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Abstract – In order to solve the problem of poor 

orbit prediction accuracy during frequent 

maneuvers of constellation satellites, this paper 

proposes a maneuver prediction method based on 

deep learning algorithm. The method takes the 

ephemeris data of the constellation satellites as the 

dataset, and first extracts the period information 

during maneuvering and the interaction 

characteristics among the three satellites in the 

constellation as inputs. Then, the maneuver is 

predicted using the informer model. Numerical 

results show that the method can effectively realize 

the prediction of maneuver moments and amplitudes. 
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I. INTRODUCTION 

In recent years, the trend towards launching and 

utilizing small satellites in bulk has become dominant, 

e.g., LEO mega-constellation satellites. This has led to 

an increasingly complex space environment. The new 

space environment is requiring higher levels of Space 

Situational Awareness (SSA) with tougher challenges. 

To ensure the safety of space activities, the future 

position of each satellite must be accurately forecast. At 

present, orbital prediction involving frequent maneuvers 

remains a challenging task, and its accuracy may 

degrade rapidly if maneuvers are not accurately 

forecasted. 

 

Traditional orbital prediction methods are mainly 

based on dynamical models, modeling various forces by 

analytical or numerical methods, such as the Earth's non-

spherical gravity, atmospheric drag, solar radiation 

pressure, and so on. However, in order to achieve better 

forecasting accuracy, both methods face the problem of 

maneuver prediction. In contrast to natural perturbations, 

the maneuvers of constellation satellites, which involve 

pre-set maneuver procedures and accidental collision 

avoidance maneuvers, are hard to model and predict. 

Nevertheless, there are certain rules for the constellation 

satellites while the constellation configuration is 

maintained by pre-set maneuver procedures. 

 

Machine learning methods excel at capturing 

nonlinear relationships and trends in complex problems, 

with the ability to learn features and patterns between 

inputs and outputs automatically, providing a forward-

looking approach to refining orbit prediction. At present, 

some of the models widely used in the field of orbit 

prediction include Support Vector Machines (SVMs) 

and Artificial Neural Networks (ANNs)[1], etc.  

 

However, current orbit prediction models extended 

by machine learning are typically grounded on the error 

compensation method, which mainly improves 

prediction accuracy by correcting the prediction errors 

of existing models. When dealing with frequent and 

discontinuous maneuvers of LEO satellites, the 

applicability of these methods would be limited. 

Moreover, most of them are designed based on short-

term predictions, the performance may continue to 

degrade with a longer forecasting sequence. Given the 

need to predict LEO satellite maneuvers for the next day, 

models must perform well in long-series prediction tasks. 

 

To address the above problems, this paper proposes 

a maneuver prediction method in the case of frequent 

maneuvers from the perspective of time series prediction 

algorithms. Based on the time-series characteristics of 

maneuver variations of constellation satellites, the 

historical maneuver characteristics of multiple satellites 

in the constellation are modeled. By introducing the 

informer model in the deep learning approach for 

training, the final maneuver prediction is achieved. The 

publicly available ephemeris data of Starlink satellites is 

used to verify the effectiveness of the maneuver 

prediction method. 

 

In this paper, Section 2 will describe the calculation 

of the orbital mean element based on raw precision 

ephemeris data. Section 3 will present the structure of 

the designed Informer neural network. In Section 4, a 

case study applying the algorithm to LEO satellite 

maneuver prediction is given to validate the 

performance of the proposed model. Finally, 

conclusions are presented in Section 5. 

 

II. MANEUVER DATA ANALYSIS 

For Starlink satellites, the orbital maneuver 

magnitude is much smaller than the orbital short-period 

amplitude, so it is difficult to obtain their orbital 



 

maneuver information by direct calculation. In this 

section, we first obtain the raw precision ephemeris data 

and mean it through analytical methods. By eliminating 

the short-period variations in it, the amount of orbital 

maneuvers and maneuver moments can be accurately 

derived when performing maneuver detection. The 

Two-Line-Element(TLE) set downloaded from the 

North American Air Defence Command (NORAD) is 

used as the base data(https://www.space-track.org). 

 

For orbits of space objects, Kepler’s orbital 

elements are generally expressed as (a,e,i,Ω,ω,M). 

However, it is not quite suitable for cases where the 

orbital eccentricity is very small, thus requiring the 

adoption of the equinoctial elements (a,i,Ω,ξ,η,λ). Their 

relationship to the Kepler’s orbital elements is as 

follows: 

 ξ = 𝑒 cosω, 
 η = 𝑒 sinω, (1) 

 λ = ω + 𝑀. 
  

Since orbital variations caused by orbital 

maneuvers are coupled with orbital variations caused by 

various perturbations, it is necessary to distinguish 

which is the main factor contributing to the orbital 

variations, thus enabling maneuver detection. Among 

these perturbations, the biggest one is the Earth's 

oblateness perturbation. Therefore, in studying this 

problem, the first step is to remove the short-period 

variation of the orbital elements caused by the Earth's 

oblateness perturbation, as follows for Kepler’s orbital 

elements[2]: 
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where CE =
3J2aE

2

2a2(1−e2)2 , J2 is the Earth's oblateness 

perturbation coefficient, aE  is the equatorial radius of 

the Earth's reference ellipsoid, f  is the orbital true 

anomal, and r =
a(1−e2)

(1+e cosf)
. Using the above formula, the 

short-period variation of the equinoctial elements can be 

further obtained as follows: 

 

ξ𝑠 = 𝑒𝑠  cosω − ω𝑠𝑒 sinω, 
η𝑠 = 𝑒𝑠 sinω + ω𝑠𝑒 cosω,                   (3) 

λ𝑠 = ω𝑠 + 𝑀𝑠. 
 

      The amount of a single maneuver of a Starlink 

satellite is small, on the order of a hundred meters. 

Therefore, in addition to the above short-period 

variations, it is necessary to further eliminate the higher-

order effects of the Earth's non-spherical gravitational 

perturbations. After obtaining the instantaneous orbital 

elements of the space object, the mean elements 

applicable to maneuver detection can be obtained by 

subtracting the above period term from it [3]. 

 

III. MODELS AND METHODS 

In this paper, we model the orbital maneuver 

characteristics of spacecraft based on the Informer 

framework. The Informer model was proposed by 

Zhou[4] recently based on the improvement of 

Transformer in long sequence time-series 

forecasting(LSTF). It is able to accurately capture long-

term dependencies and interactions in sequence data and 

has been shown to be well applicable to LSTF problems. 

The model structure is shown in Fig.1. 

 

Fig. 1. The framework of Informer. 
 

 Informer uses an Encoder-Decoder structure, in 

which the encoder achieves feature-learning mapping on 

long sequence data through a ProbSparse attention 

mechanism instead of the traditional self-attention 

mechanism. The original self-attention uses (Query, Key) 

and scaled dot-product operations to compute the 

attention score, but since the distribution of self-

attention probabilities is sparse, i.e., a small number of 

dot-product constitute the main attention, the 

contribution of the other dot-product can be ignored, and 

the Kullback-Leibler (KL) divergence can be used to 

evaluate the sparsity of the Query. The evaluation 

formula corresponding to the i-th query is[4]: 
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where, the first term is the Log-Sum-Exp (LSE) of 𝒒𝑖 on 

all the keys; the second term is the arithmetic mean on 

them. Based on this analysis, the ProbSparse self-

attention result can be calculated as follows [4]: 

𝐴(𝑸, 𝑲, 𝑽) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑸𝑲⊤

√𝑑
) 𝑽               (5) 

where softmax is the activation function, d is the input 

dimension, and 𝑸 ∈ ℝ𝑳𝑸×𝒅, 𝑲 ∈ ℝ𝑳𝑲×𝒅 , 𝑽 ∈ ℝ𝑳𝑽×𝒅. 𝑸 

is a sparse matrix of the same size of q and it only 

contains the Top-u queries under the sparsity 

measurement M(q,K).  

 

The distillation operation is performed to privilege 

the superior ones with dominating features and make a 

focused self-attention feature map in the next layer. The 

distillation process from layer j to layer j+1 is as follows 

[4]: 

𝑿𝑗+1
𝑡 = MaxPool (ELU (Conv1d ([𝑿𝑗

𝑡]
𝐴𝐵

)))    (6) 

where [𝐗j
t]

𝐴𝐵
 contains the attention block and the multi-

head ProbSparse self-attention, conv1d is the one-

dimensional convolution, and ELU is the activation 

function. Finally, the maximum pooling downsampling 

is performed through the MaxPool layer. 

 

The decoder mainly focuses on interacting with the 

higher-order feature information learned from the input 

data as well as outputting the forecast results. A 

traditional Decoder structure is used in Informer, 

consisting of a stack of two identical multi-head 

attention layers [4]: 

 

𝑿de
𝑡 = Concat(𝑿token

𝑡 , 𝑿0
𝑡 ) ∈ ℝ(𝐿token+𝐿𝑦)×𝑑model  (7) 

Finally, the prediction results are output through 

the fully connected layer.  

 

IV. MANEUVER PREDICTION 

To validate the performance of the Informer model 

in maneuver prediction, the experiment is tested with an 

LEO satellite 46534 as the prediction target, while two 

satellites, 46545 and 46538, which are in phase and 

close to it, are selected as auxiliary targets. The specific 

information of the test cases is listed in Table 1. Figure 

2 presents the variation of the orbital semimajor axis 

with time for satellite 46534. 

 

To improve the prediction accuracy and reduce the 

dimension of features, we chose the Random Forest (RF) 

algorithm to evaluate the importance of features, all of 

which include six orbital elements  (a, e, i, Ω, ω, M) and 

∆𝜆 for the three satellites, as well as the differences in λ 

of the target satellite 46534 from the other two 

satellites(46545,46538), 𝛿𝜆𝐴 and 𝛿𝜆𝐵, respectively. The 

feature importance ranking is shown in Figure 3. The 

prediction experiment finally selects the top three 

important features 𝑎2, ∆𝜆1, and 𝑎3 along with the target 

satellite’s (46534) semimajor axis as inputs. 

 

Table 1. Information of the experimental satellites. 

NORAD ID a /km i Ω 

46534 6925.6880 53.1329 146.7932 

46538 6925.6440 64.1912 146.8296 

46545 6925.6480 49.5591 146.8222 

 

 Four metrics, Mean Absolute Error(MAE), Root 

Mean Square Error (RMSE), Precison, and Recall, are 

chosen to evaluate the predictive performance of the 

model

 

Fig. 2 Variation of the orbital semimajor axis of Starklink satellite 46534 versus time. 



 

 

The formulas are listed below: 
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 where 𝑦  represents the actual value, 𝑦̂𝑖  is the 

predicted value, and 𝑛 is the total number of predicted 

points. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(9) 

 

 where, TP (true positive) refers to the model 

predicting that there is a maneuver when it occurs; FP 

(false positive) refers to the model predicting that there 

is a maneuver when it does not occur; and FN (false 

negative) refers to the model not predicting that there is 

a maneuver when it occurs. 

 

 
Fig. 3 Feature importance ranking results. (satellites 
46534, 46545, and 46538 correspond to subscripts 1, 

2, and 3, respectively, and 𝛿𝜆𝐴, 𝛿𝜆𝐵  correspond to the 
𝜆 -difference between 46534 and 46545, and the 𝜆 -

difference between 46534 and 46538) 
 

Table 2. Results of different evaluation metrics for the 

Informer model 

metric 
MAE RMSE Precision Recall 

0.0427 0.0540 91.35% 82.09% 

 

The prediction results are shown in Table 2. 

Among them, the distribution of maneuver moments and 

magnitude errors in the samples with correct maneuver 

predictions are shown in Fig. 4 and Fig. 5. Fig. 6  and 

Fig. 7 gives two examples of the prediction results for 

the maneuvers, where the actual maneuver 

characteristics and predicted maneuver characteristics 

are marked in green and red, correspondingly. 

 

Fig. 4 The Maneuver moments prediction error (hours).  

 

Fig. 5 The Maneuver magnitudes prediction error (/km). 
 

 For example 1, the predicted maneuver moment is 

30 min earlier and the maneuver magnitude is 0.046 km 

smaller compared to the real maneuver. For example 2, 

the predicted maneuver moment is 40 min earlier and the 

maneuver magnitude is 0.033 km smaller compared to 

the real maneuver.  

 

It can be seen that the model we constructed is able 



 

to predict the majority of future maneuvers. At the same 

time, it can also give more accurate information about 

the characteristics of the future maneuver, including the 

size of the maneuver magnitude and the moment of the 

maneuver. In addition, it is worth noticing that the 

results perform better when the input data is more 

periodic. 

 

V. CONCLUSION 

 The problem of orbital prediction in the case of 

frequent maneuvers of constellation satellites is briefly 

studied. A method is proposed to realize maneuver 

prediction based on the Informer model. The maneuver 

prediction experiment is performed using the Starlink 

satellite 46534 as an example. Results show that the 

prediction accuracy of maneuver moment and maneuver 

amplitude is well, which proves the feasibility of the 

method. This method can fit the maneuver well while 

avoiding the tedious formula derivation. We are trying 

to apply the method to actual orbit prediction to evaluate 

its application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 example 1 of the prediction results for the maneuver.

Fig. 7 example 2 of the prediction results for the maneuver.
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