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Abstract –: Efficient numerical methods for the solution
of Initial and Boundary Value Problems is of continued
importance in astrodynamics are of continued import-
ance in astrodynamics. This paper proposes a novel
Galerkin method for the solution of IVPs and BVPs. The
method works by projecting the solution onto a Cheby-
shev basis, and by finding the projection coefficients that
zero the ODE residual through Newton-Rhapson iter-
ations. The method is tested against classical Runge-
Kutta methods and Modified Chebyshev-Picard Itera-
tions (MCPI), which is a similar pseudo-spectral method
for the solution of IVPs and BVPs. The Galerkin method
is up to 300 times faster than state-of-the-art Runge-Kutta
solvers for IVPs, and up to 80 times faster than MCPI in
the solution of BVPs.

I. INTRODUCTION

Solution methods for IVPs and BVPs are of fundamental
importance and continued relevance in astrodynamics.
The sustained exponential increase in the number of
launched payloads in recent years and the entry into ser-
vice of several governmental and commercial sensor net-
works will result in a drastic increase in the amount of
observations that will be processed by imminent Space
Situational Awareness (SSA) systems. This fact under-
scores the continued need for efficient solution methods
for initial and boundary value problems, which need to
be scalable to future scenarios in which millions of ob-
jects will likely become detectable.

Classical methods for the solution of IVPs and BVPs
rely on sequential schemes such as Runge-Kutta, multi-
step, and extrapolation methods [1]. All of these en-
joy a long heritage in astrodynamics, and their error be-
haviour and performance is well understood. However,
such methods do not use any assumption on the nature of
the solution (such as the quasi-periodicity typical of solu-
tions to the perturbed two-body problem), often do not
naturally provide a continuous solution in the integration
interval, and are non-trivial to parallelize. These draw-
backs have been addressed in recent literature through
Methods of Weighted Residuals (MWRs). In MWRs, the
form of the solution is given, and the problem is shifted to
finding a set of parameters that nulls the residual, i.e., the
quantity obtained by plugging a solution guess in a set of
Ordinary or Partial Differential Equations (ODEs/PDEs)
[2]. The structure of MWRs allows relatively straight-
forward parallelization, and an appropriate choice of the
basis functions on which the solution is expressed res-

ults in efficient methods, especially for quasi-periodic
solutions with multiple time scales which are usually en-
countered in astrodynamics. The MWR that has found
the widest applications in the astrodynamics community
is MCPI [3], [4]. MCPI projects the solution on a Cheby-
shev basis, and solves the weak form of the ODE through
a Picard iterative procedure. MCPI enforces the condi-
tion of zero residuals at a set of integration nodes, and
can thus be seen as a type of pseudospectral method [2].
Recently, the Theory of Functional Connections (TFC)
has been developed as a general method for functional
interpolation in constrained problems. TFC has been ap-
plied to several problems in nonlinear dynamics and con-
trol, among which the solution of nonlinear ODEs [5],
with high efficiency and accuracy. In the framework of
MWRs, TFC is a least-squares method as the square of
the residual of a set of ODEs is minimized.

In this work, we present a novel method for the solu-
tion of IVPs and BVP. Unlike MCPI, the method nulls the
residual over the entire integration interval (instead than
at discrete points), and uses Newton-Rhapson iterations
instead of Picard iterations to solve the MWR equations.
The novel method uses the Galerkin approach, in which
the functions on which the residual and the solution are
projected, i.e. the test and trial functions respectively,
are identical (more precisely, they span the same Hilbert
subspace). Galerkin spectral methods have found wide-
spread application in solving Partial Differential Equa-
tions (PDEs) in fluid dynamics [6], and have been suc-
cessfully applied in optimal control problems [7]. Galer-
kin methods have also been recently used to solve the
Fokker-Planck equation, which gives a formally correct
solution to the diffusion of uncertainty along time [8]. To
the authors’ knowledge, this is the first time that Galer-
kin methods have been used for the efficient solution of
IVPs and BVPs.

In the paper, we provide a brief derivation of the Galer-
kin method for IVPs and BVPs, followed by an assess-
ment of its performance against classical Runge-Kutta
methods and MCPI. Although the current implementa-
tion is serial, we show that the Galerkin method is easy
to parallelize and provide an estimate of the expected re-
duction in computational time.
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II. GALERKIN METHOD

A. IVP statement
The goal of the method is to solve IVPs

dx
dt

= f(x, t) (1)

x(t0) = x0, (2)

for all t P [t0, tf], where x(t) : R Ñ RN is the
N -dimensional state vector expressing the solution, the
Right-Hand Side (RHS) f(x, t) : RN ˆ R Ñ RN is a
smooth vector field, x0 is the initial state, and t0, tf are
the initial and final times of integration. The integration
interval [t0, tf ] is often long compared to the character-
istic time scale of the system; for example, we are usu-
ally interested in computing the solution over an integra-
tion interval that is much larger than the orbital period.
This makes the approximation of the solution through
aperiodic functions commonly used in MWRs difficult,
as typical IVP solutions are periodic and evolve over mul-
tiple time scales. We therefore split the integration inter-
val into S sub-intervals [ti, ti+1], i P t0, . . . , Su that are
solved sequentially, where S (equivalently, the interval
length) is chosen by the user. The method is applied to
each of the sub-problems, with continuity enforced by
setting the initial condition of the current sub-problem to
the solution at the end of the previous, x0i+1

= x(ti+1).
Finally, we scale the time variable such that we solve the
following IVP:

dx
dτ

= g(x, τ)

x(´1) = x0,
(3)

where g(x, τ) : RN ˆ R Ñ RN is the scaled right-
hand side. The problem above is then solved for all τ P

[´1, 1].

B. Galerkin method for IVPs
The Galerkin method presented in this paper is a specific
type of MWR. Define the residual associated to (3) as

r(ξ, τ) ”
dξ(τ)

dτ
´ g(ξ, τ). (4)

Clearly, if x̂(τ) is the exact solution to (3), then
r(x̂, τ) = 0, whereas any other approximation to the
solution will result in a non-zero residual.

In MWRs, we set the zero residual condition by en-
forcing it to be orthogonal to an ordered basis of known
M + 1 test functions tw0(τ),w1(τ), . . . ,wM (τ)u,w :
R Ñ RN under the inner product:

⟨wm(τ), r(x, τ)⟩ = 0 ðñ
ż 1

´1

w⊺
m(τ)

(
dx
dτ

´ g(x, τ)

)
dτ = 0,

(5)

for all m P 0, 1, . . . ,M . Integrating (5) by parts leads to
the weak form of the ODE (3):

w⊺
m(1)x(1) ´ w⊺

m(´1)x0i

´

ż 1

´1

dw⊺
m(τ)

dτ
x(τ)dτ

´

ż 1

´1

w⊺
m(τ)g(x, τ)dτ = 0.

(6)

Note that the value of the solution at the initial time
x0i ” x(´1) is known. Equation (6) is solved through
Newton-Rhapson iterations by linearizing the RHS about
the solution at iteration k. By changing notation and re-
arranging (6) we get

ż 1

´1

(
dw⊺

m

dτ
+w⊺

m

Bg

Bx

ˇ

ˇ

ˇ

ˇ

x=xk

)
xk+1dτ

´w⊺
m(1)xk+1(1) = ´w⊺

m(´1)x0i´
ż 1

´1

w⊺
m

[
g(xk, τ) ´

Bg

Bx

ˇ

ˇ

ˇ

ˇ

x=xk

xk

]
dτ.

(7)

The solution is projected over a set ofL+1 trial functions
ϕℓ(t),

x(τ) =
L

ÿ

ℓ=0

Φℓ(τ)cℓ, (8)

where cℓ are N ˆ 1 vectors of spectral coefficients, and
Φℓ(t) = Iϕℓ(t) is an N ˆN diagonal matrix of ℓ-th or-
der trial functions. The Galerkin assumption consisting
of assuming identical test and trial functions, ϕm(t) =
wm(t) @m, L = M , is now applied [2]. Plugging (8)
into (7) we obtain N scalar equations to find the spectral
coefficients at iteration k + 1:

L
ÿ

ℓ=0

ż 1

´1

(
dϕ⊺

m

dτ
+ ϕ⊺

m

Bg

Bx

ˇ

ˇ

ˇ

ˇ

x=xk

)
Φℓc

k+1
ℓ dτ

´

L
ÿ

ℓ=0

ϕ⊺
m(1)Φℓ(1)c

k+1
ℓ = ´ϕ⊺

m(1)x0i

´

ż 1

´1

ϕ⊺
m

[
g
(
xk, τ

)
´

Bg

Bx

ˇ

ˇ

ˇ

ˇ

x=xk

L
ÿ

ℓ=0

Φℓc
k
ℓ

]
dτ.

(9)

As these N scalar equations must be simultaneously sat-
isfied for all m, we can write the overall equation for the
Newton-Rhapson iteration in matrix form:

(
P ´ Br + Jk

)
ck+1 = ´bl ´ sk + Jkck, (10)

where the block matrices P , Br, Jk are where P , Br,
Jk areN(M+1)ˆN(M+1)matrices formed byNˆN
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blocks,

P =


P00 P01 ¨ ¨ ¨ P0M

P10 P11 ¨ ¨ ¨
...

...
. . .

...
PM0 ¨ ¨ ¨ PMM

 (11)

Br =


Br00 Br01 ¨ ¨ ¨ Br0M

Br10 Br11 ¨ ¨ ¨
...

...
. . .

...
BrM0

¨ ¨ ¨ BrMM

 (12)

Jk =


Jk
00 Jk

01 ¨ ¨ ¨ Jk
0M

Jk
10 Jk

11 ¨ ¨ ¨
...

...
. . .

...
Jk
M0 ¨ ¨ ¨ Jk

MM

 (13)

with the blocks being

Pmℓ =

ż 1

´1

dϕm

dτ
ϕℓIdτ (14)

Brmℓ
= ϕm(1)ϕℓ(1)I (15)

Jk
mℓ =

ż 1

´1

ϕmϕℓ
Bg

Bx

ˇ

ˇ

ˇ

ˇ

x=xk

dτ. (16)

and bl, s
k, ck are N(M + 1) ˆ 1 vectors,

bl =


Φ0(´1)x0i

Φ1(´1)x0i
...

ΦM (´1)x0i

 (17)

sk =


ş1

´1
Φ0g(x

k, τ)dτ
ş1

´1
Φ1g(x

k, τ)dτ
...

ş1

´1
ΦMg(xk, τ)dτ

 (18)

ck =


ck0
ck1
...

ckM

 . (19)

Note that P ,Br, and bl do not change during the itera-
tions and can be precomputed.

Each integral in the terms of (10) is computed through
a Gauss-Legendre-Lobatto (GLL) quadrature,

ż 1

´1

f(τ)dτ «

M
ÿ

j=0

vjf(τj)

vj =
2

(1 ´ τ2j )

(
dpM

dτ

ˇ

ˇ

ˇ

τ=τj

)2

, (20)

where τj is the j-th root of the M -th order Legendre
polynomial pM (τ). The Newton-Rhapson iteration (10)

is performed until the coefficient vector converges under
a specified tolerance ϵ,

∥ck+1 ´ ck∥
∥ck∥

ă ϵ. (21)

C. Galerkin method for BVPs
Similarly to Section II.A, we define the BVP as finding
the solution x(τ) for all τ P [´1, 1] to

d2x
dτ

= g(x, τ) (22)

x(´1) = x1, x(1) = x2, (23)

in which x1,x2 are known boundary conditions and the
same non-dimensionalization as in Section II.A has been
applied. For the BVPs, preliminary numerical testing has
shown that the splitting of the total solution interval into
sub-intervals is unnecessary.

By applying the MWR method with the Galerkin ap-
proach to the residual of as done in Section II.B, we ar-
rive at an analogous equation for the Newton-Rhapson
iteration for BVPs:

(P2 ´ Jk +B2vr ´ B2vl)c
k+1

= b2r ´ b2l + sk ´ Jkck
, (24)

where the coefficient vectors ck+1, ck, the term sk, and
the Jacobian matrix Jk have the same meaning as in Sec-
tion II.B, P2,B2vr ,B2vl are N(M + 1) ˆ N(M + 1)
matrices formed by assembling M times along rows and
columns the following N ˆ N blocks:

P2mℓ
=

ż 1

´1

d2ϕm

dτ2
ϕℓIdτ (25)

B2vrmℓ
= ϕm(1)

dϕℓ

dτ
(1) I (26)

B2vlmℓ
= ϕm(´1)

dϕℓ

dτ
(´1) I, (27)

and b2r , b2l , are the N(M + 1) ˆ 1 vectors

b2l =


dΦ0

dτ (´1)x1

dΦ1

dτ (´1)x1

...
dΦM

dτ (´1)x1

 (28)

b2r =


dΦ0

dτ (1)x2

dΦ2

dτ (1)x2

...
dΦM

dτ (1)x2

 . (29)

Analogously to the IVP case, the terms in (25)–(29) do
not change during the iterations and can be precomputed.
Equation (24) is iterated until the convergence criterion
(21) is satisfied.
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Table 1. IVP test case initial conditions.

e a i Ω ω θ

0 6678 km
30° 0° 0° 10°0.5 13 356 km

0.72 22 260 km

D. Computational cost of Newton-Rhapson iterations
The matrix Jk in (10) requires computing the Jacobian
of the dynamics at many integration nodes, which is gen-
erally expensive as the Jacobian is approximated numer-
ically in a general case. In addition, the naïve solu-
tion of (10) at each iteration involves inverting the mat-
rix on the left-hand side, which has computational cost
O(N3(M + 1)3).

The first issue is addressed by adopting Chebyshev
polynomials as the orthogonal basis for both test and trial
functions. The orthogonality and product-sum properties
of Chebyshev polynomials are employed to significantly
reduce the evaluation cost of the integrals in (16).

The second issue is addressed by noting that only the
Jacobian matrix Jk changes at each iteration in the sys-
tem matrix (P ´ Br + Jk). It is therefore desirable to
write the inverse of the system matrix as a function of
(P ´ Br)

´1 (which can be precomputed) and Jk. This
is achieved through the expansion of the system matrix
inverse into a power series through the Woodbury matrix
identity [9].

E. Initial guess
For IVPs, the initial guess is provided through a low-
fidelity solution of (3), which can be provided either
through an approximate analytical solution or through a
low-fidelity solution computed with a low-order Runge-
Kutta method. In this work, the initial solution is
provided by an integration with a Runge-Kutta 5(4)
method at a coarse tolerance. The initial guess for the
coefficients is found through interpolation of the coarse
solution with Chebyshev polynomials. For BVPs, pre-
liminary numerical testing has shown that no initial guess
for the solution is necessary, and the coefficients at the
first iteration can be set to zero. However, if an initial
guess to the solution is available then convergence will
likely be improved by interpolating it in Chebyshev poly-
nomials and providing it as an initial guess.

III. PERFORMANCE ANALYSIS
A. Initial Value Problems
In classical sequential numerical integration methods,
one usually tunes the accuracy of the method by adjust-
ing a single parameter, which is either the step size (for
fixed-step integrators) or the local truncation error toler-

ance (for variable-step integrators). Although sequential
methods with variable order exist, changing the order of
the method usually requires significant modifications. In
spectral and pseudospectral methods, one can tune the
accuracy such as the Galerkin method described here by
adjusting either the order of the method (i.e., the num-
ber of basis functions) or the sub-interval size (analog-
ous to the step size in sequential methods). These ap-
proaches are also called p- and h-refinement in literat-
ure on spectral methods [2]. In this section, the accuracy
and computational cost of the methods for the solution of
typical IVP in astrodynamics are investigated as a func-
tion of the spectral order and sub-interval size. As men-
tioned previously, the m-th basis function ϕm(τ) is the
Chebyshev polynomial of the first kind of order m. We
test the Galerkin method against MCPI, and Runge-Kutta
methods of 4th and 8th order implemented in the Julia
DifferentialEquations.jl package [10]. We con-
sider initial conditions for three test cases of varying ini-
tial eccentricity, which are reported in Table 1. The phys-
ical model considered includes a 200 ˆ 200 normalized
geopotential and the NRLMSISE-00 atmospheric model,
with a spacecraft ballistic coefficient of 0.045 kg m−2.
The equations of motion for in either Cartesian coordin-
ates (Cowell) or modified equinoctial elements (MEEs)
are integrated by all the methods. Evaluations of the RHS
g are adopted as the metric of computational cost. As
the Jacobian Bg/Bx is evaluated through central finite
differences, a single Jacobian evaluation is counted as
2N = 12 function calls.

The position error as a function of time computed
with respect to an accurate reference solution is shown
in Fig. 1 and Fig. 2 for equations in Cartesian coordin-
ates and MEEs, respectively. The computational cost
associated to the propagations is shown in Fig. 3 and
Fig. 4 for the two sets of equations considered. The
sub-interval size and spectral order for the Galerkin and
MCPI methods, and the truncation error tolerances for
the Runge-Kutta methods, have been chosen to obtain
similar errors at the final propagation time, as to enable
a fair comparison in computational cost amongst the dif-
ferent numerical methods. When integrating equations
in Cartesian coordinates, both MCPI and the Galerkin
method significantly outperform the Runge-Kutta solv-
ers for e = 0, e = 0.5. The Galerkin method achieves
excellent performance, with a number of function calls
up to 15 times smaller than the Runge-Kutta solvers and
four times smaller than the MCPI method. This advant-
age disappears for the highly eccentric case (e = 0.7),
with both Runge-Kutta solvers outperforming the Galer-
kin method and MCPI. This is due to the increased non-
linearity of the dynamics, which significantly degrades
the spectral convergence properties of MWRs. The is-
sue is circumvented by integrating dynamics expressed in
MEEs. As Fig. 2 shows, when expressing the dynamics
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Fig. 1. Position error as a function of time for test cases in Table 1 with initial eccentricities e = 0 (left panel), e = 0.5,
(center panel), e = 0.72 (right panel), propagated in Cartesian coordinates (Cowell’s method).
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Fig. 2. Position error as a function of time for test cases Table 1 with initial eccentricities e = 0 (left panel), e = 0.5,
(center panel), e = 0.72 (right panel), propagated in MEEs.

in MEEs the Galerkin method outperforms the Runge-
Kutta solvers by an order of magnitude in function calls.

The performance improvement of the Galerkin method
with respect to MCPI can be explained by its better spec-
tral convergence behaviour. Fig. 5 shows the behaviour
of the relative spectral error, defined according to (21),
along iterations for the Galerkin method and MCPI. It
can be seen that the Galerkin method exhibits faster con-
vergence, requiring less iterations to achieve the same er-
ror compared to MCPI.

A comprehensive investigation of the performance of
the Galerkin method compared to the classical Dormand-
Prince 7(8) (DOPRI78) single-step solver [11] has been
performed by computing the ratio of function calls re-
quired by each method for varying sub-interval size and
final absolute error for the test cases in Table 1. The ratio
of function calls required by DOPRI78 with respect to
those required by the Galerkin method for the same posi-
tion error is shown in Fig. 6. The speedup is more appar-
ent when the dynamics are smoother, i.e., for circular or-
bits (for which speedups of up to 300 are achievable) and
for dynamics expressed in equinoctial elements. Even

for the most challenging case (e = 0.7), the Galerkin
method is up to 60 times faster than DOPRI78.

B. Boundary Value Problems
The performance of the Galerkin method in the solution
of BVPs is assessed on the solution of a single-revolution
perturbed Lambert’s problem for a heliocentric transfer
from r1 = [1, 0, 0]⊺au to r2 = [0, 2, 0]⊺au. Three cases
are considered, corresponding to times of flight of 3, 4,
and 5 years, respectively. The only perturbation con-
sidered is solar radiation pressure (SRP) with a cannon-
ball model, and an SRP ballistic coefficient of 0.1 kg m−2.
The accuracy of the solution is tuned by adjusting the
spectral order M between 5 and 50, with a fixed Newton-
Rhapson tolerance ϵ = 10´13. The performance of the
Galerkin method against MCPI is compared in Table 2.
Depending on the test case, the Galerkin method is from
5 to 80 times faster than MCPI in terms of function calls.
This is due to much faster convergence of the coefficients
during the Newton-Rhapson iterations.

C. Remarks on parallelization
All the results presented so far refer to a fully serial im-
plementation of the Galerkin method, with no regards for
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Fig. 4. CPU time and function calls required for the propagation of the three test cases in Table 1 with initial eccentricities
e = 0 (left panel), e = 0.5, (center panel), e = 0.72 (right panel), propagated in MEEs.

parallelization. However, an additional advantage of the
method is that it requires little effort to parallelize in the
solution of both IVPs and BVPs. For physical models
of mid- to high-fidelity, the evaluation of the Jacobian
Bg/Bx in (16) and of the RHS g in (18) are the most
computationally intensive tasks and are thus ideal can-
didates for parallelization. These must be computed in-
dependently atM+1GLL nodes during the evaluation of
the integrals, and can be parallelized. For expansion or-
ders between 100 and 500 and using the physical model
described in Section III.A, at least 70% of the compu-
tational time is spent on the evaluation of the RHS and
Jacobian. Assuming that these are parallelized over 8
threads, this would result in a further 60% speedup for
the method.

IV. CONCLUSIONS

A new Galerkin spectral method for the solution of typ-
ical Initial and Boundary Value Problems (IVPs/BVPs)
in astrodynamics has been developed. The method be-
longs to the class of methods of weighted residuals,
which null the projections of the residual of an ODE (the
quantity obtained by plugging a guess solution into the
ODE) over a set of test functions. The solution is ex-
panded over a set of trial functions, which coincide with

the test functions in the Galerkin approach. The full de-
rivation of the method has been shown for Initial Value
Problems, however it can be adapted to Boundary Value
Problems with little modifications.

The performance of the method has been tested on
IVPs by solving orbit propagation problems with a high-
fidelity geopotential model, and has been compared
against that of Runge-Kutta solvers and of the Modified-
Chebyshev Picard Iterations (MCPI) method, a pseudo-
spectral method that similarly achieves a global solution
of a set of ODEs. The Galerkin method is up to 300
times faster than the state-of-the-art DOPRI78 sequen-
tial solver (for the same accuracy), and 4 times faster than
MCPI.

The performance of the Galerkin method on BVPs has
been tested by solving perturbed heliocentric Lambert’s
problems, in which the method has been shown to be up
to 80 times faster than MCPI.
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Fig. 5. Spectral convergence behaviour for the Galerkin and MCPI methods for the three test cases in Table 1 with initial
eccentricities e = 0 (left panel), e = 0.5, (center panel), e = 0.72 (right panel), propagated in MEEs.

Table 2. Comparison of function calls required to solve Lambert’s problems for varying times of flight for the Galerkin
method against MCPI.

Time of flight 3 years 4 years 5 years

Galerkin Abs. error (au) 1.97 × 10−8 3.30 × 10−8 2.01 × 10−7

MCPI Abs. Error (au) 1.98 × 10−8 6.76 × 10−8 5.87 × 10−7

Galerkin FCalls 220 286 264
MCPI FCalls 1166 2761 20 647
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(a) e = 0

(b) e = 0.5

(c) e = 0.7

Fig. 6. Function call ratio FCGal/FCDP7 for varying spectral interval size and final absolute error for the test cases in Table 1.
Left and right panels refer to equations in Cartesian coordinates and MEEs, respectively.
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