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Abstract 

For spacecraft about small asteroids, the gravitational orbit-attitude coupling effect becomes 
much more significant than orbiting large celestial bodies, due to the large ratio of the 
spacecraft dimension to the orbit radius. To model the spacecraft motion more precisely, the 
6-DOF, coupled orbit-attitude dynamics have been proposed, in which the spacecraft is 
modeled as a rigid body rather than a point mass. Existing coupled orbit-attitude dynamical 
models have used harmonic series to describe the gravity field of the asteroid. However, 
harmonic series diverges near and inside the circumscribing sphere of the asteroid, causing 
large errors near the asteroid’s surface. In this paper, a new model for the gravitationally 
coupled orbit-attitude dynamics about an asteroid is established, with the gravity field 
modelled as that of a homogeneous polyhedron, so that the irregular gravity field can be fully 
modelled without discarding higher-order terms, enabling a high precision even near the 
asteroid’s surface. By using Taylor expansion, the potential, formulated as a volume integral 
over the spacecraft, is rewritten in terms of inertia integrals of the spacecraft and truncated on 
the second-order, i.e., the moments of inertia, which is precise enough for our purpose. The 
gravitational force and torque are derived by means of derivatives of the potential. The 
proposed model is compared with models with the point-mass/spherical gravity and the 
harmonic gravity, to see effects of irregularity of the asteroid’s shape. Results show that the 
irregularity of the gravity has significant effects on the coupled orbit-attitude dynamical 
model, and cannot be precisely described by harmonic series. The proposed model with the 
gravity of a homogeneous polyhedron provides a high-precision description for the coupled 
orbit-attitude motion in the close proximity of a small, irregular-shaped asteroid. 

Keywords: Irregular-shaped asteroid, Homogeneous polyhedron, Extended body, Coupled 
orbit-attitude dynamics, Gravitational potential, force, and torque 

Introduction 

The orbit-attitude motion of a rigid body in a gravity of another rigid body is quite common in 
celestial mechanics, such as in the dynamical evolution of binary asteroids, usually referred as 
the Full Two Body Problem (F2BP) [1]-[13]. Because of the asteroids’ non-spherical shapes 
and the proximity in distance, their rotational and translational motions are coupled 
significantly through the mutual gravitational potential. The gravitational orbit-attitude 
coupling effects and the related gravitationally coupled orbit-attitude dynamics are distinct 
from the classical, uncoupled orbital and attitude motions. 

To investigate the dynamical evolution of binary asteroids, various gravitational models, 
including the gravitational potential, force, and torque, have been proposed. The basic form of 
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the mutual gravitational potential is a double volume integration of reciprocal distance 
between mutual mass elements over both bodies. The usual approach is expanding the 
potential in an asymptotic series in terms of ratio of body sizes over the distance. The 
asymptotic series is then rearranged further in terms of different types of mass distribution 
parameters of the two bodies, including inertia integrals [5],[8],[11],[12],[14]-[16], spherical 
harmonics [17]-[19], mass distribution parameters derived from shapes of homogeneous 
polyhedra [20]-[23], and the symmetric trace free (STF) tensor of homogeneous polyhedra 
[24]. These different types of mass distribution parameters are actually the same kind of 
physical parameters of the body and play the same role in the formulation of gravity [16],[24]. 
In practice, these approaches all discarded higher-order terms for both the two bodies. 

Recently, the authors have proposed a novel shaped-based approach to model mutual 
potential of two asteroids of a binary system [25]. One asteroid is modeled as a homogeneous 
polyhedron and its gravity is described in a closed form via the approach by Werner and 
Scheeres [26], while the other one is modeled as an extended body. The mutual potential is 
formulated as a volume integral over the extended body, and, then, as a Taylor series in terms 
of its inertia integrals. Unlike previous gravitational models, this model can take into account 
the irregular shape of the polyhedral asteroid exactly without discarding higher-order terms. 

With the coming of the space age, early pioneers of astrodynamics and spaceflight dynamics 
have investigate gravitationally coupled orbit-attitude dynamics and orbit-attitude coupling 
effects for Earth-orbiting artificial satellites that are modeled as extended bodies. They have 
found that the gravitational orbit-attitude coupling is quite weak and then negligible, due to 
the extremely small ratio of the spacecraft dimension to the orbit radius, being order of 610  
or even smaller [27]-[31]. From then on, the gravitational orbit-attitude coupling has always 
been regarded to be negligible in spaceflight dynamics, and the community has taken the 
uncoupled orbit and attitude dynamics for granted. It has become axiomatic, common sense 
that the spacecraft is first treated as a point mass in the orbital dynamics, and the attitude 
motion is then treated as a restricted problem on the predetermined orbit. Consequently, the 
orbit motion of the spacecraft is not affected by its attitude motion. 

However, the situation has been different as the human’s space activities extend to the close 
proximity of small celestial bodies, i.e., asteroids and comets. In the close proximity of a 
small asteroid, due to the large ratio of the spacecraft dimension to the orbit radius, a 
significant gravitational coupling can exist between the orbit and attitude motions of a large 
spacecraft, as shown by Wang and Xu [32]. The magnitude of gravitational orbit-attitude 
coupling can be estimated by 0r  , where   is the spacecraft’s characteristic dimension 

and 0r  is the orbital radius [30]. For a spacecraft in a 1 km-sized orbit about a small asteroid, 

  can be order of 210 , much larger than the value about Earth. The precision of traditional 
spacecraft dynamics, in which the orbit and attitude motions are regarded to be uncoupled and 
are modelled separately, will degenerate in the close proximity of small asteroids due to the 
significant gravitational orbit-attitude coupling [32],[33]. 

For this reason, in recent years, the gravitationally coupled orbit-attitude dynamics, which 
have been almost forgotten in the field of spaceflight dynamics, have been experiencing a 
renaissance in the spaceflight dynamics about asteroids, where it can be also called the full 
dynamics as the spacecraft is modeled as an extended, rigid body. The gravitationally coupled 
orbit-attitude dynamics of spacecraft has been studied qualitatively in a J2-truncated gravity 
field of a small spheroid asteroid [34]-[36] and in the second degree and order gravity field of 
a uniformly rotating asteroid with the harmonic coefficients C20 and C22 [37],[38]. Although 
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the higher-order harmonic coefficient J4 has been considered by Wang and Xu [32] and 
Kikuchi et al. [39], the coefficient J4 is only included in the point-mass potential but not in the 
extended-body potential, having no contribution to the gravitational coupling terms. The 
gravitationally coupled orbit-attitude dynamics of spacecraft already have some applications 
in the control and navigation of the asteroid close-proximity operations [40]-[42]. 

The gravitationally coupled orbit-attitude dynamics about an asteroid is actually a restricted 
problem of the F2BP. That is, only the motion of the spacecraft is considered and the motion 
of the asteroid is assumed to be not affected by the spacecraft. The derivation of equations of 
motion for a rigid body is a classical problem, which can be addressed well by using the 
Newton-Euler method, and also can be addressed via the non-canonical Hamiltonian structure 
of the problem [43]. One of the advantages of the non-canonical Hamiltonian approach is that 
it naturally provides expressions for the gravitational force and torque in terms of derivatives 
of the potential. Since the equations of motion are already known and the gravitational force 
and torque can be derived from the potential, the essential problem in the dynamical modeling 
of gravitationally coupled orbit-attitude motion is how to model the potential of the extended, 
rigid body in the irregular gravity of the asteroid, which is the same with the essential 
problem in the dynamical modeling of F2BP. 

As for modeling the potential of a rigid body in the gravity of an asteroid, existing coupled 
orbit-attitude dynamical models have used the harmonic expansion to represent the irregular 
gravity of the asteroid, including the J2 model [34]-[36], the J2-J4 model [32], the C20-C22 
model [37][38], and the C20-C22-J4 model [39]. However, the harmonic series diverges near 
and inside the circumscribing sphere of the asteroid, causing large errors near its surface. 
Thus, the harmonic series cannot represent the highly irregular gravity in the close proximity 
of the asteroid, where the spacecraft is usually required to be during in-situ explorations and 
the surface sampling. Although it is helpful to employ a higher-degree harmonic series, the 
improvement on the precision is limited near the asteroid surface, and the cost will be large, 
because of the rapid-increasing amount of terms in the potential formulation [39]. 

Actually, the various gravitational models proposed for F2BP mentioned before can be used 
to model the potential of the extended spacecraft in the gravity of the asteroid, just replacing 
one asteroid with the spacecraft. However, as stated before, most of gravitational models of 
F2BP have adopted two bodies’ mass distribution parameters that are equivalent to spherical 
harmonics. Thus, they have same drawbacks with existing dynamical models with harmonic 
gravities, that is, cannot represent the gravity precisely near the surface of irregular-shaped 
asteroid. This drawback is not a problem in F2BP, since the asteroids usually move far away 
from each other’s circumscribing sphere. However, it is not the case for spacecraft executing 
asteroid close-proximity operations. 

Fortunately, the shaped-based model for mutual potential of two asteroids by us [25] provides 
a promising method for modeling the potential of an extended spacecraft in the irregular 
gravity of an asteroid. In this approach, the asteroid is modeled as a homogeneous 
polyhedron, and, thus, its irregular gravity can be described exactly without discarding 
higher-order terms, having a high precision even near the surface. The spacecraft is modeled 
as an extended, rigid body, and only the inertia integrals up to the second-order, i.e., moments 
of inertia, need to be taken into account for our purpose. In the end, the potential of the 
spacecraft has a closed, compact form, and is easy to implement. 

In this study, a new gravitationally coupled orbit-attitude dynamical model for an extended, 
rigid spacecraft about an irregular-shaped asteroid will be established with our approach in 
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Ref. [25]. The 6-DOF, gravitationally coupled orbit-attitude motion of the spacecraft is 
numerically propagated and compared with different gravity models of the asteroid, including 
harmonic gravity and point-mass/spherical gravity, to show dynamical effects of irregularity 
of gravity. Results show that the proposed coupled orbit-attitude dynamics provide a high-
precision model for spacecraft in the close proximity of a small, irregular-shaped asteroid, and 
are of great significance for studies in related areas. 

Equations of Coupled Orbit-Attitude Motion 

As shown in Fig. 1, the spacecraft B, modeled as an extended, rigid body, is moving about a 
uniformly rotating asteroid P, the gravity of which is modeled as that of a homogeneous 
polyhedron. We have chosen principal-axis body-fixed reference frames for the asteroid and 
the spacecraft, SP={u, v, w} and SB={i, j, k} with origins O and C at the centers of mass, 
respectively. It is assumed that the center of mass of the asteroid is stationary in the inertial 
space, and the asteroid is rotating uniformly around its maximum-moment principal axis, w-
axis, with the angular velocity T . 

Fig. 1:  The spacecraft B, modeled as an extended, rigid body in the vicinity of the asteroid P, 
which is modeled as a homogeneous polyhedron 

The attitude of the spacecraft is described with respect to the asteroid body-fixed frame SP by 
[ , , ] (3)a a a SO A α β γ , (1)

where aα , aβ , and aγ  are coordinates of unit vectors i, j, and k of the spacecraft frame SB 
expressed in the asteroid frame SP, respectively. The position vector of the spacecraft’s center 
of mass C with respect to the asteroid’s center of mass O expressed in the asteroid frame SP is 
denoted by [ , , ]x y z Tr r rr , and the unit vector along r is denoted by [ , , ]x y z Tr r rr . The 
configuration space of the problem is Lie group (3)Q SE , known as the special Euclidean 

group with elements ( , )A r , which is the semidirect product of SO(3) and 3 . Accordingly, 

the (momentum) phase space of the problem is the cotangent bundle T Q . 

As in Ref. [43], we choose coordinates for the phase space as 
18TT T T T T T

a a a    z Γ , α , β , γ , r , p , (2)

where Γ  and p  are the angular momentum and linear momentum of the spacecraft expressed 
in the asteroid frame SP, respectively. z  has been called inertial coordinates in Ref. [43], but 
here actually they are not inertial anymore due to the rotation of the frame SP. We will show 
later that z  is suitable for our dynamical modeling. 
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The non-canonical Hamiltonian structure of this system has a Poisson bracket 18{ , } ( ) 


z , 

which can be written in terms of Poisson tensor as 

   18{ , } ( ) ( )
T

f g f g  
 z zz B z (3)

for any 18, ( )f g C  . The Poisson tensor ( )B z  is given by [43] 
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where 3 3I  is the 3×3 identity matrix, and the hat map 3^ : (3)so  is the usual Lie algebra 

isomorphism and also the cross product matrix. For a vector [ , , ]x y z Tw w ww , we have 

0

ˆ 0

0

z y

z x

y x

w w

w w

w w

 
   
  

w . (5)

The antisymmetric Poisson tensor B(z) has six geometric integrals as independent Casimir 
functions [43] 

1 2 3

1 1 1 1 1 1
( ) , ( ) , ( )

2 2 2 2 2 2
T T T
a a a a a aC C C     z α α z β β z γ γ , (6)

4 5 6( ) 0, ( ) 0, ( ) 0T T T
a a a a a aC C C     z α β z α γ z β γ . (7)

The twelve-dimensional invariant manifold of the system can be defined in 18  by Casimir 
functions 

  18
1 2 3 4 5 6

1
| ( ) ( ) ( ) , ( ) ( ) ( ) 0

2

TT T T T T T
a a a C C C C C C          

 
Γ , α , β , γ , r , p z z z z z z , (8) 

which is the symplectic leaf of the system, on which the restriction of Poisson bracket 
18{ , } ( ) 


z  defines the symplectic structure. 

According to Ref. [38], the Hamiltonian is written in terms of z as 

 
2

1
3 3

1
ˆ( ) ( )

2 2
T T T T

T TH V
m

     
p

z Γ AI A Γ z Γ e p e r , (9)

where m and  , ,xx yy zzdiag I I II  are the mass and inertia tensor of spacecraft, respectively, 

( )V z  is the gravitational potential, and  3 0, 0,1
Te . 

With B(z) and H(z), the equations of motion can be written in the Hamiltonian form 
( ) ( )H  zz B z z . (10)

The explicit equations of 6-DOF orbit-attitude motion expressed in the body-fixed frame of 
the asteroid SP can be obtained from Eqs. (4), (9), and (10) as follows: 
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At the right-hand side of Eq. (11), the terms 3
ˆ

T Γe , 3ˆT re , and 3ˆT pe  are introduced by the 
uniform rotation of the asteroid frame SP, and the term 1

3
T

T
 AI A Γ e  is the relative angular 

velocity of the spacecraft with respect to the asteroid expressed in the asteroid frame SP. 
According to Eq. (11), the gravitational force f  and gravity gradient torque aT  acting on the 
spacecraft expressed in the body-fixed frame of the asteroid SP can be written in terms of 
derivatives of the gravitational potential  , , ,a a aV r α β γ  as follows 

 
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, , ,
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, , , , , , , , ,
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a a a

a a a a a a a a a
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r α β γ
f

r
r α β γ r α β γ r α β γ

T α β γ
α β γ

 (12) 

Gravitational Potential, Force, and Torque 

The last step to finalize the dynamical modeling process is to obtain the expression of the 
gravitational potential  , , ,a a aV r α β γ  and expressions of the gravitational force f  and 

gravity gradient torque aT  further by using Eq. (12). Our gravitational model proposed for the 
binary asteroid system in Ref. [25] will be adopted. 

The asteroid is considered as a homogeneous polyhedron and its gravity can be described in a 
closed form via the approach by Werner and Scheeres [26]. The surface of the polyhedron 
consists of triangular faces with mutual vertexes and edges, and the polyhedron can be 
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defined by coordinates of the vertexes and the triads of vertexes that determine the triangular 
faces. 

The force potential, i.e., the minus gravitational potential, of a field point with position vector 
rp in the asteroid body-fixed frame SP is given by 

  1

2
T T

p e e e e f f f f
e edges f faces

U G L 
 

 
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 r r E r r F r , (13)

and its derivatives are given by 

 p e e e f f f
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 

 
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 r E r F r , (14)

 p e e f f
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 
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 
 r E F , (15)

where G is the gravitational constant,   is the density of the polyhedron, eE  and fF  are 

geometric parameters denoted as 3×3 matrices, er  and fr  are vectors from the field point to 

any point on the edge and face of the polyhedron expressed in the asteroid body-fixed frame 
SP, respectively. eL  is defined as 

   In Ine a b e a b eL       , (16)

where a, b, and e are distances from the field point to the edge’s two ends and the edge 
length, respectively, as shown in Fig. 2. 

Fig. 2:  Parameters about Le 

Fig. 3:  Parameters about ωf 

f  is defined as 

2arctanf

N

M
    

 
, (17)

     1 2 3 1 2 3 2 3 1 3 1 2M r r r r r r      r r r r r r , (18)

 1 2 3N   r r r , (19)
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where 1r , 2r , and 3r  are vectors from the field point to the three vertexes of the triangular face, 
whose 1-2-3 order is in the right-hand order around the outward-pointing normal vector, as 
shown in Fig. 3. More details about the gravitational model of a homogeneous polyhedron can 
be found in Ref. [26]. 

The gravitational potential of the extended, rigid spacecraft is the volume integration of the 
gravitational potential  pU r  over the spacecraft

   , , ,a a a pB
U dV m  rr α β γ , (20)

the second-order approximation of which can be written in terms of relative position r, 
relative attitude aα , aβ , and aγ , and the moments of inertia of the spacecraft [25] 
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 (21) 

where the second-order mass distribution parameters xxJ , yyJ , and zzJ  are defined in terms of 

moments of inertia 

 1

2xx xx yy zzJ I I I   ,  1

2 xxyy yy zzJ I I I   ,  1

2 xxzz yy zzJ I I I   . (22) 

The gravitational force f  and gravity gradient torque aT  acting on the spacecraft can be 
derived by using Eq. (12) 

  1

2

,

T T
xx a e a e a f a f

e edges f faces

T T T T
a e a e a f a f zz a e a e a f a f

e edges f faces e edg
yy

es f faces

U m G J L

J L J L

 

 

 

   

  
      

  
   

           
  





 

   

r α E α α F α

β E β β F β γ E γ γ F γ

f

 (23) 

     a yy aa xx a a zz aaJ U J U J U       α β γT r α r β r γ , (24)

where the explicit expressions of eL  and f  are referred to Ref. [25]. 

Model Analyses via Numerical Simulations 

The model analyses will be carried out by comparing with the point-mass/spherical gravity 
and the harmonic gravity, to see the improvements of the polyhedron gravity in the modeling 
of the gravitationally coupled orbit-attitude motion. 

The asteroid 6489 Golevka will be considered. Its shape model with 2048 vertexes and 4092 
triangular faces can be obtained from the NASA database, as shown in Fig. 4. The density of 
the asteroid is 2700 kg/m3. The angular velocity of its uniform rotation is 4 12.8963 10 sT

   . 

The parameters of the harmonic gravity are calculated from the shape model to ensure that the 
gravity models are of the exactly the same asteroid. The harmonic gravity parameters are: 

3 214.0374 m / s  , 20 0.0712C   , 22 0.0332C   , 265 mea  , (25)
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where C20 and C22 are the second degree and order harmonic coefficients, and ea  is the mean 
radius of the asteroid. The spherical gravity can be obtained by simply letting C20=C22=0. The 
gravitationally coupled orbit-attitude dynamical models with the spherical gravity and 
harmonic gravity are referred to Ref. [44]. 
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Fig. 4:  Shape of the asteroid 6489 Golevka 

The parameters of spacecraft are chosen as 

31 10 kgm   , 3 2

2 0 0

0 1 0 10 kg m

0 0 1.6

 
    
  

I . (26)

The initial relative configuration of spacecraft with respect to the asteroid is chosen as 

0

1 0 0
cos( ) sin( ) 0 cos( ) 0 sin( )

9 9 20 20
0 cos( ) sin( )0 1 0 18 18sin( ) cos( ) 0

9 9
sin( ) 0 cos( ) 0 sin( ) cos( )

0 0 1 20 20 18 18

   
 

 
   

            
           
     

       
     

A , (27) 

 0 400, 0, 0 m
Tr . (28)

The initial relative velocity of the spacecraft with respect to the asteroid expressed in the 
spacecraft body-fixed frame is chosen as 

0 1 1 1

0

0 s , 0 s , 0 s , 0.1 m/s, 0.2 m/s, 0.15 m/s
TR

R

   
     

 

Ω

V
(29)

where the definition of the relative velocity is referred to Ref. [44]. 

The attitude error and position error of the harmonic gravity and spherical gravity compared 
with the proposed polyhedron gravity are shown in Figs. 5 and 6, respectively. The attitude 
error is described by the principal rotation vector eΘ  of the error attitude matrix eA  and its 

norm e  Θ , while the position error is described by the position difference er  in the asteroid 

body-fixed frame and its norm er . 
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Fig. 5:  Attitude error and position error of harmonic gravity 

The trajectories of the spacecraft’s center of mass in the asteroid body-fixed frame with three 
different gravity models are shown in Fig. 7, where several snapshots of the attitude of the 
spacecraft are also shown. 

It has been shown that after 5000 seconds, both the harmonic gravity and spherical gravity 
have significant errors compared with the proposed polyhedron gravity. The spherical gravity 
has a position error of 100 m and an attitude error of 0.15 rad (8.59 degree), while the 
harmonic gravity has a better performance, with a position error of 60 m and an attitude error 
of 0.12 rad (6.88 degree). 

Therefore, the irregularity of the asteroid gravity has significant effects on the gravitationally 
coupled orbit-attitude dynamics, and cannot be precisely described by the harmonic series. 
The proposed model with the gravity of a homogeneous polyhedron in this paper is necessary 
and provides a high-precision description for the coupled orbit-attitude motion in the close 
proximity of a small, irregular-shaped asteroid. 
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Fig. 6:  Attitude error and position error of spherical gravity 

Fig. 7:  Trajectories and attitudes of the spacecraft in the asteroid body-fixed frame with 
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Conclusion 

The gravitationally coupled orbit-attitude dynamics of a rigid spacecraft about an irregular-
shaped asteroid has been established by using a newly proposed gravitational potential model 
and the non-canonical Hamiltonian structure of the problem. In the gravitational model, the 
gravity field of the asteroid is modelled as that of a homogeneous polyhedron, so that the 
irregular gravity field can be fully modeled without discarding higher-order terms, enabling a 
high precision even near the asteroid’s surface. The gravitational potential is finally written in 
terms of moments of inertia of the spacecraft, and the gravitational force and gravity gradient 
torque are derived by means of derivatives of the potential. The dynamical model has been 
analyzed by comparing with models with the point-mass/spherical gravity and the harmonic 
gravity, to see effects of irregularity of the asteroid’s gravity. Results have shown that the 
irregularity of gravity has significant effects on the coupled orbit-attitude dynamics, and 
cannot be described satisfactorily by the existing model with harmonic series. 
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