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Abstract 
 

The low Earth orbit (LEO) reachability for a spacecraft maneuvering from a distant retrograde 

orbit (DRO) in the Earth-Moon system with a small velocity impulse is studied. The 

motivation behind this study is the plan of placing a DRO servicing platform which can fly by 

LEO targets at a low fuel cost. Such a mission is possible because the platform can maneuver 

from the DRO to the Moon with a small velocity increment. Then, the lunar gravity assist can 

be used to decelerate the platform, which enables it to reach LEO targets. Simulations show 

that a platform initially moving on a stable DRO can maneuver to the Moon from anywhere of 

the DRO and establish a lunar gravity assist with a velocity impulse as small as 50 m/s. The 

LEO reachability is analysed in terms of the reachability of the lowest altitude. By using the 

proposed maneuver strategy, reaching a LEO target requires a ΔV as small as 90 m/s. 
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Introduction 
 

Distant retrograde orbits (DROs) are a family of stable orbits around the smaller primary 

body in a restricted three-body system. The DRO in the Earth-Moon (EM) system has 

attracted increasing interests in recently years because of their unique characteristics, for 

example, to avoid the Earth’s magnetic and radiation fields and to keep the distance between 

the spacecraft and the Earth below a certain predefined value [1]. Xu [2] proposed the idea of 

placing a transmitter on a DRO in the EM system and studied the low energy transfer to DRO. 

Existing study shows that a space object can stably move on a DRO for hundreds of years 

[3]. Such a characteristic makes the DRO a promising storage orbit for space assets. NASA’s 

Asteroid Redirect Robotic Mission (ARRM) plans to place a retrieved asteroid to a stable 

DRO in the EM system[4,5]. Bezrouk [6] studied the ballistic capture of an asteroid into the 

DRO. 

Most of existing works have focused on how to transfer a satellite from the Earth to a 

DRO [1,2], or an asteroid from interplanetary space to the DRO in the EM system [4–6]. 

However, the inverse problem of transferring a spacecraft from a DRO to the LEO targets has 

been rarely studied. This study concentrates on the LEO reachability of a spacecraft initially 

moving on a stable DRO. 

For a spacecraft moving on a DRO, it can maneuver from the DRO to the Moon with a 

small velocity increment. Then, the lunar gravity assist (LGA) can be used to decelerate the 

platform, which enables it to reach LEO targets. This means that, by using the LGA, a 

spacecraft can maneuver from a DRO to a low Earth orbit (LEO) at a low fuel cost. This 

motivates the plan of placing a servicing space platform on a DRO in the Earth-Moon (EM) 
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system to service LEO targets. To support such a plan, a comprehensive analysis of the LEO 

reachability for a spacecraft maneuvering from a DRO with a small available velocity 

increment (due to limited fuel storage) is necessary. 

This paper is organized as follow. First, a maneuver strategy utilizing the LGA is 

proposed to transfer from a DRO to reach LEO targets. Then, the Moon’s reachability is 

studied because the proposed the maneuver strategy requires the LGA. Finally, the LEO 

reachability is considered by solving the radius of perigee. The current study only considers 

the planar case in the EM plane. Besides, the following three practical mission constraints are 

imposed on the transfer orbit:  

(1) The time of flight, toft , is constrained to be no more than two orbit periods of the 

Moon, roughly about two months. 

(2) To guarantee the safety of the LGA, the altitude of the orbit with respect to the 

Moon’s surface should be larger than 100 km. When the altitude is smaller than 100 km, the 

spacecraft is thought to have been collided into the Moon. 

(3) The transfer only uses one LGA. This means that the spacecraft is not allowed to 

enter the Moon’s sphere of influence (SOI) for the second time. When the spacecraft left the 

Moon’s SOI for the first time, it is not allowed to enter the Moon’s SOI again. 

 

Maneuver Strategy from a DRO to LEO 
 

By imposing a small velocity impulse in arbitrary direction on a spacecraft moving on a 

stable DRO, the spacecraft will leave the original DRO orbit. The new transfer orbit after the 

maneuver can either approach to or depart from the Moon. For those transfer orbit 

approaching to the Moon and entering the Moon’s SOI, they will be significantly influenced 

by the Moon’s gravity to alter the flight trajectory, which is generally known as the LGA. 

Only by utilizing the LGA that a spacecraft can be significantly decelerated to reach a 

LEO target. Such a transfer profile can be summarized as “approaching to and decelerated by 

the Moon”, which is shown in Fig. 1. This transfer profile consists of three essential phases: 

(1) the spacecraft deviates from the DRO by imposing a small impulse v  and coasts to the 

Moon, (2) it travels through the Moon’s SOI to finish the LGA, and (3) it departs from the 

Moon’s SOI and transfer to intercept the LEO targets after the LGA. 

In this study, we focus on the LEO reachability for a spacecraft maneuvering from a 

stable DRO and following the given transfer profile. 

Suppose that the spacecraft is initially moving on a stable DRO with the periodic around 

the Moon in the rotating EM system being  . Let 0x  denote the state vector of the spacecraft 

(in the EM rotating coordinate system) when it traverses the EM line with the velocity 

pointing in the positive direction, thus, 

  0 0 0 0 0 00 0 , 0
T TT T x y y = =  x r v  (1) 

For a stable DRO outside the Moon’s SOI, the value of 0x  should be chosen between 0.73  

and 0.81[3]. In this research we consider a family of stable DRO with 0 0x X , where 

  0 0.73,0.74,0.75,0.76,0.77,0.78,0.79,0.80,0.81X =  (2) 
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Fig. 1: Maneuver strategy from DRO to LEO in the EM rotating coordinate system 

 

The maneuver velocity impulse v  is imposed right before the spacecraft leave the 

DRO. The maneuver position on the DRO and the velocity impulse direction are arbitrary. 

However, the magnitude of v  is constrained to the maximum available v . The maneuver 

position, r , on the DRO is a control variable. Let 
T

T T =  x r v  be the state vector of the 

spacecraft on the DRO before the maneuver. The corresponding state vector of the DRO when 

traversing the EM line is 0x . Obviously, x  can be propagated from 0x  by a flight time 

interval of t . Thus, the maneuver position r  on the DRO depends on t . When t  

traverses the interval  )0, , the maneuver position covers the entire DRO. Now we define a 

dimensionless control variable   as 

  )0,1
t





=    (3) 

which decides the maneuver position on the given DRO. 

The direction of the maneuver velocity impulse v  can be arbitrary. Let   denote the 

angle between v  and v . Thus,  )0,2   is another control variable that decides the 

direction of v . 

Based on the definitions above, the two control variables for the Maneuver strategy from 

DRO to LEO is ( ),  . The permissible control set P  satisfies 

 ( )  )  ) , 0,1 , 0,2P     =     (4) 

The state right after the impulsive maneuver is denoted as 1 1 1

T
T T =  x r v , which can be 

obtained as 
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where ( )z R  is a rotation matrix, 

 ( )
cos sin

sin cos
z

 


 

− 
=  
 

R   (6) 
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The maneuver strategy from a DRO is completely defined. Next, both the Moon’s 

reachability and the LEO reachability will be studied. 

 

Moon’s Reachability 
 

For the proposed maneuver strategy in the previous section, the LGA is possible only for 

transfers entering the Moon’s SOI. Thus, the Moon reachability is firstly analysed. 

For those transfer trajectories approaching to the Moon, a minimum flight altitude minh  is 

set to avoid of impacting the Moon. Generally, the flight trajectories after the impulsive orbit 

control from the DRO orbit fall into three categories: 

(1) LGA trajectories. Those are the flight trajectories that enters the Moon’s SOI, and 

meanwhile altitude of their perilune is larger than minh . 

(2) Moon collision trajectories. Those are the flight trajectories that enters the Moon’s 

SOI, and meanwhile altitude of their perilune is less than minh . These flight trajectories are 

considered as impacting the Moon. 

(3) No LGA trajectories. Those are the flight trajectories that do not enter the Moon’s 

SOI on the whole time duration of integral. 

When the control variable ( ),   traverses the entire control set P , a plot of the 

distribution of the above three categories can be obtained. Also, the proportion of the LGA 

category, denoted by the symbol  , can also be evaluated. It is evident that the larger the   

is, the easier the LGA can be accomplished. Thus,   can be treated as a performance index to 

characterize the Moon reachability of a maneuver from a DRO. 

We consider an example to illustrate the Moon’s reachability problem. In this study, all 

variables are normalized. For the EM system, a length unit 1DU  represents 83.84748 10  m , 

and a velocity unit 1VU  represents 31.02408 10  m/s . All the parameters (normalized) in this 

DRO maneuver scenario are set as 

 0 0.76,  0.1x v=  =  (7) 

 
4

min 100 km 2.5991 10  DUh −= =    (8) 

With the setting above, the simulated Moon’s reachability is given in Fig. 2, where the 

color green, red, and blue represent the transfer trajectories of “No LGA”, “Moon collision”, 

and “LGA” categories, respectively. The proportion of the LGA category, which accounts for 

the proportion of the color blue in the figure, is 59.6% = . 

It can also be found that, at the neighbourhood of  = , most transfer trajectories can 

enter the Moon SOI, resulting in either LGA or Moon collision. This is because when  = , 

the velocity impulse v  is imposed in the anti-velocity direction so that the spacecraft is 

decelerated and thus moves towards the Moon. Meanwhile, at the neighbourhood of 0 =  

and 2 , most transfer trajectories do not enter the Moon’s SOI, as shown by the green area in 

Fig. 2. 

The three subfigures on the right of Fig. 2 shows three representatives corresponding to 

the three transfer trajectory categories. It is observed that the green flying trajectory does not 

enter the Moon SOI, which cannot accomplish an LGA. The red flight trajectory flies too 

close to the Moon so that it collides into the Moon. The blue flight trajectory successfully 

enters the Moon’s SOI and finally accomplishes an LGA. Fig. 2 also shows that for 

 )0,1  , there is always blue area. This means that the spacecraft can enter the Moon’s 

SOI by imposing the velocity impulse at any position on the DRO. However, for those transfer 

trajectories enters the Moon’s SOI, part of them collide into the Moon and the rest of them 

successfully accomplish the LGA. 
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Fig. 2: Moon’s reachability analysis ( 0 0.76, 0.1x v=  = )  

 

We now consider the cases for different initial stable DROs. For 0 0x X  and 

 0.04,0.18v  , the results for the performance index   are shown in Fig. 3. 

 
Fig. 3: Moon’s reachability for different maneuver scenarios  

 

Fig. 3 shows that, for a given v ,   increases with 0x . This is because for a DRO with 

larger 0x , it is closer to the Moon and therefore it is easier the reach the Moon. However, for a 

given DRO ( 0x ),   firstly increases and then decreases with v ; the maximum of   occurs 

when 0.08v  . This phenomenon is against our instinct that the Moon can be reached easier 

when the velocity impulse is larger. This can be accounted for by the fact the transfer orbit can 

escape the Moon’s SOI when v  is large enough. Since the Moon’s gravity cannot pull the 

spacecraft into its SOI, the Moon’s reachability is getting worse when v  is larger than a 
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critical point around 0.08 . Such a result reveals that increasing of v  does not essentially 

improve the Moon’s reachability. In fact, our simulation shows that when v  is between 0.7  

(72 m/s) to 0.9  (92 m/s) for different DRO, the Moon’s reachability reaches its peak. 

 

Low Earth Orbit Reachability 
 

For a DRO maneuver with 0x  and v , the transfer orbit can be generated by providing a 

pair of control variable ( ),   and the flight time constraint 4toft  . Thus, a perigee on the 

transfer orbit is readily to evaluate, which is denoted as ( ),pr    

 ( ) ( )( )  ), inf ; , , 0,4p

Er t t    = − r r  (9) 

where  0
T

E = −r  is the location of the Earth center. Define the global minimum of 

( ),pr    as  

  ( ) ( )min inf , , ,p pr r P    =     (10) 

Thus, min

pr  can be used as a performance index for LEO reachability of the transfer orbit. Let 

the corresponding control variables being ( )* *,  , satisfying  

 ( )* *

min,p pr r  =  (11) 

where ( )* *,   is the optimal control variables. 

Given an initial DRO with 0 0.77x =  and a maneuver velocity imuplse of 0.09v = , by 

traversing ( ),   the LEO reachability of the transfer orbit is presented in the left subfigure of 

Fig. 4. The color bar shows the magnitude of ( ),pr   , with the blue direction of the color 

bar representing the lower value (closer to the Earth) and the yellow direction representing the 

higher value (far away from the Earth). The closed white curve is the contour of 

( ),p

geor r  = , where 0.1109geor =  is the radius of the geostationary orbit (GEO). The dark 

blue area enclosed by the GEO contour is where the transfer orbit can reach earth orbit lower 

than the GEO belt. 

The lowest transfer orbit is min 0.09043pr = , and the corresponding optimal control 

variables are 

 
* *0.5083,  6.2657 = =    

The right subfigures of Fig. 4 show the optimal transfer orbit in both the rotating and the Earth 

inertial frame. 

To further analyze the LEO reachability, we consider different initial DROs 0 0x X  and 

different v . For  0.05,0.18v  , the history of min

pr  is shown in Fig. 5. It can be seen that 

for any given DRO, min

pr  decreases with v . According to the slop of the min

pr  line, it can be 

divided into three segments: slowly decreasing segment with small v , fast decreasing 

segment, and slowly decreasing segment with large v . For different initial DROs, the start 

of the fast decreasing segment varies between 0.06 and 0.08, and the end of this segment is 

around 0.09. 
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Fig. 4: Low Earth orbit reachability analyse for 0 0.76, 0.09x v=  =   

 
 

Fig. 5: Low Earth orbit reachability analyse for different scenarios 
 

The numerical simulations have shown that, for LEO reachability, it is favoured to 

provide a v  between 0.09 (~90 m/s) and 0.1 (~100 m/s) to guarantee the reachability and the 

efficiency simultaneously. 
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This simulation verifies that the LEO targets can be reached by a spacecraft maneuvering 

from a stable DRO in the EM system at a low fuel cost, with the required velocity impulse as 

small as 90 m/s. 

 

Conclusion 
 

This study proposed a maneuver strategy to reach the LEO space assets for a spacecraft 

initially moving on a stable DRO in the EM system. Simulations show that the a DRO 

platform can maneuver to the Moon from anywhere of the DRO and establish an LGA with a 

velocity impulse as small as 50 m/s. The LEO targets can be reached by using the proposed 

maneuver strategy when the velocity impulse is increased to about 90 m/s, which is a very low 

fuel cost. Results of this paper support the mission of placing a servicing space platform on a 

DRO in the EM system. 
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