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Abstract – The proliferation of small satellites in 

Earth's orbit has intensified the demand for onboard 

autonomy. While recent advancements have eased 

the financial burden of launching spacecraft, the 

weight of these vehicles remains a critical constraint. 

Furthermore, the occurrence of mission failures due 

to actuator faults has spurred significant research 

efforts. To address these challenges – including 

reducing the burden on ground control operators 

caused by the mass of on-orbit vehicles, mitigating 

fiscal constraints related to weight, and providing 

fault-tolerant solutions – this paper explores a novel 

approach to the underactuated docking problem. 

This problem serves as a benchmark within the field 

of autonomous rendezvous, proximity operations, 

and docking research. Specifically, the paper 

proposes a gradient-free nonlinear Model Predictive 

Control solution called Cross-Entropy Model 

Predictive Control to tackle issues associated with 

non-monotonicity observed in prior numerical 

solutions to this problem. By using a global search 

algorithm, the optimizer is more likely to bypass 

shallow minima.  

 

I. INTRODUCTION 

Spacecraft mission design is advancing in complexity 

beyond the capabilities of the current paradigm. As more  

spacecraft are deployed and time sensitive maneuvers 

become increasingly critical to functionality, enabling 

forms of autonomy in guidance, navigation, and control 

(GNC) tasks becomes a critical research goal. The field 

of autonomous rendezvous, proximity operations, and 

docking (ARPOD) seeks to enable technologies by 

advancing efforts in areas such as on-orbit satellite 

servicing, refuelling, constellation management, and 

planning in both known and unknown dynamical 

environments. State-of-the-art satellite maneuvering 

control currently includes methods such as Model 

Predictive Control (MPC) and Mixed Integer Linear 

Program (MILP) [1]. However, these algorithms work 

best in uncluttered, static environments. Achieving 

success in the desired missions will require algorithms 

capable of GNC in environments containing fault 

tolerance, logical modes, time-varying constraints, and 

complex maneuvers with unknown dynamics [1]. The 

research herein provides a solution to an ARPOD 

problem with a focus on fault tolerance in common 6U 

CubeSats.  

 

The problem of interest is that of underactuated 

spacecraft docking, which originated as a challenge 

problem posed by Petersen et. al. [2]. They presented a 

planar, underactuated 6U CubeSat capable of orienting 

itself about the angular momentum vector and 

translating about its unilateral longitudinal axis. In 

response to this problem, Soderlund and Phillips [3, 4] 

showed that the linearized dynamics are neither 

controllable nor stabilizable at the origin–ruling out the 

use of many classic feedback approaches. Soderlund and 

Phillips went on to fully characterize the problem as a 

nonlinear control-affine system with drift and offered a 

rigorous proof to guarantee local asymptotic stability to 

the objective state. Two additional solutions to the 

planar underactuated docking problem have been found 

by Zaman et. al. [5] using MPC and Paris [6] using 

Proximal Policy Optimization under the presence of 

many constraints detailed in [2]. The problem was then 

expanded to 3 dimensions by Aborizk and Fitz-Coy [7] 

in which thrust remained constrained along a unilateral 

body-fixed axis, but attitudinal control was expanded to 

all three principal axes. A solution was presented to a 

constrained formulation of the problem using Legendre-

Gauss-Radau direct collocation. The research herein 

expands these efforts by developing a real-time solution 

to a tighter tolerance with the capability of handling 

complex constraints.  

 

To accomplish this, an MPC algorithm based on works 

by Nagabandi et. al. [8] , Zhang et. al. [9],  and Aborizk 

and Fitz-Coy [10] is utilized with the aim of controlling 

an underactuated satellite to a docking state using a 

zeroth-order optimizer, the cross-entropy method 

(CEM), and a quadratic cost. It is a consolidation of 

MPC techniques that offer stability properties, global 

optimality, and enable the algorithm to handle complex 

objectives. This method will henceforth be referred to as 

CEMPC and is shown to be a viable, real-time solution 

to the 2D underactuated docking problem. 

 



 

 

29th International Symposium on Space Flight Dynamics  

22 - 26 April 2024 at ESOC in Darmstadt, Germany. 

II. PRELIMINARY 

A. Notation 

 

Vectors will be denoted as bolded variables; for 

example, x. Unit vectors will use the hat subscript, 𝒙. An 

estimated value will be denoted with a tilde on top, 𝒙. 

Matrices are denoted using bolded capital letters, X, and 

sets will be defined using calligraphic capital letters, 𝒳. 

The optimal value of a quantity is denoted with an 

asterisk superscript, 𝑥∗. The row index of a matrix is 

denoted as a parenthetical superscript, 𝑿𝑦 . The 

Euclidean inner product, or dot product, of two vectors 

will be denoted using < 𝒙, 𝒚 >. 

 

B. Model  

 

This study looks at two spacecraft: an uncontrolled 

cooperative chief in a circular low-Earth orbit and a 

controlled, but underactuated, 6U CubeSat deputy in 

Hill's reference frame. If we assume the chief is in a 

perfectly circular orbit and that perturbations are 

negligible, the Hill-Clohessy-Whiltshire (HCW) 

equations allow us to linearly represent the relative 

dynamics between the two spacecraft with respect to the 

chief's frame of reference. This frame is defined by a 

basis 𝒪 ∶=  {𝒙𝐨, 𝒚̂𝐨, 𝒛̂𝐨}, and is fixed to the center of 

mass of the chief body. The deputy's body-fixed frame 

is expressed as 𝒟 ≔ 𝒙𝒅, 𝒚̂𝒅, 𝒛̂𝒅 which is aligned with, 

but separate from, the frame 𝒪. These frames are 

depicted in Figure 1 along with an Earth-centered 

inertial (ECI) frame with basis, ℰ ≔ {𝒙𝒆, 𝒚̂𝒆, 𝒛̂𝒆}.  
 

 
Figure 1 The chief (with attached Hill frame O) and a deputy 

(with body-fixed frame D) are orbiting about the Earth with 

inertial frame E. The dashed lines correspond to the closed 

orbital trajectories of both craft [3]. 

It is important to note that there are limitations to this 

approach. Space is nonlinear and the HCW 

representation runs the risk of error propagation. 

However, in this case, error is proportional to the 

distance from the chief. In low Earth orbit, this only 

becomes an issue when relative distances range on the 

order of tens of kilometres, which the proposed 

simulation does not [11]. We assume that the error 

induced by linearization will be negligible. 

Additionally, given the complexity of the controller 

presented herein, only 2 degrees of freedom are analysed 

to facilitate early-stage design. However, the realism is 

reduced in two dimensions as z-axis effects and 

orientation can be significant for docking maneuvers. 

 

The model used for the deputy in this analysis, depicted 

in Figure 2, is a 6U CubeSat measuring 30 cm x 20 cm 

x 10 cm along the 𝒙𝒅-, 𝒚̂𝒅-, and 𝒛̂𝒅- axes, respectively. 

The spacecraft can produce thrust unilaterally along the 

𝒙𝒃-axis (positive and negative). Thrusts are assumed to 

act through the center of mass of the spacecraft. The 

attitude is controlled by a flywheel rigidly attached to 

the 𝒛̂𝒅-axis of the deputy. A gimbaled sensor is also 

attached to this axis to prevent rotation about any other 

axes. This frame notation and the graphics depicted in 

Figure 1 and 2 are taken from [3] and [2], respectively. 

 

C. Equations of Motion 

 

Let the control-input be defined as 𝑈 ∶=  ( 𝐹𝑥, 𝜓̇)
𝑇

 

where 𝜓̇  represents the angular acceleration of the 

flywheel. The variable 𝐹𝑥 is the thrust force through the  

𝒙𝒅-axis. The state space is defined as 

 

𝒙 ∶=  (𝛿𝑥, 𝛿𝑦, 𝜃, 𝛿𝑥̇, 𝛿𝑦̇, 𝜔)𝑇  

 

where 𝒙 ∈ ℝ6, 𝛿𝑥, and 𝛿𝑦 are the relative position 

values, 𝛿𝑥̇, and 𝛿𝑦̇ are the relative velocities, 𝜃 is the 

orientation of the deputy, and 𝜔 is its angular velocity 

components. The continuous time-invariant Clohessy-

Wiltshire equations from [12] are given by  

 

𝒙̇ = 𝑨𝒙 + 𝑩(θ)𝒖 (1) 

where  

 

𝑨 =

(

 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3η2 0 0 0 2η 0
0 0 0 −2η 0 0
0 0 0 0 0 0)

 
 
 

 

 

𝑩(θ) =

(

 
 
 
 
 
 
 

0 0
0 0
0 0

cos(θ)

𝑚𝑐
0

sin(θ)

𝑚𝑐
0

0
−𝐷

𝐼𝑧 )

 
 
 
 
 
 
 

. 
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The mean motion constant is 𝜂 = √
μ

𝑟𝑐
3 =

0.001027 rad/s and represents the average angular rate 

of the chief spacecraft. The variable μ =  398600.4418 

km3/s2 is the Earth's standard gravitational parameter 

and 𝑟𝑐  is the radius of the chief's circular orbit. 

 

 
Figure 2 Depiction of the modelled deputy and its body-fixed 

frame D. Thrust actuation (𝑓𝑥) is aligned along the positive 

and negative 𝒙𝒅̂ −axes [2].  

The flywheel is assumed to be at the center of mass of 

the spacecraft with rotations about the 𝒛𝒅̂-axis. The 

moment of inertias of the flywheel and spacecraft are 

denoted as 𝐷 and 𝐼𝑧, respectively. Combining the control 

variables with 𝐵 produces the rotational equations of 

motion  

 

θ̈ =
−𝐷ψ ̇

𝐼𝑧
. 

 

In these underactuated dynamics, the rotation and 

translation are coupled, thus precluding many classical 

control approaches (such as those utilizing linearization) 

to be applicable. This coupling is apparent in the control. 

From (1), since thrust is only applied along the 𝒙𝑑̂-axis, 

the relationship becomes  

 

𝑓𝑥𝑦 = [
𝑐𝑜𝑠(𝜃)

𝑠𝑖𝑛(𝜃)
] 𝑓𝑥 

 

where actuation in any direction is dependent on the 

orientation of the deputy. 𝒇𝑥𝑦 represents the radial form 

of the thrust component. To achieve a successful 

docking configuration, the deputy must reach a set of 

predefined relative translational and attitudinal states. 

The objective is to drive the deputy's translational and 

attitudinal states to the set 𝒜 ≔ 𝒙 ∈ 𝒳, 𝑢 ∈ 𝒰|𝒙 = 𝟎6. 

𝒙 goes to 0 as 𝑡 goes to infinity. 

 

D. CEMPC 

 

Model Predictive Control (MPC) is an advanced control 

strategy used in various engineering applications to 

optimize the performance of dynamic systems while 

satisfying constraints. Unlike traditional control 

methods, MPC employs a predictive model of the 

system to anticipate future behaviour and compute 

control actions over a finite time horizon. At each time 

step, MPC solves an optimization problem to determine 

the optimal control inputs that minimize a predefined 

cost function, subject to system dynamics and 

constraints. By considering future predictions and 

incorporating feedback, MPC enables the control of 

complex processes with non-linear dynamics, uncertain 

disturbances, and constraints on both states and inputs. 

This predictive nature allows MPC to handle time-

varying systems and disturbances effectively, making it 

widely utilized in the space industry. MPC offers a 

versatile and powerful framework for achieving optimal 

control performance in dynamic systems. 

 

A gradient-free MPC called the Cross-Entropy Model 

Predictive Control (CEMPC) algorithm is used to solve 

the proposed problem. It follows the form 

 

𝑪∗ = 𝑎𝑟𝑔 min
{𝑨(0),…,𝑨(𝐾−1)}

∑ 𝑟(𝒔̂𝑡′, 𝒂𝑡′)

𝑡+𝐻−1

𝑡′=𝑡

  

𝑠. 𝑡.  𝒔̂𝑡′+1 = 𝒔̂𝑡′ + 𝑓𝜃(𝑠̂𝑡′,  𝒂𝑡′) 

At every time step, 𝑡, a sequence of actions is computed 

up to some horizon time 𝐻. To provide a thorough 

search of the surrounding state space, 𝐾 sequences are 

analyzed. 𝑪(𝑘) is one of 𝐾 sequences of actions each 

with a length equal to 𝐻. 𝑟 is the reward, or cost, 

function associated with each state-action pair. In the 

scope of this paper, this function was chosen to be a QR 

cost due to its stabilizing properties. 𝑪∗ represents the 

approximate optimal trajectory over the given horizon.  

 

Control inputs are determined via the CEM, a gradient-

free optimizer. Per [13], the CEM produces a global 

search of the state space during optimization. While this 

does not always guarantee convergence to a global 

minimum, it does typically lend itself well to bypassing 

shallow local optima, a necessary trait for many path 

planning problems. By iteratively refining a set of 

candidate solutions based on their performance and 

updating the distribution from which new solutions are 

sampled, CEM efficiently explores the search space and 

converges towards promising solutions. 

 

It works by selecting action sequences corresponding to 

the J highest-scoring 𝑪(𝑘) values and utilizes them to 

compute a multivariate mean, 𝜇, and covariance, Σ, 

which represent the means and variances of the pseudo-

optimal trajectory distribution over the given horizon. 

The chosen sequences are referred to as the elites. To 

find the parameters of the trajectory distribution, the 

values acquired from random shooting are updated 𝑀 

times per prediction horizon. The updated laws are 
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𝝁𝑡′
𝑚+1 = 𝛼 ∗ 𝑚𝑒𝑎𝑛(𝑨𝑒𝑙𝑖𝑡𝑒𝑠) + +(1 − 𝛼)𝝁𝑡′

𝑚 

𝚺𝑡′
𝑚+1 = 𝛼 ∗ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑨𝑒𝑙𝑖𝑡𝑒𝑠) + (1 − 𝛼)𝚺𝑡′

𝑚  

where α serves as a hyperparameter governing 

smoothness, and m ranges from 0 to M. The values of 𝝁 

and Σ at the initial step in the finite horizon trajectory 

distribution are then utilized for sampling a multivariate 

Gaussian distribution, thereby generating an action for 

implementation in simulation. This process is iteratively 

carried out at each control step until the termination 

conditions are met. Through incremental optimization, 

the propagation of errors stemming from the 

approximate dynamics model for long-term planning is 

mitigated. It is worth noting the challenge in establishing 

theoretical stability guarantees, given the inherent black-

box nature of this method which stems from its lack of 

gradient information. Nevertheless, the research herein 

attempts to stave off these uncertainties with use of a QR 

cost. Additionally, the notion of stability is bolstered 

through numerical Monte Carlo demonstrations. 

 

III. PROBLEM STATEMENT 

The goal of this research is to dock the underactuated 

chaser using a CEMPC algorithm. Table I lists the 

mission parameters used in this analysis. The 

termination conditions for the docking phase occur 

when |𝑥| ≤ [0.1, 0.1, 0.035, 0.2, 0.2, 0.017]. 
Additionally, a constrained action space is used to 

simulate control input saturation limits. The goal of the 

MBRL algorithm is to drive the underactuated 

spacecraft to within the docking constraints as time goes 

to infinity without violating any state or action bounds. 

Situations such as plume impingement or even damage 

to the chief can occur in configurations where thrusters 

are pointed at the chief during docking. So, to maintain 

realism, the docking port is located on the positive 𝒚𝒃̂ 

face of the spacecraft, as depicted in Figure 3. While this 

configuration helps to reduce the risk of damage induced 

by the chaser's thrust, it creates a docking procedure that 

is difficult to control. Since thrust only exists 

unilaterally along the 𝒙𝑏-axis, the spacecraft must 

perform a V-bar maneuver without the ability to thrust 

directly towards or away from the chief spacecraft.   

 

To determine the feasibility of this new docking 

configuration, a test case was designed. The initial 

conditions were set such that the deputy was positioned 

-3 m behind the chief, along the 𝒚𝑶̂-axis, with zero 

relative velocity. The relative angular displacement as 

measured from the 𝒙𝑶̂-axis was set to 
π

2
. At this 

orientation 𝒚𝒅̂ and 𝒙𝑶̂ are antiparallel with the deputy's 

docking point facing the Earth and the chief's facing the 

deputy. The objective and constraints considered in this 

analysis include:   

 

min
𝒙,𝒖
Σ𝑖=1
𝐻−1𝒙𝑖

𝑇𝑸𝒙𝑖  +  𝒖𝑖
𝑇𝑹𝒖𝑖 + Σ𝑗=1

𝑁 𝒘𝑗𝕀(𝒙𝑖)  + 𝒙𝐻
𝑇𝑷𝒙𝐻 

S.T.  fx  ∈  [−1,1]𝑁 

ψ̇ ∈ [−181.3,181.3]
𝑟𝑎𝑑

𝑠
 

𝑦 sin (
α

2
) + 𝑥 cos (

α

2
) ≥ 0 

𝑦 sin (
α

2
) − 𝑥 cos (

α

2
) ≥ 0 

|𝑣| ≤ 10
𝑚

𝑠
 

 

Table I: List of Mission Parameters 

 

Value Description 

𝑚 =  12 kg Mass of the chaser 

μ = 3.986 × 1014
𝑚3

𝑠2
 

Earth’s gravitational 

parameter 

η = 0.001027
𝑟𝑎𝑑

𝑠
 

Mean motion of the Chief 

|𝑣𝑑𝑜𝑐𝑘| ≤ [0.2,0.2]
𝑚

𝑠
 maximum docking 

velocity 

|𝑥𝑑𝑜𝑐𝑘| ≤ [0.1,0.1]𝑚 maximum distance to 

dock 

|θ𝑑𝑜𝑐𝑘| ≤ 2
∘ maximum angular 

displacement 

noise=(1𝑐𝑚)2 magnitude of noise 

t = 2 s timestep 

 

Where θ̇ and θ̈ are the angular velocity and acceleration 

of the chaser, respectively, |v| represents the safety 

bounds on velocity, and the remaining two 

trigonometric inequality constraints form a “keep-in” 

zone. This zone takes the shape of a cone emanating 

from the −𝒚𝑶̂ side of the target. The idea is to reduce the 

available space to explore as the chaser gets closer to the 

docking configuration. The variable 𝒘𝑗  represents the 

weight associated with each constraint, 𝑗. Similarly, and 

𝕀(𝒙𝑖 , 𝒖𝑖) is an indicator function designed to signal 

when a control or state has violated a defined boundary. 

These are considered soft constraints, however, the 

penalty is obtained immediately when the state falls 

within the specified set. Additionally, the CEMPC 

structure allows the controller to observe things ahead of 

time.     

 

A timestep of 2 seconds was used for propagating the 

dynamics with control input every 10 seconds. The 

predicted length was 25 s. The control horizon was 

designed such that the input would be considered as a 

piecewise continuous action across the prediction 

horizon. Finally, a QR cost was used with Q = 

𝐼6[10,10,0.1,0.1,0.1,0.1]
𝑇 and 𝑅 = 𝐼2[1,0.1]

𝑇.   
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Figure 3 A depiction of the docking port location.  

 

IV. RESULTS 

A. Close Proximity Analysis 

 

Given that the linearized dynamics are neither 

controllable nor stabilizable near the origin, and prior 

attempts at solving this problem numerically have had 

trouble here, the CEMPC was first tested in this region. 

The resulting trajectory generated from the CEMPC 

algorithm is depicted in Figure 4. A prevailing issue 

experienced in previous efforts to solve the 

underactuated docking problem numerically centralized 

around the nMPC from [5] producing non-monotonic 

cost, especially near the docking region. This is 

indicative of instability. However, with the use of the 

CEM this issue was avoided as depicted in Figure 4 b). 

Additionally, the solver was able to converge to a much 

tighter tolerance (i.e., to within 0.1 m of the origin 

instead of 0.5 m) when given the conic state space 

constraint. While in the presence of nonlinearities such 

as the one seen in this case study, monotonicity of the 

cost does not strictly guarantee stability, but it is a 

neccessary condition for it. 

 

The deputy is initially oriented such that its thrusters are 

facing towards and away from the chaser. From the 

remaining figures in Figure 4, the following trajectory is 

observed: a small positive thrust is exerted and the 

spacecraft coasts towards its target. Meanwhile, control 

is being applied to the flywheel to slowly orient the 

docking port correctly. This coasting effect reduces the 

relative distance to approximately 1.5 m. By this time 

the chaser has drifted radially outward as seen in Figure 

4 a). It then rapidly relocates itself below the chief (i.e., 

close to the Earth) before it begins an orbit transfer to 

achieve the final docking configuration. The entire 

trajectory was accomplished well within the desired 

velocity range.    

 

While precise trajectories are achievable with this 

method, issues arise with robustness. For this problem, 

the CEMPC is sensitive to initialization of the state 

space, thus proper alignment of the chaser is needed 

before beginning the final approach.  

 

 
a) Deputy trajectory, orientation and thrust 

direction 

 

 
b) The reward function over time 

 

 
c) Velocity of the deputy in the relative x- and 

y-axes, as well as the angular velocity of 

deputy. The speed of the deputy is also 

provided. 
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d) Convergence of the position and angular 

displacement of the deputy to the docking 

region.  

 
e) The control input throughout the trajectory. 

 
Figure 4 Results generated from the feasibility test.  

B. Repeatability 

 

To test the reproducibility of the trajectory, the random 

seed controlling the optimizer initialization was 

removed and a series of 25 trajectories were generated 

from the same initial conditions. Figure 7 highlights the 

solver’s ability to dock consistently regardless of 

optimizer initialization.  

 
Figure 7 To test the sensitivity of the CEM to changes in 

initialization, 25 trajectories were generated without seeding. 

C. Increased range 

 

To see if the solver could handle converging from a 

farther distance, the deputy spacecraft was initialized at 

𝒙 = [30, -100, π/2, 0, 0, 0]. Figure 8 depicts the 

trajectory information. Without any user input the solver 

appears in Figure 8 a) to rush the deputy to the V-bar 

axis before performing tight corrective maneuvers near 

the target. From Figure 8 d), the desired orientation for 

docking is achieved in the first 75 seconds of the 

simulation, after which the deputy relies almost entirely 

on thrusts along the 𝒙𝑶̂ −axis to control positioning. 

Again, Figure 8 b) shows a monotonically decreasing 

cost function.  

 

 
a) Deputy trajectory, orientation and thrust 

direction 

 

 
b) The reward function over time 
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c) Convergence of the position and angular 

displacement of the deputy to the docking 

region.  

 
d) The angular displacement and angular 

velocity of the deputy. 
Figure 8 Results generated after increasing the distance 

between spacecraft.  

 

V. DISCUSSION AND FUTURE WORK 

This paper offers a solution to the underactuated 

docking problem via the use of a nonlinear Model 

Predictive Control scheme with a QR cost, soft 

constraints, and gradient-free optimizer known as the 

cross-entropy method. This work contributes to existing 

efforts to solve this benchmark problem by presenting 

an on-line, numerical solution with the necessary 

conditions for asymptotic stability; a monotonically 

decreasing cost function. The CEM produces a global 

search of the state space during optimization. While this 

does not always guarantee convergence to a global 

minimum, it does typically lend itself well to bypassing 

shallow local optima, a necessary trait for many path 

planning problems. 

 

Given the known abilities of the CEM as a global search 

algorithm, the fact that it can produce a monotonically 

decreasing cost where the previous gradient-based 

optimizer failed implies that solutions to this problem 

exist on a non-smooth cost surface. The initialization of 

gradient-based methods in the future should be handled 

carefully. Additionally, while robustness to initial 

conditions was not demonstrated in this work, offline 

solutions presented in [7] show that they are possible 

with the use of collocation. Future work will explore the 

integration of a collocated reward function into the on-

line problem to address this topic.  

 

While the precision of the CEM appears to diminish 

with the increase in relative distance between spacecraft, 

it is important to note that many “failed” trajectories 

passed through a much tighter docking region, but were 

simply not sampled during their time spent there. In 

other words, the timestep of the solver was too large. 

The solution, however, would not just involve 

decreasing the timestep. Realistically, satellites only 

produce a command output every 2 – 30 seconds in close 

proximity missions such as these. So, the timestep of the 

simulator would need to be adjusted to “catch” the 

deputy docking. Future work will explore the 

application of CEMPC to the 6 degrees-of-freedom 

problem outlined in [7] and will explore the addition of 

a neural network based estimation of the dynamics to 

allow system identification, as seen in [10].  
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