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Abstract – This paper develops a graph-aided 

framework for efficiently computing low-energy 

transfer trajectories in a multi-objective fashion. A 

challenging exploration of the high-dimensional 

phase space is relaxed by introducing special apsis 

conditions, with which pivotal dynamical objects in 

the low-energy regime such as zero-velocity surfaces 

and periodic orbits associate. Flight time and delta-v 

characteristics for transitioning between periapsis-

to-periapsis arcs represent weighted directed graphs. 

A variety of solutions in challenging examples is 

generated as a shortest path in the graph that is 

robustly optimized by a regularized fuel minimizer.      

 

I. INTRODUCTION 

Low-energy transfers leveraging the multi-body 

gravitational environment are often useful for reducing 

fuel costs, but their computations are not straightforward 

due to the non-negligible third-body perturbation. The 

absence of general solutions leads to the use of special 

solutions or a brute force approach.  

 

The former typically leverages dynamical objects such 

as periodic/quasi-periodic orbits and stable/unstable 

manifolds embedded in a region targeted by a specific 

mission. Since they are coasting arcs, optimal chaining 

would naturally produce fuel-efficient solutions. The 

selection of appropriate dynamical objects may be 

possible in a well-studied problem, but it should be 

nontrivial in general and depend on each region of 

interest and user’s experience. In other words, such an 

approach may lack versatility. Another difficulty of 

handling dynamical objects in the high-dimensional 

phase space in spatial or non-autonomous models also 

exists.  

 

The latter approach may be free from the 

aforementioned defects, but a clear disadvantage is the 

computational burden. Even in a simplified autonomous 

model such as the circular restricted three-body problem 

(CR3BP) adopting a surface of section, 5-dimensional 

phase space should at least be explored. A 

comprehensive search with a fine enough resolution 

would be computationally demanding. 

 

Despite the challenging task of exploring the high-

dimensional search space, the recent trend of piggyback 

CubeSats requires the rapid trajectory design as the 

launch condition can be subject to last minute changes 

[1]. In this regard, one of our aims is to develop an 

efficient method of computing a variety of low-energy 

transfer trajectories. 

 

A graph-aided approach may be one means of realizing 

efficient trajectory design as a graph can store the 

information of discretized states as well as their 

connectivity. Tsirogiannis (2012) [2] proposed the use 

of a graph consisting of discretized states of periodic 

orbits and associated chaining impulses. Dijkstra’s 

algorithm [3] was used to find an optimal path in the 

graph. Parrish (2014) [4] applied A* algorithm [5] that 

is a heuristic extension of Dijkstra’s algorithm to 

compute low-thrust trajectories. Das-Stuart et al. (2020) 

[6] used Dijkstra’s algorithm to compute low-thrust 

trajectories in the CR3BP. These earlier works struggled 

with the large graph size sharply affected by the 

resolution of discretization. Trumbauer and Villac 

(2014) [7] discretized states at periapsis and expanded 

the efficiency of the graph-aided approach. Still, they 

were suffered from the aforementioned 5-dimensional 

search and a global trade-off analysis was not carried out. 

Bellome et al. (2023) [8] performed a multi-objective 

analysis by combining the Lambert-based graph 

transcription and the dynamic programming technique 

in the patched two-body model. Although not 

implementing pathfinding algorithms, Hiraiwa et al. 

(2023) [9] used a graph structure consisting of regions 

enclosed by stable and unstable manifolds to simplify 

the selection of transfer paths. 

 

The present paper develops a graph-aided framework for 

efficiently computing low-energy transfer trajectories in 

a multi-objective fashion within the spatial CR3BP. We 

assume the use of the method for designing reference 

trajectories in such a way that general-purpose large 

graphs are precomputed and stored and once a mission 

analysis begins, specific boundary conditions are 

translated and added to the graphs so that a pathfinding 

algorithm is applied and candidate solutions are 

optimized. Besides the efficiency due to the separable 

feature of the general precomputing and specific mission 

analysis phases, our method is versatile in the sense that 

it is applicable to various regions in a unified manner 

regardless of the existence of distinct objects governing 

phase-space transport such as libration point orbits and 

resonant orbits and associated stable/unstable manifolds.  

 

In the remainder of the paper, Section II introduces the 
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Fig. 1. Computational processes. 
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mathematical model. Section III describes each 

component of the computational process. Section IV 

presents application examples. 

 

II. MATHEMATICAL MODEL 

This study uses the spatial CR3BP to prove the concept 

of the proposed approach. The model describes the 

motion of a massless particle under the gravitational 

influence of two celestial bodies of masses 𝑚1 and 𝑚2 
(𝑚1 ≥ 𝑚2)  that move in circular orbits around their 

barycentre.  In our case, a particle is a spacecraft and 

gravitational bodies are Earth and the Moon. Non-

dimensional equations of motion in a rotating reference 

frame are [10] 

𝑥̇ = 𝑣𝑥 , 𝑦̇ = 𝑣𝑦 , 𝑧̇ = 𝑣𝑧 , 

𝑣̇𝑥 = 2𝑣𝑦 −
𝜕𝑈

𝜕𝑥
, 𝑣̇𝑦 = −2𝑣𝑥 −

𝜕𝑈

𝜕𝑦
, 𝑣̇𝑧 = −

𝜕𝑈

𝜕𝑧
, 

where 

𝑈 = −
1

2
(𝑥2 + 𝑦2) −

1 − 𝜇

𝑟1

−
𝜇

𝑟2

−
1

2
𝜇(1 − 𝜇), 

𝑟1 = √(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2, 

𝑟2 = √(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2, 
𝜇 = 𝑚2 (𝑚1 + 𝑚2)⁄ . 

 

The conservative nature of the system admits the 

existence of a constant of motion called Jacobi energy: 

𝐶 = −(𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2) − 2𝑈. 

 

The CR3BP is an autonomous system and the 

dimensionality of the phase space is six. Handling 

higher-fidelity time-dependent models with another 

dimensionality is beyond the scope of the present paper. 

 

III. DESIGN FRAMEWORK 

Our framework consists of a general precomputing 

phase that is independent of a specific mission requiring 

heavier computational resources and a mission analysis 

phase applying specific constraints. Since they are 

separable, most of the effort of exploring the high-

dimensional phase space can be completed before a 

specific mission analysis begins. Fig. 1 illustrates 

computational processes in the framework.  

 

 

A. Grid Search 

The present work firstly computes trajectories from 

periapsis to periapsis. An apsis (periapsis or apoapsis) 

condition can be expressed as 

𝑟̇𝑖 = 0 (𝑖 = 1 or 2), 
which indicates that the dimensionality of the search 

space is five. However, a comprehensive search in the 

5-dimensional space is computationally demanding. 

Even though it is admissible, memory or storage issues 

would arise as the resultant graph size sharply grows 

with the increase of the output of the grid search. 

 

To relax the dimensionality of the search space, the 

present paper introduces special apsis conditions. Note 

that (6) can be rewritten as 
(𝑥 − 𝑥𝑖

∗)𝑣𝑥 + 𝑦𝑣𝑦 + 𝑧𝑣𝑧 = 0 (𝑖 = 1 or 2), 

where 𝑥𝑖
∗ denotes the abscissa of the gravitational body 

in the rotating reference frame. 

 

Therefore, the following eight special conditions, which 

are termed special apsis conditions, satisfy the general 

apsis condition (6): 

𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 = 0 

𝑣𝑥 = 𝑣𝑦 = 𝑧 = 0 

𝑣𝑥 = 𝑦 = 𝑣𝑧 = 0 

𝑣𝑥 = 𝑦 = 𝑧 = 0 

𝑥 − 𝑥𝑖
∗ = 𝑣𝑦 = 𝑣𝑧 = 0 

𝑥 − 𝑥𝑖
∗ = 𝑣𝑦 = 𝑧 = 0 

𝑥 − 𝑥𝑖
∗ = 𝑦 = 𝑣𝑧 = 0 

𝑥 − 𝑥𝑖
∗ = 𝑦 = 𝑧 = 0 

 

Each of these special conditions constrains three 

variables and thus the dimensionality of the search space 

becomes three. In summary, instead of exploring the 5-

dimensional search space associated with (6), we 

explore the 3-dimensional search space for each of the 

special conditions (8)-(14). The present paper excludes 

(15) as it corresponds to a singular point. Note that (8) 

yields zero-velocity surfaces whereas (10) and (11) 

include states on symmetric periodic orbits indicating 

the possibility of leveraging these pivotal dynamical 

objects in the low-energy regime. 

 

To compute periapsis-to-periapsis arcs, initial 

conditions satisfying each of (8)-(14) are distributed on 

grids in the corresponding 3-dimensional search space. 

If 𝑟̈𝑖 < 0 (apoapsis), the initial condition is propagated 

forward and backward in time until reaching periapsis. 

If 𝑟̈𝑖 > 0 (periapsis), the initial condition is propagated 

forward and backward in time until reaching apoapsis, 

then further propagated until reaching periapsis. In both 

cases, state transition matrices (STMs) associated with 

apoapsis-to-periapsis interval as well as states on 

apsides and flight time between apsides are stored. 

 

B. Graph Generation 

In this paper, each of the periapsis-to-periapsis arcs 

expresses a graph node whereas defining the 

connectivity between nodes, i.e., edges, requires further 
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Fig. 2. FTA method. The solid line represents 
periapsis-to-periapsis arcs and the dashed line 
indicates a corrected arc. The dot, square, and diamond 
denote the central body, periapsis, and apoapsis, 
respectively. 

(16) 
 

(17) 

(18) 
 

(19) 

(20) 

(21) 

(22) 

information. It is not economical in terms of storage and 

memory to connect all pairs of nodes as many of them 

would be fuel-inefficient transfers. To exclude 

impractical connections and define edge weights, we use 

the fixed-time-of-arrival (FTA) method [11] to calculate 

chaining ∆𝑣 . The analytical mapping by the STMs 

enables the calculation for all pairs of the periapsis-to-

periapsis arcs.  

 

Fig. 2 illustrates the FTA method of calculating 

impulses ( ∆𝒗𝑎  at apoapsis and ∆𝒗𝑝  at periapsis) for 

connecting a pair of periapsis-to-periapsis arcs at the 

periapsis of the succeeding arc. Using the STM Φ𝐴,𝑃 

associated with the apoapsis-to-periapsis interval of the 

preceding arc, the impulses can be calculated as 

∆𝒗𝐴 = 𝛷𝑟𝑣
𝐴,𝑃−1

(𝒓𝑝
+ − 𝒓𝑝

−), 

∆𝒗𝑃 = 𝒗𝑝
+ − 𝒗𝑝

− − 𝛷𝑣𝑣
𝐴,𝑃∆𝒗𝐴, 

where 

Φ𝐴,𝑃 = [
𝛷𝑟𝑟

𝐴,𝑃  𝛷𝑟𝑣
𝐴,𝑃

𝛷𝑣𝑟
𝐴,𝑃  𝛷𝑣𝑣

𝐴,𝑃] 

and {𝒓𝑝
+, 𝒗𝑝

+}  and {𝒓𝑝
−, 𝒗𝑝

−}  indicate periapsis position 

and velocity vectors of succeeding and preceding arcs, 

respectively, and {𝒓𝑎
−, 𝒗𝑎

−}  represent apoapsis position 

and velocity vectors of a preceding arc before applying 

∆𝒗𝑎. Note that ∆𝒗𝑎 cancels the position error whereas 

∆𝒗𝑝 cancels the velocity error at the patch point. As the 

name of the method indicates, the flight time Δ𝑡 = 𝑡𝑝
1 −

𝑡𝑝
0 is invariant under the application of ∆𝒗𝐴. 

 

 

 

 

 

 

These two impulses are used to exclude fuel-inefficient 

connections. However, the small difference in velocity 

directions at periapsis can lead to the large magnitude of 

∆𝒗𝑃  that may be drastically reduced in numerical 

optimization via further adjustments. Therefore, we 

normalize the magnitude of ∆𝒗𝑃 and only approve graph 

edges satisfying both of the following conditions: 
|𝚫𝒗𝑎| < Δ𝑣𝑎

𝑚𝑎𝑥 , 

|𝚫𝒗𝑝| |𝒗𝑝
+|⁄ < Δ𝑣𝑝

𝑚𝑎𝑥 . 

 

Positive weights are assigned to the approved edges so 

that a multi-objective analysis in terms of flight time and 

fuel cost can be carried out. We define 

𝑤 = 𝛼Δ𝑡 + 𝛽(1 − 𝛼)Δ𝑣, 
where 

Δ𝑣 = 𝛾|𝚫𝒗𝑎| + δ(1 − 𝛾)Δ𝑣𝑝
𝑚𝑖𝑛  

and 𝛽  and 𝛿  are tuning constants so that 𝛼  and 𝛾  are 

linearly varied in the interval [0 1]. Here, Δ𝑣𝑝
𝑚𝑖𝑛  is a 

theoretical minimum Δ𝑣𝑝  [12] that estimates the 

magnitude of ∆𝒗𝑃 as a tangential impulse as 

Δ𝑣𝑝
𝑚𝑖𝑛 = |√−2𝑈(𝒓𝑝

+) − 𝐶(𝒓𝑝
+, 𝒗𝑝

+) − √−2𝑈(𝒓𝑝
+) − 𝐶(𝒓𝑎

−, 𝒗𝑎
− + 𝚫𝒗𝑎)|. 

 

Note that (22) only extracts a role of varying Jacobi 

energy. In summary, (20) aims to explore the trade-off 

between flight time and Δ𝑣 by varying 𝛼 whereas (21) 

considers the balance between 𝚫𝒗𝑎  and 𝚫𝒗𝑝  playing 

complementary roles by varying 𝛾.   

 

Since switching preceding and succeeding arcs results in 

different edge connectivity and weights, our graph is a 

weighted directed graph. We generate and store a graph 

for each of 11 × 11 = 121 combinations of α and γ.  

 

To generate a graph, the information of source and target 

nodes corresponding to approved pairs of preceding and 

succeeding arcs, respectively, and their edge weights is 

required. One favourite way is to construct and pass an 

adjacency matrix A(𝑠, 𝑡) whose entry (𝑠, 𝑡) represents a 

weight of an edge connecting source and target nodes of 

indices 𝑠  and 𝑡  (𝑠, 𝑡 ∈ N) . This intuitive expression 

however needs to store zeros for unapproved edge 

weights before converting into a graph that is inefficient 

in terms of memory. The present paper instead adopts an 

edge list consisting of three vectors representing indices 

of only approved source and target nodes and their edge 

weights. 

 

C. Addition of Boundary Arcs and Pathfinding 

Once a specific mission analysis begins, mission 

boundary arcs and associated connections shall be 

translated into graph nodes and edges that are added to 

the precomputed general-purpose graphs explained in 

the previous section. To be consistent with the FTA 

analysis, a periapsis-to-periapsis arc is extracted from 

the final part of the initial mission orbit and a periapsis 

state to be connected is determined as an initial point of 

the final mission orbit. New indices of the graph nodes 

are provided to the initial and final arcs. Note that an 

initial state of the initial orbit and a final state of the final 

orbit are not necessarily periapsides.  

 

Using the FTA method, chaining impulses are 

calculated by regarding the periapsis-to-periapsis arc of 

the initial orbit as a preceding arc and the other arcs 

except for the final orbit as succeeding arcs in Fig. 2. 

Moreover, those connecting with the final orbit are 

calculated by treating periapsis-to-periapsis arcs 

including that of the initial orbit as preceding arcs and 

the final orbit as a succeeding arc.  
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Fig. 3. Multiple shooting method.  

(23) 

(24) 

(25) 

Fig. 4. Distribution of shooting nodes.  

(26) 

(27) 

 

In a similar manner to the previous section, pairs of 

preceding and succeeding arcs satisfying both (18) and 

(19) are only approved and their edge weights are 

calculated. Newly determined indices of source and 

target nodes and corresponding edge weights are added 

to the precomputed graphs for each combination of 𝛼 

and 𝛾.  

 

An initial guess solution is identified as a path in each of 

the graphs resulting in the minimum sum of the weights. 

Since the weights are always positive according to (20), 

Dijkstra’s algorithm [3] is applied to solve this shortest 

path problem. Despite the difference in 𝛼 and 𝛾, some 

solutions can be identical and thus redundant ones are 

removed from a solution set to be optimized. 

 

D. Local Optimization 

Resultant initial guess solutions are multi-impulse 

multi-revolutional trajectories that may encounter 

highly nonlinear events including flybys and 

stable/unstable manifold-based transport. To robustly 

optimize such trajectories, the present paper applies two 

transformations to regularize the problem and enhance 

the robustness of convergence into fuel-optimal 

solutions. 

 

Fig. 3 illustrates the multiple shooting procedure 

adopted in the present study. The subscripts regulate the 

order of shooting nodes and the superscripts indicate 

states before (minus) or after (plus) applying impulses. 

The states 𝑿𝑗
+  correspond to {𝒓𝑝

+, 𝒗𝑝
+}  and {𝒓𝑎

−, 𝒗𝑎
− +

∆𝒗𝐴} in Fig. 2. Each segment is further divided into five 

segments to enhance the robustness. 

 

 

Following Oshima (2024) [13], a vector of regularized 

variables 𝑼𝑗 = [𝑢𝑗  𝑤𝑗  𝑠𝑗]
T

 expresses a ∆𝑣 vector based 

on the Kustaanheimo-Stiefel transformation [14] as 

∆𝒗𝑗 = [

𝑢𝑗
2 − 𝑤𝑗

2 − 𝑠𝑗
2

2𝑢𝑗𝑤𝑗

2𝑢𝑗𝑠𝑗

] 

yielding 

|∆𝒗𝑗| = |𝑼𝑗|
2
 

and 

𝜕|∆𝒗𝑗| 𝜕𝑼𝑗⁄ = 2𝑼𝑗
T. 

 

This transformation removes the singularities associated 

with zero-magnitude impulses from derivatives of an 

objective function 𝐽 = ∑ |∆𝒗𝑗|𝑁
𝑗=1 . See [13] for details of 

implementation. 

 

The present study also considers the regularization with 

respect to time. As mentioned earlier, each segment 

between apsides is further divided by shooting nodes, 

which may be initially distributed with an equal interval 

in time as illustrated in Fig. 4 (left). Shooting nodes 

localize around the region where the motion is slow that 

may cause bias in terms of the resolution of states and 

controls. This is particularly true when building an 

initial guess solution patched on zero-velocity surfaces 

based on (8). 

 

 

Following Yam et al. (2010) [15], the present paper 

applies the Sundman transformation [16] and introduces 

fictitious time 𝜏 as 

𝑑𝑡 = 𝑟𝑖  𝑑𝜏    (𝑖 = 1 or 2). 
 

Equation (26) transforms the original equations of 

motion in (1) compactly expressed as  

𝑑𝑿 𝑑𝑡⁄ = 𝑭(𝑿) 

into 

𝑑𝑿 𝑑𝜏⁄ = 𝑟𝑖  𝑭(𝑿), 𝑑𝑡 𝑑𝜏⁄ = 𝑟𝑖 

changing the independent variable from 𝑡 to 𝜏. 

 

Shooting nodes are initially distributed with an equal 

interval in fictitious time between apsides as illustrated 

in Fig. 4 (right). Equation (27) is numerically integrated 

to compute trajectories. This procedure relaxes the 

localization of shooting nodes at the cost of increasing 

the number of variables.  

 

IV. APPLICATIONS:  

This section presents two examples of applying the 

developed framework for computing a variety of low-

energy transfer trajectories in the Earth-Moon CR3BP. 

The following simulations use a pure MATLAB 

environment on Windows 11 workstation with Intel(R) 

Xeon(R) Gold 6240 CPU, 64.0 GB RAM, and 2.60 GHz 

clock speed. 

 

A. Halo-to-Halo Transfer 

The first example is a transfer problem between 

southern halo orbits with periods of 7.5 [days] and 13.6 

[days] associated with the L2 libration point. Since this 

is a well-studied problem in earlier works [17-20], it 

would be ideal to understand the potential of the present 

method by comparing the solutions. 

 

Table 1 summarizes grid search conditions in the 3-

dimensional search space. The superscripts 𝐴  and 𝑃 

indicate the search conditions applied to apoapsis and 
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Fig. 7. Initial guess solution of (i). The dot, arrow, and 
dashed curve denote the Moon, impulse, and 
stable/unstable manifold, respectively. 

Table 1. Grid search conditions in the first example  

(28) 

Fig. 5. Initial (left and central) and final (right) arcs in 
the first example. The dot, square, and diamond denote 
the Moon, periapsis, and apoapsis, respectively. 

Fig. 6. Comparison of solutions. 

periapsis, respectively. Note that the other three 

variables are determined from (8)-(14).  

 

 

The initial conditions are further screened and those 

satisfying the following conditions are selected for the 

subsequent propagation:  

𝑅𝑚 < 𝑟2 < 2𝑟𝐻𝑖𝑙𝑙 , 𝐶𝐿3 < 𝐶 < 3.3, 
where 𝑅𝑚 is the Moon’s radius, 𝑟𝐻𝑖𝑙𝑙 is the Hill radius of 

the Moon, and 𝐶𝐿3 is Jacobi energy at the L3 libration 

point. 

 

During the computation of periapsis-to-periapsis arcs, 

those violating the former condition in (28) are excluded. 

The FTA method is applied to the obtained arcs with 

Δ𝑣𝑎
𝑚𝑎𝑥 = 30  [m/s] and Δ𝑣𝑝

𝑚𝑎𝑥 = 0.5  to disapprove 

fuel-inefficient connections. 121 Graphs are generated 

and stored from the arcs and approved connections with 

𝛽 = 50 and 𝛿 = 1. 

 

Fig. 5 shows specific initial and final arcs. Since the 

initial halo orbit is weakly unstable, the initial state of an 

unstable manifold, which is a perturbed state at apolune 

with the magnitude of 10−4, is further perturbed [21] to 

the unstable direction with Δ𝑣 = 5 [m/s]. The left and 

centre panels correspond to different signs of 

perturbation. The final arc (right panel) is a usual stable 

manifold emanating from an apolune state with the 

perturbation magnitude of 10−4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph nodes corresponding to the initial and final arcs 

and edges representing their connectivity are added to 

the precomputed graphs, to which Dijkstra’s algorithm 

is applied to find initial guess solutions. Among 29 

unique solutions, those of the total transfer time shorter 

than 100 [days] are optimized. In the optimization 

process, perilune states are constrained to be higher than 

1000 [km] from the lunar surface [20]. 

 

Fig. 6 compares the obtained solutions with those found 

in the earlier works. The theoretical minimum value is 

calculated from Jacobi energy of the halo orbits and the 

perilune state of the initial halo orbit that is regarded as 

a departure point.  

  

Our method successfully finds a Pareto-like frontier in 

the interval of 45-85 [days]. The minimum-Δ𝑣 solution 

almost reaches the theoretical minimum indicating the 

end of a frontier. On the other hand, our method could 

not explore the solution space whose transfer time is 

shorter than 40 [days]. This comes from the application 

of the tolerances in (18) and (19) excluding fuel-

inefficient edges. Larger tolerances increase the ability 

of finding solutions of shorter transfer time at the cost of 

larger graph size. Fig. 6 clearly highlights suitable 

targets in our method are low- Δ𝑣  solutions that are 

usually sought when designing low-energy trajectories.  

 

 

Figs. 7 and 9 show initial guess trajectories of (i) and (ii) 

indicated in Fig. 6, respectively, and Figs. 8 and 10 

exhibit the corresponding optimized solutions including 

time histories of impulses and Jacobi energy. The orbital 

characteristics are qualitatively preserved by 

optimization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Minimum Maximum Number of grids 

𝑥 0.75 1.25  

 

 
 

 

100 

𝑦 -0.25 0.25 

𝑧 -0.25 0.25 

𝑣𝑥
𝐴 -0.75 0.75 

𝑣𝑦
𝐴 -0.75 0.75 

𝑣𝑧
𝐴 -0.75 0.75 

𝑣𝑥
𝑃  -2.5 2.5 

𝑣𝑦
𝑃  -2.5 2.5 

𝑣𝑧
𝑃  -2.5 2.5 
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Fig. 8. Optimal solution (i). The dot, arrow, and dashed 
curve denote the Moon, impulse, and stable/unstable 
manifold, respectively.  

Fig. 9. Initial guess solution of (ii). The dot, arrow, and 
dashed curve denote the Moon, impulse, and 
stable/unstable manifold, respectively. 

Fig. 10. Optimal solution (ii). The dot, arrow, and 
dashed curve denote the Moon, impulse, and 
stable/unstable manifold, respectively.  

Table 2. Computational performance in the first example  

Table 3. Grid search conditions in the second example  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 summarizes the computational performance in 

this example. Note that the general precomputing phase 

composed of the grid search and graph generation 

processes accounts for the majority of the running time 

that can be separately carried out from the specific 

mission-related analysis.  

 

A drawback of the present framework is the riesig size 

of the output files in the second process consisting of 

121 large graphs that must be stored for arbitrary 

mission analyses. A forthcoming work may handle this 

issue. The large memory allocation in the third process 

required for accessing the large graphs in parallel causes 

the small available number of CPU cores. The number 

of CPU cores used in the optimization process simply 

corresponds to the number of initial guess solutions. 

 

 

Process Running time Core Output 

Grid search 26 [min] 36 0.77 [GB] 

Graph generation 11.5 [hour] 36 144 [GB] 

Addition of 

boundary arcs 

and pathfinding 

 

37 [min] 

 

3 

 

4 [kB] 

Optimization 5 [min] 29 144 [kB] 

 

B. High-Altitude Flybys 

The second example is a transfer problem from an Earth-

bound orbit with 𝐶 ≈ 3.6 to a southern halo orbit with 

𝐶 = 3.1  associated with the L1  libration point. High-

altitude lunar flybys in resonance with the lunar orbital 

motion have been known to be useful in reducing fuel 

cost in such a transfer [22]. Recall that one of our aims 

is to demonstrate the versatility of the developed 

framework: it is applicable to the resonance-dominant 

region in a similar manner to the previous example of 

transfer between libration point orbits.  

 

The detailed explanations of the processes that are 

identical to those in the previous example are omitted 

below. Table 3 summarize grid search conditions.  

 

 

 

The initial conditions satisfying the following 

conditions are selected and propagated:  

Variable Minimum Maximum Number of grids 

𝑥 -1 1  

 

 
 

 

100 

𝑦 -1 1 

𝑧 -0.75 0.75 

𝑣𝑥
𝐴 -2 2 

𝑣𝑦
𝐴 -2 2 

𝑣𝑧
𝐴 -2 2 

𝑣𝑥
𝑃  -10 10 

𝑣𝑦
𝑃  -10 10 

𝑣𝑧
𝑃  -10 10 
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Fig. 11. Obtained solutions in the second example. 

Fig. 12. Initial guess solution of (i). The dot, arrow, and 
dashed curve denote Earth, impulse, and stable 
manifold, respectively. 

Fig. 13. Optimal solution (i). The dot, arrow, and 
dashed curve denote Earth, impulse, and stable 
manifold, respectively.  

Fig. 14. Initial guess solution of (ii). The dot, arrow, 
and dashed curve denote Earth, impulse, and stable 
manifold, respectively. 

Fig. 15. Optimal solution (ii). The dot, arrow, and 
dashed curve denote Earth, impulse, and stable 
manifold, respectively.  

Fig. 16. Initial guess solution of (iii). The dot, arrow, 
and dashed curve denote Earth, impulse, and stable 
manifold, respectively. 

Fig. 17. Optimal solution (iii). The dot, arrow, and 
dashed curve denote Earth, impulse, and stable 
manifold, respectively.  

𝑅𝑒 < 𝑟1 < 1,  𝑟2 > 𝑟𝐻𝑖𝑙𝑙 ,  𝐶𝐿3 < 𝐶 < 4, 𝑖 < 90 [deg] 
where 𝑅𝑒  is the Earth’s radius and 𝑖  is the inclination 

with respect to the lunar orbital plane. Again, 121 graphs 

are generated from periapsis-to-periapsis arcs with 

Δ𝑣𝑎
𝑚𝑎𝑥 = 200 [m/s], Δ𝑣𝑝

𝑚𝑎𝑥 = 0.5, 𝛽 = 10, and 𝛿 = 5.  

 

The initial arc is generated from perigee and apogee 

radii of 35000 [km] and 230000 [km], 𝑖 = 30 [deg], and 

the argument of perigee with respect to the lunar orbital 

plane of 178 [deg] that are similar to the conditions at 

the first lunar flyby in SMART-1 [23]. The final arc 

(right panel) is a stable manifold emanating from an 

apogee state of the halo orbit with the perturbation 

magnitude of 10−4. 

 

As a result of pathfinding, 33 unique solutions are 

identified and those of the total transfer time shorter than 

150 [days] are optimized. In the optimization process, 

perigee states are constrained to be higher than 20000 

[km] from the surface of Earth.  

 

Fig. 11 shows the optimized solutions. Distinct families 

are observed in an orderly manner in terms of the orbital 

resonance with the Moon indicating the applicability of 

the method to resonance-based transfer problems. The 

values of ∆𝑣 are far from the theoretical minimum (≈
60  [m/s]) possibly due to the substantial inclination 

change.  

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 12, 14, and 16 are initial guess trajectories of (i), 

(ii), and (iii) indicated in Fig. 11, respectively, and Figs. 

13, 15, and 17 show the corresponding optimized 

solutions. The high-altitude lunar flybys reduce ∆𝑣 

required for changing orbital elements around Earth at 

the cost of long transfer time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 summarizes the computational performance. It 

is computationally lighter than the previous example 

indicating there is room for adopting finer grid search. 
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Table 4. Computational performance in the second example  

Again, the precomputing phase accounts for the 

majority of the running time.  
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Process Running time Core Output 

Grid search 11 [min] 36 0.38 [GB] 

Graph generation 3.7 [hour] 36 76.5 [GB] 

Addition of 

boundary arcs 

and pathfinding 

 

6 [min] 

 

8 

 

3 [kB] 

Optimization 10 [min] 33 282 [kB] 


