fig. 17: Graphical representation of solutions for stopping “flipping” motion:  

Time histories of the , .,x y z     

 

  
(a) Solution-1 (b) Solution-2 

 

Fig. 18: Graphical interpretation of solutions for stopping “flipping” motion:  

 

It is interesting to note, that with Solution-1, stabilisation of the spinning body is achieved via 

expansion of the kinetic energy ellipsoid, which completely embraces the angular momentum 

sphere (see Fig. 18a). On the right part of the Fig.18a, both surfaces are just only touching each 

other at the point S and on the opposite side of the y-axis. 

 

However, with Solution-2, stabilisation of the spinning body is achieved via shrinking of the 

kinetic energy ellipsoid, which becoming completely embraced by the angular momentum 

sphere (see Fig. 18b). On the right part of the Fig.18b, both surfaces are just only touching each 

other at the point S and on the opposite side of the y-axis. 



PEER REVIEW 

 

18th Australian International Aerospace Congress, 24-28 February 2019, Melbourne 

 

Investigating Orientation of the Sides of the Spacecraft, Exposed to the Specific Directions 

 

 
 

 

 

(a) e1 diagrams (t = 0, 12 and 120 sec) 

 

 

 

 

 

(b) e2 diagrams (t = 0, 12 and 120 sec) 

   

(c) e3 diagrams (t = 0, 12 and 120 sec) 

 

 

 

 

 

(d) e1, e2 and e3 diagrams, presented together (t = 0, 12 and 120 sec) 

 

Fig. 19: Lines of intersection of the rotating orts e1 e2 and e3 with the spherical dome (green),  

fixed in the global axes system XYZ: “ball of wool” lines. 

 

As spacecraft may have directional sensing equipment, attached to the sides, let us explore 

possible exposure of this equipment to the specified directions of interest. For this purpose let 

us introduce a semi-transparent green coloured spherical “dome”, embracing the rotating 
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spacecraft (which, in turn, has its rotating body axes system xyz with unit orts e1 e2 and e3). We 

collocate the centre of the dome (point O) with the centre of the mass of the rotating body. 

However, most significant, we fix the dome in the global coordinates XYZ, so is not rotating 

with the body and its body axes xyz. Then we consecutively plot lines of intersection of the 

rotating orts e1 e2 and e3 with the dome.  

 

For the illustration purposes, let us simulate the motion of the spacecraft with the following 

parameters: Ixx = 2, Iyy = 4, Izz=3 (all in kg*m2).  Let us for t=0 align xyz body axes with XYZ 

global inertial axes as follows: x is aligned with X, y is aligned with Z, z is aligned with -Y. If 

the spacecraft is installed in orbit with initially provided angular velocities x0=0.01, y0=0.01, 

z0=1 (all in rad/s), the spacecraft starts “flipping” along axis z, being an intermediate axis of 

inertia (as Ixx < Izz< Iyy). 

 

During this flipping process we trace all intersections of the orts e1 e2 and e3 with the dome and 

present them as continuous lines with different colors. Results are shown in Figure 6. It should 

be noted, that for each of the computer screen snap-shots in this figure, the individual viewpoint 

was selected for better observation of the simulation results. Selection of the viewpoints could 

be clearly understood using the vector of the angular momentum H as a reference, as it is 

pointing in the same direction in the global coordinates XYZ for all presented snap-shots. 

 

Last image for the e2 in the middle row in Fig.19 is remarkably interesting and illustrates our 

new finding! It shows that y body rotating axis, associated in this example with the maximum 

moment of inertia, is “drawing” e2 intersection lines on the dome only on the hemisphere, 

bulging towards the angular momentum vector H (we call it H+ hemisphere) and is never 

pointing towards the other hemisphere of the dome (shown as H- hemisphere in Fig.20). This is 

valid for the direction of y with positive component of the angular velocity along this direction 

(y0>0). We have run many other various simulations, confirming that it is a general pattern, so 

the side, perpendicular to the axis with maximum moment of inertia and associated with positive 

angular velocity component, is never turned away from the vector H direction!!!  

 

 
 

Fig. 20: H+ and H- hemispheres of the “dome”( Ixx = 2, Iyy = 4, Izz=3, all in kg*m2; x=0.01, 

y=0.01, z=1, all in rad/s).   

 

In Fig.19, initially, vector H is almost aligned with z body axes (which is, in turn, is initially 

positioned along the –Y global axis), this is because initial values of x0 and z0 (and ultimately 

Hx0  and Hz0) are small compared with y0 (and ultimately Hy0). Therefore, the 2D plane surface, 

subdividing H+  and H- is almost parallel to the XZ plane. H+  and H- are also shown in Fig.20.  
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Let us consider additional contrast case with the following parameters: Ixx = 2, Iyy = 4, Izz=3 (all 

in kg*m2) and initial angular velocities x0=0.5, y0=0.5, z0=1 (all in rad/s), which has much 

more significant initial values of x0 and y0, than in the previous example, hence has large 

components of Hx0  and Hz0, as compared with Hy0. It results in the subdivision of the dome into 

two parts (H+  and H-) by the inclined 2D plane, shown in white in Fig.21a. Results of the 

intersection lines of the e2  ort with the dome are shown in Fig.21a. They somehow resemble 

“ball of wool” (see Fig.21b), especially with the knitting needles resembling the H and e2 

vectors. However, the simulated resulting “ball of wool” lines are “sitting” on one hemisphere 

only! This hemisphere is on the side of the plane, perpendicular to H vector (and we will called 

it H+ hemisphere). The other side of the hemisphere (H-) does not have any threads of the “ball 

of wool”. 

 

 

 

 

(a) (b) 

 

Fig. 21. “Ball of wool” lines: (a) Simulation results for the case Ixx = 2, Iyy = 4, Izz=3 (all in 

kg*m2) and initial angular velocities x0=0.5, y0=0.5, z0=1 (all in rad/s),  

(b) Original “balls of wool”, which prompted the used analogy and terminology.  

 

This discovered new result can be used in the design of various spacecraft missions. For 

example, in case of the communication mission, if the spacecraft is installed in orbit with 

predominant rotation about an intermediate axis of inertia, and is carrying an antenna, it should 

be ensured that the initial direction of the angular momentum vector H is consistent with the 

“source”, sensed by antenna, i.e. with H+ hemisphere facing the “source”, otherwise spacecraft 

communication would be blanked for all instants of the mission. So, it matters, which side of 

the spacecraft, perpendicular to the axis with maximum moment of inertia, is selected: one side 

would be good for utilising antenna, the other side would be inoperable/terminal. 

 

On the same token, in some other cases, when, for example, the spacecraft is subject to 

directional adhere conditions (heat, radiation, flying debris) it may be advisable to “reinforce” 

the spacecraft, facing the intended H- hemisphere, install the spacecraft in orbit with the 

direction of the initial angular momentum pointing outwards the “danger” and place all sensitive 

equipment on the side, perpendicular to the axis with maximum moment of inertia  and with 

positive component of the angular velocity along this direction (i.e. “plus” e2 in the two 

previously considered illustration cases). 

 

 

Image Courtesy:  

https://maineadulted.coursestorm.com/ 
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“Inertial Morphing” In Action: Two-Phase Attitude Dynamics Manoeuver  

 

 
 

(a) (b) 

Fig. 22: Non-Dimensional Angular Momentum Spheres with Polhodes and Separatrices and 

truncated Specific hodographs for (a) Phase-1 (before inertial morphing) conditions: Ixx=2, 

Iyy=3, Izz=4, x0=0.4, y0=1, z0=0.8; specific godograph shown with blue line; and (b) 

Phase-2 (after inertial morphing) conditions: Ixx=3.5, Iyy=3, Izz=4, 

0.7133,  0.7318,  0.9016,  21.5
Q Q Qxt yt zt Qt s       ; specific godograph shown with red 

line 

Fig.22(a) shows non-dimensional angular momentum sphere with two separatrices and sets of 

representative polhodes for the wide range initial conditions. It also shows, as a blue bold line, 

a specific polhode (or godograph of the H  vector) for the Phase-1 conditions: Ixx=2, Iyy=3, 

Izz=4, x0=0.4, y0=1, z0=0.8.  

 
 

 
 

(a) (b) 

 

Fig. 23: Illustration of the Transition between Phase-1 and Phase-2 of the inertial morphing 

of the system: (a) side 3D view; (b) z-axis 2D view. 

If the spacecraft possesses with inertial morphing capabilities, then the “switch” to any new 

inertial properties can be simulated and illustrated graphically. Let assume, for illustration 

purposes, that the new principal moments of inertia are:  Ixx=3.5, Iyy=3, Izz=4.  Then, for the 



PEER REVIEW 

 

18th Australian International Aerospace Congress, 24-28 February 2019, Melbourne 

 

Phase-2, its own non-dimensional angular momentum sphere with two separatrices and sets of 

representative polhodes (for the wide range initial conditions) can be also produced (see Fig. 

23b). Morphing can be applied at any stage during the execution of Phase-1. For certainly, let 

assume that the morphing is rapidly applied at t=21.5 s instant. Then, the new corresponding 

angular velocities of the spacecraft could be calculated, using equations (21). 

 

“Inertial Morphing” In Action: Transfer of the Tumbling Motion into Steady Spin about 

Selected Body Axis (Three-stage stabilisation of the Spacecraft via Inertial Morphing and 

Unstable Flipping) 

 

Let assume that the spacecraft with given initial values of the moments of inertia (Ixx=2.5, Iyy 

=2.4, Izz =3.15) is originally in arbitrary free rotation, involving all three angular velocities, as 

shown in Fig. 24a. 

 

  
(a) (b) 

 

Fig. 24: Illustration of the spacecraft tumbling motion:  

(a) time history of , ,x y z   -  components of its angular velocity vector ω ,  

(b) graphical interpretation of the motion, using KEE and AMS. 

 

 

This motion can be visualised, using intersecting kinetic energy ellipsoid and angular 

momentum sphere, as shown in Fig.24b. The H  vector of unit genuine length can not be used 

for visualization, as its length is equal to one and it would not be seen at any instant, as it would 

be completely hided by the embracing angular momentum sphere with unit radius. Therefore, 

for visualisation of the instanteneous orientation of H   in the Fig.24b, we use a black line with 

a dot at its end and extruding beyond the surface of the sphere. The godograph of the   vector is 

shown with a black line on the surface of the angular momentum sphere, coming strictly along 

the intersection between the AMS and KEE. 

 

Let us set a task to control rotations of the system, via the changes of the values of its principal 

moments of inertia. In each case of using flipping mode for escaping from the closed smooth 

polhoide, we need to apply change to moments of inertia, which could be calculated based on 

the parameters of the targeted separatrix, using Eqs. (14), (15) or (17). 

 

An example of complete set of morphings, stabilising the system, being initially in the state of 

tumbling, is illustrated with Fig.25. 
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Fig. 25: Three-stage stabilisation of the tumbling spacecraft via morphing: 

 time history of the morphed principal moemnts of inertia Ix, Iy, Iz.  
 

  

 

  

(a) t = 0 s (b) t = 7 s (c) t = 9.792 s (d) t = 12 s 

  
 

 

(e) t = 15 s (f) t = 19 s (g) t = 22 s (h) t = 26-38  s 
 

Fig. 26: Critical instances of spacecraft stabilisation: (a) Start of the simulation; (b)  Initially, 

hodograph is “circling” around z axis, (c) Stage-1ends, transition to “flipping” is initiated, 

t=9.792 s; (d) approch to the saddle point-1, t=12 s; (e) near the saddle point-1 (possible 

“parking” or stabilisation point), t=15 s (f) passing saddle point-1, t=19 s;  (g) approach to 

the saddle point-2, t=22 s; (h) stage-2 ends and third stage starts at t=26 s, parking at the 

stable “saddle point-2 arrtactor” is activated, stabilisation is completed. 

 

Fig. 25 explains the sequence and nature of the inertial changes, deliberately applied to the 

system. Fig.26 gives consecutive snap-shots from the simulation process, illustrating changes 

of the kinetic energy ellipsoid and polhodes - resultant feasible trajectories for the angular 

momentum vector.  
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

(c) 

 

Fig. 27: Time histories of the (a) x, y, z; (b) Htotal, Hx, Hy, Hz and      

(c) ax, ay and az during two-stage stabilisation of the tumbling spacecraft via morphing. 

 

It is interesting to observe, that at the initial stage of the motion of the system, its e2 body axes 

ort is “drawing” a pretty spread trajectory on the “dome” (Fig. 28a). However, after stabilization 

is completed, this trajectory is essentially reduced to the point (Fig. 28b). Also, at the last stage 

of the simulation, trajectories for e1 and e3 are very close to the equatorial plane, which confirms 

that the stabilized motion is close to the rotation of the body along the direction of the angular 

momentum vector. The feature of the example is: the final direction of the y body axes system, 

selected for stabilization in this example, is opposite to the direction of H. If the goal of 

stabilization was to have them both aligned, then third stage should be activated at instant close 

to 15 s, as evidenced by the Fig. 27b. 
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(a) (b) 

Fig. 28: “Balls of wool” for : (a) the first stage of spacecraft motion with tumbling/coning 

(t=09.792 s); (b)  last stage of stabilisation of the spacecraft (t=2638 s) with e1, e2 and e3 

intersection lines with the “dome”. 

 

Combined Multi-Phase Demo: Consecutive “Parade” of all Three Orthogonal Inversions, 

Associated With x, y and z Body Axes 

 

In order to demonstrate capability of the proposed method, in Fig.29 we present results for a 

single simulation case, during which the spinning body is “reconfigured” four times. The 

carefully selected scenario for the applied inertial morphing (changes in the system, leading to 

the change of the values of the principal moments of inertia) enables to achieve the flowing: 

(1) Established flipping motion along y axis (with possibility for y inversion), 

distinguished with a white background in Fig.29; 

(2) Established flipping motion along z axis (with possibility for z inversion), 

distinguished with green background in Fig.29; 

(3) Established flipping motion along x axis (with possibility for x inversion) 

distinguished with pink background in Fig.29. 

 

So, it has been demonstrated that the predominant spin can be consecutively passed on to any 

of the body axis with multiple possibilities for inversion at any stage of the stabilised motion 

and then stabilisation of the desirable orientation. In other words, if the object had a cube shape, 

based on this example, it was possible to perform transition of the spinning motion of the cube, 

allowing exposure of each of its six faces to the direction of the  initial angular momentum 

vector. We call this compound demo case “all-axes inversion parade”. 
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(d) 

 

Fig. 29: Time history of the (a) Ix, Iy, Iz ; (b) x, y, z  and (c) Htotal, Hx, Hy, Hz (d) ax, ay and 

az during four-stage “all-axes inversion parade”. 

 

 

Enhancement of the Reorientation and Change of the Spin Axis Using Reaction Wheels 

 

For completeness of this paper, we need to mention another powerful aspect of further 

enhancement of the spinning spacecraft attitude control capabilities: adding one or a set of 

moment reaction wheels, which are often used on various space systems [20]. 

Differential equations of motion of the spacecraft, equipped with wheels, could be presented 

as follows: 
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(23) 

Even simple preliminary cases, involving one wheel and not sophisticated wheel’s controls, 

enabled us to find significant influence of this enhancement on performance of the system. In 

particular, it was possible to significantly influence the period of inversion, make inversions 

asymmetrical (see Fig.30), etc. Authors intend to explore these capabilities in more detail in the 

future works. 

 

 

Fig. 30: Shift of stabilisation point, achieved with compoung use of the inertial morphing and 

reaction wheel. 
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Conclusions 

 

In this paper we presented methodological platform for enhancing attitude control of the 

spacecraft, using “inertial morphing”. It is based on the geometrical interpretation of equations 

of non-linear motion (involving non-dimensionalsied angular momentum unit spheres and 

kinetic energy ellipsoids) and features amazing simplicity, while giving impressive advanced 

range of tools for preliminary designs of the specific missions. We presented comprehensive 

non-dimensional mathematical construction/formalization to formulate and solve wide range of 

attitude dynamics and control problems. Applications of this methodology are vast. We name 

just a few applications and areas for possible application: 
 

(a) In particular, “inertial morphing” enables to stop (completely “switch off”) unstable 

flipping motion of the spinning or tumbling spacecraft, if these motions are undesirable, 

by translating the motion into the regular spin. On the same token, this methodology 

enables to initiate (“switch on”) on the spinning spacecraft unstable periodic flipping. 

Combination of “switching on” and “switching off” capabilities, without using 

traditional gyroscopic devices, can be used for the inversion of the spacecraft, where the 

forward/backward flying spacecraft could be easily converted into the 

backward/forward flying system. Furthermore, this technique can be used for boosting 

(accelerating) or decelerating spacecraft by only one thruster (i.e. for thruster direction 

control). It should be stressed out that we demonstrated that there are two classes of 

possible solutions for “switching off” the flipping motion, presenting multiple 

alternatives during missions planning/design. 
 

(b) “Inertial morphing” can be very effective for controlling/changing the frequency of the 

“flipping” motion within a very wide range. However, we showed that there is a 

minimum (i.e. low bounding limit) for the period of these oscillations. 
 

(c) Using “inertial morphing”, we proposed a method of reduction of the compound rotation 

of the spacecraft into a single stable predominant rotation around one of the body axes. 

This is achieved via multi-stage morphing. One of the transformation stages employs 

transition of the system into unstable, “flipping” motion, enabling to transfer the motion 

into a special type of motion, which could be represented with a polhode, situated close 

to the separatrix. After this instalment into the separatrix, the final stage of the transition 

is typically dedicated to conversion unstable motion into the stable. With the capability 

of this transfer of the spacecraft spin into a single axis spin, aligned with the angular 

momentum direction, spacecraft essentially could perform three types of inversions, 

associated with any of three body axis. In order to demonstrate capabilities of the 

method, we presented “all-axes inversion parade”, during which the spinning system 

was transitioned through three consecutive stages with inversion, associated with each 

of the body axes, x, y and z. This is in contrast with the classical Dzhanibekov’s Effect 

demonstration, where only one axis inversion was possible. 
 

(d) We investigated attitude orientation of different sides of the spacecraft during various 

spinning/tumbling scenarios and proposed a simple “ball of wool” method to determine 

the most advantageous sides of the spacecraft for attaching special equipment, like 

antennae and/or solar batteries. We discovered, that for the motion, resembling 

“Dzhanibekov’s Effect” flipping, one side of the prism-shaped spacecraft, perpendicular 

to the major axis of inertia (named as H+), would be always sensed from the specified 

direction, whereas the second side  (named as H-), would never be sensed from the same 

specified direction. This important finding suggests the strategies for proper placement 

of the sensitive equipment on the right sides of the spacecraft and for reinforcement of 

the side, which could be deliberately made exposed to the adverse directional conditions 

(heat, radiation, flying space debris, asteroid belts, etc.) 
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It has been also demonstrated that reaction wheel system could further enhance spacecraft 

capabilities, enabling changes into the angular momentum of the system and full access to 

the “inertial morphing” strategies. 
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