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Abstract—The primary objective of this study
is to develop a tool to calculate optimal transfer
trajectories from a user-defined Earth-bounded orbit
to a user-defined Moon-bounded orbit, using a bi-
impulse direct transfer under the influence of a full
dynamics model with perturbations, reflecting the
physical environment. The objective is to obtain the
required impulse (∆V̄ ) efficiently so that it serves
as an initial guess for further analysis. Two tools
are developed to achieve this goal. The first tool
employs a global optimization algorithm, a Particle
Swarm Optimizer (PSO), to find an initial guess
within a simplified dynamics model, exploring the
user-defined search space. The second tool employs
a gradient-based Sequential Linear Least SQuares
Programming (SLLSQP) optimizer to refine the
initial guess and include the relevant perturbations
that act in real life. The capabilities of the tools
are demonstrated through several test cases. The
first test case involves transferring from a circular
Low Earth Orbit (LEO) to a circular near-polar
Low Lunar Orbit (LLO). A second and a third
test case involving transfers from a LEO and a
Geostationary Transfer Orbit (GTO) to an eccentric
lunar orbit were also successfully evaluated. These
test cases validate the functionality of the method
and demonstrate its versatility in handling various
scenarios. In conclusion, the developed tools provide
efficient and robust solutions for optimizing direct
transfers from Earth to the Moon under the influence
of real-life perturbations.

I. INTRODUCTION

The optimization of Earth-Moon transfers, includ-
ing a detailed dynamics model, has been a focus of
research since the start of the Moon race in 1959. It
remains an area of interest within the space sector,
especially in discussions about establishing a human
presence in lunar orbit as a step towards exploring the
Solar System. Ongoing technological and theoretical
advancements present numerous opportunities for new
research projects in this field.

This project aims to create a flexible tool for opti-
mizing trajectories from any Earth-bounded orbit to any
Moon-bounded orbit, using a dynamics model with user-
selected perturbations. The tool seeks to offer initial es-

timates for required propellant, maneuvers, and optimal
transfer timings, while considering a dynamics model
that reflects the physical reality of such missions.

Existing studies often use models like the Circular
Restricted Three-Body Problem (CR3BP) [1] [2], which
offer many advantages but struggle to incorporate key
perturbations like Earth’s spherical harmonics or solar
radiation pressure. Furthermore, these studies typically
focus on specific trajectory solutions rather than offering
user-friendly tools for analyzing and optimizing transfers
based on auxiliary user-defined orbits.

The transfer studied throughout this project is a direct
one, as it is the quickest and simplest transfer to the
Moon, and hence one of the most used transfers in
past and current missions. They have been extensively
researched, and first-order approximations are available.
Their short Time of Flight (ToF) offers advantages
in terms of radiation exposure and mission control.
Additionally, the spacecraft remains near Earth and the
Moon, minimizing the influence of the Sun’s gravity,
simplifying approximations, and aiding in emergency
situations. However, direct transfers require a significant
∆V , impacting mission costs compared to low-energy
transfers, which make use of gravitational assists from
celestial bodies to increase the orbital energy of the
satellite [3]. Bi-elliptic transfers reduce ∆V but extend
transfer times. Weak Stability Boundary (WSB) trans-
fers, particularly with ballistic capture, offer improved
∆V performance [4]. Low-energy transfers access a
broader range of lunar orbits, especially beneficial for
periodic three-body orbits. Manifold transfers, exploiting
CR3BP dynamics, decrease ∆V without significantly
extending ToF, making them attractive for reaching
periodic or quasi-periodic orbits. However, they require
a CR3BP formulation due to manifold rotations in an
inertial frame.

This work focuses on high-thrust direct two-impulse
transfers, which are widely employed in initial investi-
gations and are considered reliable by the community.
This requires an initial state for trajectory optimization,
which can be defined by the Keplerian elements of
an Earth-bounded orbit (a, e, i, ω, Ω). The precise
starting position within this orbit is determined by
an additional variable that needs to be analyzed. For
the final state, options include Keplerian orbits around
the Moon or quasi-periodic orbits like halo or Near-
Rectilinear Halo Orbits (NRHO). Keplerian orbits can be
modelled in both CR3BP and ephemeris models. They



are straightforward and widely used, though they are not
static in an Earth-centered inertial frame. Quasi-periodic
orbits exploit CR3BP dynamics, offering benefits for
lunar missions but require pre-generation and storage of
state information, and cannot be generated in an inertial
frame. This project primarily focuses on Keplerian orbits
due to their simplicity and inertial frame adaptability.
Throughout this paper, an approach to find the optimal
Earth-Moon direct two-impulse transfers, from a user-
defined Earth-bounded orbit to a user-defined Moon-
bounded orbit including a user-selected dynamics model
will be analyzed, including the optimization methods,
the optimization parameters, and the possibility of both
global optimization methods and gradient-based opti-
mization methods. Lastly, the optimization process does
not encompass the launcher ∆V for reaching the initial
orbit, though it is crucial for assessing overall mission
costs.

II. METHODS

The study of optimal direct two-impulsive transfers
involves a hybrid approach. First, a global optimization
(Section II-A) is conducted using SEMpy (Sun-Earth-
Moon system in Python) [5], an open-source tool devel-
oped by ISAE-SUPAERO. Next, a gradient-based opti-
mization is used to further refine the solution and address
a more complex dynamics model (Section II-B). This
optimization employs EMTOS (Earth-Moon Trajectory
Optimiyation Software), a self-developed software mak-
ing use of DLR internal libraries in Fortran, and the
SLLSQP optimizer [6]. The methodology is depicted in
Figure 1.

By using this hybrid method, the developed software
will be able to find a close-to-optimal solution under
simplified conditions throughout the whole search space
in an acceptable time using a global optimization algo-
rithm, and then use the obtained solution as an initial
guess for a local optimization under the influence of a
full dynamics model.

A. Global optimization
The global optimization method employed is a

Particle-Swarm Optimizer (PSO) [7]. Its main advan-
tages include ease of implementation, quicker conver-
gence compared to other global search algorithms, ro-
bustness, and the ability to handle multi-modal func-
tions. However, it can converge prematurely to a sub-
optimal solution if the optimizer’s parameters are not
properly tuned.

The first step towards practical optimization is to
define the fitness function and the design variables.
Then, a set of solutions or ”particles” is generated, and
their fitness, associated with a combination of design
variables, is computed. The optimizer will then seek the
particle with the minimum fitness value. As mentioned
earlier, tuning the parameters of the optimizer is crucial

to ensure the best solution in the shortest possible time.

i. Fitness function
The fitness is determined by the combined magnitude

of the two maneuvers required to transfer from an Earth-
bounded orbit to a Moon-bounded orbit in km/s.

Fitness = |∆~V1|+ |∆~V2| (1)

Large values are assigned to the fitness if there are
convergence issues or if the final trajectory brings the
satellite too close to either Earth or the Moon (lower
than 100 km above Earth’s surface or 50 km above the
lunar surface).

ii. Design variables
The selection of design variables impacts the size

and complexity of the search space, as well as the time
required to calculate the fitness for each particle. Hence,
the chosen design variables are as follows: the departure
state, the arrival state, and the ToF, the initial epoch (et0),
which significantly influences the ∆V required to travel
from Earth to the Moon.

The parameters defining the initial and final orbits are
provided as inputs by the user in the form of Keplerian
elements. Hence, the initial and final states can be
defined by two parameters (τ1 and τ2 respectively). τi
represents the time elapsed since a reference point in the
orbit divided by the orbital period, ranging from 0 to 1.
These variables are depicted in Figure 2.

iii. Dynamics system
The choice of the dynamics system for this problem

is influenced by the required accuracy, the methods
used, and the acceptable computational time. The PSO
optimization requires numerous function evaluations,
thus employing a simple model will significantly reduce
the total CPU time and decrease the complexity of
the problem. Therefore, only Earth’s and Moon’s point-
mass gravity fields will be included. However, it was
observed that in some cases, when later propagating the
obtained trajectory with a complete dynamics model,
the solution failed to reach the Moon and could not
serve as an initial guess for the local optimization. To
overcome this issue, the spherical harmonics of Earth
were incorporated into the orbit propagation only before
the first maneuver. This adjustment favored obtaining
a solution that, when propagated with a full dynamic
model, successfully reached an orbit around the Moon.

iv. Solution generation
Generating the solution involves determining the best

method to compute the fitness value (the required ∆V )
from a particle with design variables (τ1, τ2, ToF, et0).
Subsequently, the initial and final states (position and ve-
locity) in the EME2000 reference frame are calculated.

Once the initial and final states are computed, the
required ∆V is determined using a combination of



Fig. 1. General diagram of the optimization method.

Fig. 2. Design variables diagram for global optimization.

Lambert’s solver and a multiple-shooting method im-
plemented with SEMpy. Lambert’s problem is an ana-
lytical two-body method used to compute transfer orbits
between two specified position vectors within a given
transfer time [8]. However, the solver can only consider
either Earth’s or the Moon’s point-mass gravity field and
cannot directly account for both bodies simultaneously.
Therefore, the solution serves as an initial guess for a
multiple-shooting method, which subsequently corrects
for the additional gravity field [9].

The multiple-shooting method discretizes the trajec-
tory into n − 1 legs with n patch points to enhance
convergence. Differential corrections are then applied
iteratively to determine the position and velocity at
each patch point, ensuring a continuous trajectory. The
optimal number of patch points varies depending on the
specific problem, balancing convergence time and ro-
bustness. Here, a study has been conducted by analyzing
the convergence and CPU time for 5 different cases.

It is important to note that this method struggled
to converge when the initial guess, calculated without
considering the influence of the Moon, resulted in a
trajectory too close to the lunar center. This issue arises
due to the significant computational resources required
to propagate the State Transition Matrix (STM) in such
cases. To prevent being trapped in an undesirable so-
lution, a threshold was implemented to exclude cases
where the trajectory of the initial guess approached
within 1000 km of the lunar center of mass. This value

was determined based on CPU time and convergence
considerations.

v. Optimizer tuning
The primary criteria for analyzing the optimizer’s

performance is its robustness, including its ability to find
the global optimum avoiding getting stuck in local op-
tima, yielding consistent solutions with different initial
conditions (seeds), and its convergence rate.

The parameters requiring tuning are the population
size, number of generations, inertia weight (ω), and
social and cognitive components (η1, η2) of the PSO.
ω determines the influence of the particle’s previous
velocity, thereby regulating the extent to which the
particle’s velocity is influenced by its past behavior
[10]. η1 represents the shared experience of the swarm,
updating the term associated with the influence of the
swarm’s global best position on the particle’s behavior.
η2 enables each particle to update its position based on
its own historical information, allowing it to explore the
search space around its best-known solution so far [11].
ω, η1 and η2 are tuned independently, maintaining

a constant population size and number of generations.
Once their optimal values are determined, the best
combination of population and number of generations is
found. To achieve this, a problem with each combination
of parameters was solved with 5 different seeds, and
the solution was selected based on robustness, hence
ensuring that solutions obtained for each seed provided
very similar optimum particles and fitness values, and a
reasonable CPU time.

B. Gradient-based optimization
As previously mentioned, a gradient-based optimiza-

tion will be used to calculate the optimal solution,
considering additional perturbations, while using the
PSO-obtained solution as an initial guess. This method
requires a new problem formulation due to the im-
plementation of gradient-based optimization methods,



specifically of Sequential Least Squares Programming.
The solution generation process involves propagating

the satellite’s trajectory from its initial state. This prop-
agation comprises a first maneuver to start the transfer
trajectory and a second maneuver to reach the lunar
orbit. An important step for gradient-based optimization
is to include constraints, both equality and inequality,
to ensure that the solution found consistently reaches
the desired orbit. Subsequently, the Keplerian elements
of the resulting orbit are computed and compared to
the objective ones. The dynamics model used for this
propagation includes additional perturbations, such as
the presence of the Sun’s gravity field, a gravitational
model with spherical harmonics for both Earth and the
Moon, solar radiation pressure, and drag. The propa-
gation with these perturbations within the software has
been thoroughly tested.

The fitness function remains consistent with PSO
(Equation 1). However, adjustments to the design vari-
ables are required.

i. Design variables
The solution will be generated through the propaga-

tion of the satellite’s state. The design variables are:
− Time in the first orbit: t1.
− The velocity components of the first maneuver in

EME2000 reference frame: ∆V1x, ∆V1y , ∆V1z .
− Time of flight: ToF.
− The velocity components of the second maneuver in

an EME2000 reference frame: ∆V2x, ∆V2y , ∆V2z .
The optimizer has proven to be capable in effectively

optimizing this number of parameters.

ii. Constraints
Five inequality constraints are imposed for the semi-

major axis, the eccentricity, the inclination, Ω and ω.
The general inequalities are as follows:

X < A+ ∆
X > A−∆

(2)

where A is the objective value, ∆ is the permitted
variance, and X is the actual value obtained from the
propagation.

iii. Optimizer tuning
To ensure that the found solution in this specific

problem is optimal and the method is robust, certain pa-
rameters within the SLLSQP optimizer need to be fine-
tuned. These parameters include the scaling factor for
decision vector parameters (SP), the scaling factor for
constraints (SC), the scaling factor for the fitness (cost)
function (SCF), the accuracy (ACC), and the directional
derivative of the perturbation parameters (DDPP).

Each parameter has been examined independently
in order to comprehend its individual effect. This has
been done by analyzing the results with different values,
specially looking at the fitness. The main reason for

errors in the SLLSQP optimizer is obtaining positive
directional derivatives.

C. Software testing
Lastly, both software packages were tested to validate

the premise that a transfer can be optimized under a
full dynamics model, based on the idea that a PSO
optimizer can identify a solution close to optimal using
a simplified dynamics model, which can then be refined
and optimized further by the SLLSQP optimizer to
account for the perturbations. To achieve this, various
test cases have been examined. All with a Ω of 0◦.

E h [km] e [-] i [deg] ω [deg]
E1 250 0 28.4 0
E2 24389 0.7285 6 178

TABLE I
EARTH ORBITS.

M a [km] e [-] i [deg] ω [deg]
M1 1837.4 0 85 0
M2 6541.1 0.6 56.2 90

TABLE II
MOON ORBITS.

Test Case Earth orbit Lunar orbit
1 E1 M1
2 E1 M2
3 E2 M2

TABLE III
SUMMARY OF THE TEST CASES.

As found in Table III, test case 1 (TC1) explores a
transfer from a LEO (E1) to a LLO (M1), and it has
been established as the basic case for all the tuning
procedures. Test case 2 and 3 (TC2, TC3) allow to
estimate the potential propellant savings for a satellite
departing from a LEO (E2) compared to a GTO (E3) to
a lunar orbit (M2) that can be used for a polar coverage
constallation.

The common input data provided for all the test cases
for the optimization with the PSO is as follows:
− The initial epoch around which the optimization is

conducted: 23rd July 2024.
− Spherical harmonics for the Earth up to degree and

order 10.
− Boundaries for the ToF: 0.1 days and 6 days.
− Boundaries for the initial epoch: 15 days before and

after the initial epoch given.
− Boundaries for τ1 and τ2: from 0 to 1.

The general input data provided for all test cases for
the optimization with SLLSQP is as follows:



Fig. 3. Computational time it takes to obtain a Lambert +
multiple-shooting solution for a range of patch points.

− Mass of the satellite: 1500 kg.
− Drag area: 3.5 m2.
− CD: 2.3.
− ACR: 10 m2.
− CR: 1.3.
− Allowed deviations for a: 1 km.
− Allowed deviations for e: 0.001.
− Allowed deviations for i: 1◦.
− Allowed deviations for Ω: 10◦, only available if

inclination is not 0◦.
− Allowed deviations for ω: 10◦, only available if

eccentricity is not 0◦.

III. RESULTS

A. Number of patch points in multiple-shooting method
The PSO algorithm’s solution was obtained using a

hybrid method that combines a Lambert solver with a
multiple-shooting approach. This method requires set-
ting the number of patch points, as it affects both
robustness and CPU time. As depicted in Figure 3, it
was observed that using 2 patch points, corresponding
to a single-shooting method, consistently converged but
consumed significant time per iteration. Additionally, it
was noted that CPU time increased linearly for more
than 25 patch points. Between 3 and 15 patch points,
convergence is not always achieved. Therefore, a com-
promise of 20 patch points was chosen.

B. Tuning PSO parameters
The default value for the inertia weight given by

SciPy, which we found was the best for this problem,
is 0.7298. It was observed that lower values resulted in
longer computational times (up to 16 minutes longer),
while larger values led to shorter times but more
scattered solutions. Regarding the social and cognitive
components, lower values were found to produce more

robust results. As for CPU time, generally, larger values
yielded faster results, but with a difference of only
around 3 minutes, an acceptable value. A value of 1.5
was selected for the social and cognitive components.
An important result to be noted is that the effect of the
inertia weight value was larger both for robustness and
computational efficiency.

The population size and the number of generations
were tested together. Lower numbers resulted in lower
CPU time but lacked robustness, while larger numbers
ensured robustness at the cost of significantly slower
performance, with differences of up to 100 minutes.
Therefore, a balanced combination was sought. The
optimal combination for the majority of the problems
was found to be 50 for the population size and 75
for the number of generations. However, it is crucial
to emphasize the importance of assessing whether the
optimizer has indeed converged with these settings.

C. Tuning SLLSQP parameters
The SLLSQP parameters also required tuning. Firstly,

it has found that SP and SC have no measurable impact
for the solution on this problem.

Analysing the SCF demonstrates that the optimizer
prioritizes decreasing the fitness value when its value
is higher. However, setting SCF too high can lead to
errors if the initial solution is not sufficiently close. To
mitigate this, a loop that gradually increases the scaling
factor of the fitness function has been implemented. This
iterative approach uses the solution from the previous
optimization as input, raising the scale value gradually,
aiding the optimizer in reaching the solution with the
lowest fitness value possible.

Using a low ACC yields the same result as using a
value of 1, and a high ACC leads to the same solution as
the initial guess without optimization, as the initial guess
aligns closely with the desired orbit, already satisfying
all the inequality constraints.

The DDPP represents each parameter’s derivatives,
hence a value is required for each parameter. If all
DDPPs are too low, an error can occur due to a
positive directional derivative. Furthermore, there is a
dependence on this value individually, as well as in
combination. Through various cases, it was found that
the value of 10−5 for all parameters effectively works
across different initial guesses and will be set as the
default. However, users should adjust this parameter for
each specific case to seek improved results.

D. Test Case 1
The first test case consists on the transfer from LEO

to LLO. After running the PSO for 5 different seeds,
solutions in Figure 4 are obtained. S30 (i.e. seed number
30) brings the best solution, very similar to that of S10,
with a fitness of 4773.57 m/s. It needs to be highlighted
that all seeds lead to very similar results except for
S50, with a fitness 12 m/s larger and very different



Fig. 4. Design parameters for the optimal particles found for
each of the five seeds in test case 1.

Fig. 5. Evolution of the whole population for test case 1 and
seed 30.

design variables. The difference in τ1 and τ2 is 0.5,
corresponding to a transfer from and to opposite sides
of both orbits, and showcasing a suboptimum solution.
Both the optimal and suboptimal solutions can be seen in
the evolution of all particles throughout the optimization,
found in Figure 5 for seed 30. The difference in epochs
between seed 50 and the value for the other seeds is
approximately 13.47 days, nearly half of the Moon’s
orbital period.

The final step in understanding the solutions is to plot
the trajectories. Figure 6 shows the trajectories followed
with the best result for each seed. It is apparent that
the trajectories for the initial four seeds cluster around
a similar epoch, whereas for S50, the trajectory veers
entirely in the opposite direction. This observation is
important for mission operations, indicating that despite
not achieving the absolute optimal solution, an alterna-
tive solution half a lunar orbit later giving only around
a 10 m/s loss in ∆V remains viable.

As previously mentioned, these solutions do not ac-

count for additional perturbations except for the spher-
ical harmonics of Earth during the initial part of the
transfer when the satellite is orbiting Earth. Therefore,
this solution requires further analysis to determine the
optimal parameters under a more complete dynamics
model. To address this, EMTOS is used, not only for
further optimization but also to specifically correct the
trajectory to ensure it reaches the desired orbit under the
influence of this new model.

The results obtained from the SLLSQP optimization
are presented in Table IV. The initial lunar orbit reached
with the result from seed 30 (First S30) is not the
intended one due to the additional perturbations, partic-
ularly concerning the semi-major axis, which is nearly
double. The optimization with EMTOS not only corrects
the final orbit, but also reduces the required ∆V , in this
case by approximately 50 m/s. This demonstrates that
the second stage of the software can improve the solution
while simultaneously correcting the trajectory to attain
the desired orbit in the new dynamics system.

Limits First S30 Last S30
a [km] 1836.4 to 1838.4 3222.62 1836.40
e [-] 0.000 to 0.001 0.445 0.001

i [deg] 84 to 86 88.46 84.09
Ω [deg] -10 to 10 -0.86 -1.28
Fit [m/s] 4773.57 4716.62

TABLE IV
VALUE OF THE KEPLERIAN ELEMENTS FOR THE FINAL

LUNAR ORBIT BEFORE (FIRST) AND AFTER (LAST)
OPTIMIZATION FOR THE BEST SOLUTION OF SEED 30 FOR

TEST CASE 1.

Figure 7 depicts the achieved orbit before and after
EMTOS. The orbits before are non-circular and have
a significantly larger semi-major axis than the required
one. However, after optimizing the solution for each
seed, the orbits obtained for all cases are identical.
Furthermore, it is noticeable that the initial orbit reached
from the solution for S50 exhibits an opposite argument
of perilune compared to the others.

E. Test Case 2 and 3
Test cases 2 and 3 (TC2 and TC3) analyze two

transfers to a lunar orbit designed for polar coverage.
The first one includes the transfer from a LEO and the
second one from a GTO, both aiming at M2, an eccentric
inclined lunar orbit. Comparing both test cases can give
a good estimate of the propellant that can be saved by
including the satellite as piggybacking to a mission to
GEO.

For TC2, more generations and a higher population
size were required to reach convergence, hence high-
lighting the significance of the optimizer’s parameters
and result analysis, as the tuning was done for general
cases, with particular emphasis on minimizing com-
putational time. The particle with lowest fitness value



Fig. 6. Trajectories obtained from PSO optimization for test case 1. The seeds corresponding to each color are: blue for seed
10, orange for seed 20, green for seed 30, red for seed 40 and purple seed 50.

Fig. 7. Final orbits around the Moon before (b) and after (a)
the SLLSQP optimization.

obtained after convergence requires a ∆V of 3895.38
m/s. TC3, on the other hand, converged smoothly with
the predetermined parameters, and reached an opti-
mum particle requiring a ∆V of 1523.16 m/s. Clearly,
launching from a GTO instead of a LEO reduces the
required ∆V by 2336.22 m/s, representing a decrease
of approximately 60% in ∆V requirements.

Refining and optimizing these solutions using the
SLLSQP optimizer yielded further improvements. In this
test case, the SLLSQP optimizer effectively addresses
additional perturbations and reduced the fitness, result-
ing in a total ∆V of 3859.81 m/s for a transfer from a
LEO and 1512.95 m/s for a transfer from a GTO.

Another distinction between transfers from LEO com-
pared to GTO is that, when propagating the solution
obtained from the PSO with the full dynamics model,
the lunar orbit obtained significantly deviates from the
required one, especially in terms of the semi-major axis,
which nearly doubles its intended value. This disparity
is attributed to the higher influence of Earth’s spherical
harmonics near its surface compared to initial orbits with
higher altitudes.

Another conclusion found in these test cases is that
optimal trajectories aim to minimize inclination changes
from the initial Earth orbit to the LTOs. However,
reducing the inclination change for the lunar injection
maneuver does not impact the total ∆V as significantly
as the inclination change required to reach the LTO, due
to the greater influence of Earth’s gravity field.

Furthermore, analysis of the TC3 trajectory reveals
that the optimal first maneuver occurs near the GTO
perigee, aligning with the satellite’s highest velocity
point. For orbits with eccentricity and inclination, the
initial orbit’s geometry relative to the desired lunar
orbit plays a crucial role in minimizing ∆V . Therefore,
optimizing ω and Ω of the initial Earth orbit could yield
further improvements in the results.

IV. CONCLUSIONS

The primary objective of this study was develop a
hybrid optimization method and demonstrate that it can
be used to obtain an optimal solution for a direct two-
impulsive transfer under the influence of a full dynamics
model.

The hybrid method involved using PSO within the
SEMpy environment to conduct a global search with
a simplified dynamics model. To determine the re-
quired maneuvers, Lambert’s problem was solved, and
a multiple-shooting method was used to consider the
Moon’s point-mass gravity field. Additionally, it was
determined that including Earth’s spherical harmonics
during the satellite’s trajectory propagation in the initial
orbit is necessary to obtain a suitable initial estimate,
enabling the gradient-based SLLSQP optimizer of the
next step to rectify the trajectory under the newly cho-
sen dynamics model. The SLLSQP algorithm not only
refines the solutions obtained by PSO but also corrects
for additional user-specified perturbations that could not
be directly accounted for during the solution generation
in PSO.

The key conclusion drawn is that this approach is
feasible, and the SLLSQP optimizer not only enhances
optimization further but also corrects for the newly intro-
duced perturbations. Moreover, using a PSO algorithm
to explore the defined solution space has proven to be the



most effective and straightforward method of generating
the initial guess. However, it was discovered that both
optimizers required tuning to ensure robustness.

Throughout the process, additional conclusions were
drawn. Firstly, it highlighted the importance of analyzing
the data obtained for each method, as further optimiza-
tion parameter tuning may be necessary, or suboptimal
solutions may be found, thus showing the possibility
of various interesting transfers. Secondly, it revealed
that while the main parameters to optimize were the
epoch of the transfer and the timing and positioning
of the two maneuvers, as they have the greatest impact
on the required ∆V , there are other parameters worth
analyzing, such as the relative position of the initial orbit
with respect to the lunar orbit, represented by ω and
Ω. Thirdly, the process emphasized the significance of
parameter tuning in optimization algorithms.

Lastly, both parts of the optimization procedure are
independent, making it a versatile and valuable tool for
primary optimization, both with and without perturba-
tions.
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