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Abstract – This work addresses the optimal design 

of berthing missions with non-cooperative Resident 

Space Objects.  In particular, a recently introduced 

general optimal control solver is revisited from both 

the theoretical, practical and computational 

perspective. While originally constructed upon 

collocation and shape-based methods, connections to 

modern Pseudospectral Theory are outlined. 

Comparison against standard optimal control 

techniques is also achieved to demonstrate its 

performance, advantages, and flaws. Once done, the 

solver is applied to the integral trajectory 

optimization of berthing missions: from low-

thrusted rototraslational rendezvous to the 

deployment and pre-capture phase of the target via 

a robotic arm. A complete guidance and control 

architecture is then constructed upon this 

optimization engine by embedding it within a Model 

Predictive Control, Real-Time Iteration scheme. 

Both Model and Hardware in the Loop campaigns 

(at the rendezvous laboratory of the University Rey 

Juan Carlos) are introduced to verify and validate 

the system for real-time, embedded GNC 

applications, while highlighting the intrinsic 

synergies between its building blocks. 

 

I. INTRODUCTION 

The exponential increase of human activities in space is 

leading to a major congestion of the near-Earth regime, 

thus becoming a major threat to the sustainable use of 

the space environment. In this scenario, Active Debris 

Removal (ADR) missions have become a necessary 

enabling concept in order to avoid the well-known 

Kessler syndrome [1]. Among options [2] robotics for 

in-space capture and passivation of Resident Space 

Objects (RSO) has recently appeared as an ever-green 

field of research on which this communication is 

focused. Indeed, since the early days of the Space Era, 

robotics have played a fundamental role in the 

development of space missions of all kinds, especially 

blooming since the mid-1990s [3]. 

 

Robotic missions are characterised by tight performance 

constraints, which normally translate into formal 

Optimal Control Problems (OCP) for the mission design 

engineer. In fact, control-state trajectory optimization is 

a central challenge in not only robotic, but in all space 

exploration activities. In spite of the vast literature on 

the topic, Optimal Control still poses untackled 

problematics, especially with regards to Real Time 

Optimal Control onboard legacy systems [4]. The 

solutioning process behind OCP is constrained by the 

need to solve complex Nonlinear Programming 

Problems (NLP) associated to a Hamiltonian 

Minimization Condition (HMC), such as Pontryagin’s 

Minimum Principle (PMP). This challenge particularly 

applies to short-time scales (high-frequency) 

applications, such as berthing and proximity operations 

with non-cooperative, tumbling targets, as required by 

ADR activities [5]. 

 

The application of robotic manipulators to berthing 

missions have been long studied in the literature, while 

in a particular niche fashion. Usually, efforts are focused 

on the optimal planning of the robot trajectory, while the 

complete mission design is not covered [6] or vice versa. 

Moghaddam and Chhabra provides a thorough, 

comprehensive review of the main technical challenges 

and techniques of robotic space missions from a GNC 

and optimal control perspective [7]. Path planning 

studies date back to the 1990s, when global optimization 

techniques for redundant end-effectors were 

investigated by Agrawal and Xu [8]. Papadopoulos and 

Abu-Abed investigated motion planning for zero-

reaction manipulators [9]. In [10], authors already 

investigated optimal motion planning for free-flying 

robots in their joint space, in the absence of spacecraft 

actuation, through shape-based methods and Sequential 

Quadratic Programming (SQP). Both the optimal pre-

capture and passivation of tumbling RSO with unknown 

dynamics by means of PMP were studied by Aghili, 

where simulations on real robotic hardware were also 

presented [11,12]. Boyarko et al., in a series of works, 

combined pseudospectral methods and inverse 

dynamics for the very same problem, including analysis 

on the real-time deployment of their OCP solving 

technique [13,14]. Similarly, Michael et al. applied 

numerical collocation to both the modelling and optimal 

path planning for ADR missions [15]. Relevant for this 

investigation again, Wilde et al. researched on 

experimental characterization of docking with a 

tumbling RSO through inverse dynamics and 

polynomial-based prescription of the robot state [16] 

similarly to Caubet and Biggs [17], Stoneman and 

Lampariello [18] or Ventura et al. [19]  More recently, 

Virgili-Llop et al. have addressed the optimal 

deployment of robotic arms for proximity operations 

missions through Sequential Convex Programming 

(SCP) [20]. In [21], Flores-Abad et al. designed a two-

step method to determine both the optimal capture time 
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and the rendezvous trajectory to a tumbling object, 

which numerically relied again on pseudospectral 

methods. Stenberg elaborated on the study of optimal 

docking to tumbling object in the presence of 

uncertainty [22], a situation commonly encountered in 

ADR missions. The feasibility of proximity operations 

with tumbling RSO by means of reachable sets, based 

on minimum time optimization, has been elaborated by 

Zagaris [23]. Xu et al. have investigated in a recent work 

optimal guidance for docking with tumbling spacecraft 

by means of PMP directly, including also collision 

avoidance policies [24]. Finally, modern control 

techniques have also led their way into the problem, as 

demonstrated by the use of Sliding Mode Control in 

Abdollahzadeh and Esmailifar [25] or robust tube-based 

MPC in Dong et al. [26], or Specht and Lampariello   

[27, 28]; the latter also discussed real-time applications 

of the proposed algorithm. Along this line, Santos, Rade 

and Fonseca have introduced machine learning 

strategies to solve optimal path planning of robotic 

manipulators [29]. Zhang et al. have just analysed the 

capture of tumbling objects using again pseudospectral 

collocation, but in combination with reinforcement 

learning [30]. Abundant literature may also be found 

addressing the optimal design of the rendezvous phases 

of the mission, from the long-range phase to the sub-

meter approximation to the RSO. Modern enabling 

control techniques, such as Model Predictive Control 

and Convex Optimization, may also be found at the core 

of such studies, showing now a consolidated 

background for rendezvous applications [31-42]. 

Precisely, this is the focus of the recent work by Rebollo 

et al. [43], for example, and the references therein 

among others. 

  

Compared to previous literature, this communication 

presents an integral and optimal design of berthing space 

mission with non-cooperative RSO. In particular, 

interest is given not only to the deployment of a robotic 

arm actuator during the pre-capture process, but also to 

the optimal 6 DoF rendezvous trajectory design with the 

target RSO in an arbitrary elliptic orbit. The differential 

flatness properties of the rendezvous low-thrust 

Tschauner-Hempel model [44] and the convex, hybrid 

kinematics of Modified Rodrigues Parameters [45] are 

exploited for cost-effective solutioning of the associated 

open-loop trajectory OCP. As the inner guidance engine, 

we revisit a novel optimal control solver of generic 

purpose, introduced in [46]. The solver is characterized 

by a cost-effective design, based on orthogonal 

collocation and shape-based techniques. Once 

presented, connections to Pseudospectral Theory are 

established, and its performance validated against 

standard OCP solving techniques (SCP) to verify its 

effectiveness. Furthermore, in order to construct a 

complete guidance and control loop, the algorithm is 

deployed as an optimal trajectory planner within an 

outer Model Predictive Control loop. Finally, the 

performance of the design is verified and validated in 

two-fold. On the one hand, close-loop trajectory 

optimization of berthing missions is presented in Model 

in the Loop simulations. Second, Hardware in the Loop 

campaigns are executed to deploy the complete 

guidance and control architecture onto realistic mission 

scenarios missions in the Space Proximity Operations 

Laboratory (SPOL) at University Rey Juan Carlos; wit 

the aim of demonstrating the algorithm in the design of 

optimal berthing trajectories to non-cooperative, 

tumbling targets, implemented onboard a 6 DoF robotic 

arm. This communication builds on and extends the 

results in Cuevas et al. [47], which, in comparison, 

focused on open-loop optimization only. 

 

The remainder of this communication is divided as 

follows. Section II reviews the novel optimal control 

solver proposed, including both theoretical, and 

computational insights, and its numerical demonstration 

on classical OCP examples. Moreover, similarities and 

differences with state-of-the-art techniques are 

highlighted. Section III develops general berthing 

mission phases as OCP through the introduction of the 

aforementioned differentially-flat models, as required 

by the guidance algorithm. However, for real-time 

applications and to manage uncertainties, Section IV 

presents a Nonlinear Model Predictive (NMPC) 

architecture within which the optimization engine is 

embedded. In Section V practical numerical 

demonstrations of the above techniques are introduced, 

and the performance of the solver strictly analysed. 

Finally, the results of a Hardware in the Loop campaign 

are presented in Section VI, together with a brief 

discussion of the overall rendezvous setup. Concluding 

remarks, steps ahead and open lines of research are 

discussed in Section VII. 

 

II. COST-EFFECTIVE GUIDANCE THROUGH 

SBOPT 

The resolution of OCP is primarily coped with 

numerical techniques, as in only few cases, analytical or 

close-form solutions are available. This is even more 

relevant for autonomous missions, such as berthing 

ones. This Section explores the numerical solver used in 

this work to handle all OCP homogeneously.  

 

As already introduced, the design of an optimal control 

law is constrained by the need to solve a HMC [48] 

Traditional approaches to the solution of this HMC 

relies on the classical indirect and direct methods [49], 

which either solve the primal-dual problem or rely on 

discretization or collocation for solving a finite NLP. 

However, the introduction of the pseudospectral (PS) 

family of solvers in the early 2000s has led to a change 

of paradigm. PS solvers show both theoretical and 

numerical advantages for practical optimal control 

onboard digital computers [50]. Remarkably, they have 
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recently blurred the barrier between direct and indirect 

methods, manifesting their equivalency [51], and have 

initiated the field of Hamiltonian Programming, in 

comparison to NLP, which addresses the formal 

mathematical structure of OCP [51-53]. Although 

several formulations of PS methods exist [54-56] all of 

them employ direct collocation of the state-control pair 

on the nodes of a family of orthogonal polynomials and 

associated Gaussian quadratures. See [4] for a detailed 

review of these techniques. 

 

Instead of leveraging classical Optimal Control 

software, we resort into an in-house, high-efficient 

algorithm and cost-effective numerical solver for OCP, 

SBOPT, which was presented in Solano et al. [46] and 

further reviewed in Cuevas et al. [47]. SBOPT builds on 

the recent work of the astrodynamics community on 

shape-based solvers [57-64]. The latter are characterized 

by projecting the state evolution of the system on pre-

selected functional families, leading to small 

optimization problems on the parameters spanning such 

families. Compared to classical direct or indirect 

methodologies, shape-based techniques allow for a 

quick generation of boundary-compliant initial guesses 

for optimization solvers (notably, for direct transcription 

ones) as long as the selected functional base is able to 

capture the problem's intrinsic dynamical features. 

 

While SBOPT was initially planned as another general 

shape-based solver, it soon showed analogies and 

theoretical fundings rooted in classical PS theory 

(starting from its object-oriented user interface, inspired 

by DIDO [52]). This special architecture of the solver 

hybridizing shape-based and PS methods provides a 

cost-efficient technique, suited for embedded 

applications. In terms of performance, it compares to 

convex optimization schemes, as demonstrated in the 

examples. Nonetheless, at its current stage, both 

convergence, feasibility and accuracy proofs are still to 

be constructed. The technique is now briefly sketched 

for completeness purposes. Again, a complete overview 

of the method may be found in [47]. 

 

The objective of SBOPT is to accurately and efficiently 

solve realizations of the following general optimal 

control problem 

 

min 𝐽 = 𝑀(𝐱(𝑡0), 𝐱(𝑡𝑓), 𝑡0, 𝑡𝑓)

+ ∫ 𝑙(𝐱(𝑡), 𝐮(𝑡), 𝑡)
𝑡𝑓

𝑡0

 d𝑡,  

          𝑠. 𝑡.     𝒇(𝝁, 𝑡, 𝐱, 𝐱𝑘) + 𝒈(𝝁, 𝑡, 𝐱, 𝐱𝑘 , 𝐮) = 𝟎,       (1) 

𝒆0(𝑡0, 𝐱(𝑡0)) = 𝟎,  

𝒆𝑓 (𝑡𝑓 , 𝐱(𝑡𝑓)) = 𝟎,  

𝒉(𝝁, 𝑡, 𝐱, 𝐮) ≤ 𝟎, 
 

where the state of the dynamical system is described by 

the vector 𝐱 and its k-th derivative 𝐱𝑘, and whose 

evolution with respect to the independent variable 𝑡 is 
governed by the vector fields 𝒇 and 𝒈,  characterized by 

a set of parameters 𝝁 and the control vector field 𝐮. 

Mixed control-state path constraints are encoded within 

the function 𝒉, while 𝒆𝑖 enforce boundary conditions on 

𝐱 through generally nonlinear maps. 

 

The fundamental feature of the method is the use of pre-

determined functional bases to describe the optimal 

solution, thus showing similarities with the classical 

shape-based solvers. In our method, the configuration 

(not the state) vector 𝐬 ∈ ℝ𝑁𝒔 is projected onto some 

polynomial basis ℘ parametrized by the polynomial 

time 𝜏. 
 

s𝑖(𝜏) =  ∑ 𝑐𝑖𝑗  𝑃𝑗(𝜏)
𝑝𝑖+1
𝑗=0 , 𝑖 = 1,2, . . , 𝑁𝑠.         (2) 

 

The polynomial order set ℕ = {𝑝𝑖}𝑖=0
𝑁𝑠  defines the order 

of the expansion of each of the configuration vector 

components. In matrix notation, the above can be 

compactly written as a linear application 

 

𝐬(𝜏) = 𝐶𝑃(𝜏) ∈ 𝑆[𝜏], 𝑃 ∈  ℝ𝑁+1 × ℝ, 
𝐶 = [𝒄0, 𝒄1, … , 𝒄𝑁 , 𝒄𝑁+1] ∈  ℝ

𝑁𝑠×𝑁+1.  
 

Here 𝑆[𝜏] denotes the polynomial ring in 𝜏 and 𝑁 is the 

maximum present polynomial order in ℕ. Moreover, it 

is clear than from (2), all state derivatives are readily 

available by differentiation of polynomials, so that the 

problem’s dependency on them is explicitly avoided for 

the ease of notation, 𝐱 = 𝒕(𝐬). As it will become 

apparent, the ultimate goal of the methodology here 

proposed is the optimization of 𝐶 to represent an 

extremal solution to Problem (1). 

 

The transcription of the Bolza functional problem is 

achieved by means of collocation onto a Gaussian 

quadrature over the polynomial time 𝜏, defined by a 

finite set of collocation points Τ = {𝜏𝑖}𝑖=0
𝑚 . The set Τ is 

ordered so that 𝜏𝑖 is monotonically increasing. When 

applicable, this discretization defining the quadrature is 

selected to match the nodes of the polynomial basis 

selected, as in PS methods: for Legendre polynomials, 

the Legendre-Gauss-Lobatto (LGL) quadrature is used 

[65]; Clenshaw-Curtis quadrature follows for 

Chebyshev polynomials [66]. For finite-horizon 

problems (𝑡𝑓 − 𝑡0 ∈ ℝ), the polynomial time interval 

𝜏 ∈ ℑ shall be closed, to allow to strictly imposed 

boundary conditions at 𝜏0 and 𝜏𝑚. Moreover, to handle 

homogeneously both time fixed and time-free problems, 

the nondimensional time is introduced 

 

𝜃 =  
𝑡 − 𝑡0
𝑡𝑓 − 𝑡0

∈ [0,1], 
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so that the following holds 

 

𝑡𝑖 = (𝑡𝑓 − 𝑡0) 𝜃𝑖 = (𝑡𝑓 − 𝑡0) 𝜎𝑖(𝜏𝑖), 𝑖 = 0, 1, … ,𝑚.  

 

The number of nodes 𝑚 can be independently selected 

from the polynomial approximation order 𝑁. Usually, 

some heuristic is used to link the two. The use of general 

quadratures usually provides upper bounds of 𝑚 as a 

function 𝑁 of for accurate numerical integration (Gauss 

quadrature is exact for polynomials of order  𝑁 <
2𝑚 − 1, for example). For a Cauchy TBVP, a minimum 

third-order polynomial expansion is needed to allow free 

degrees of freedom to be determined. 

 

The collocation grid / quadrature Τ allows to trivially 

evaluate the original cost functional 𝐽 
 

𝐽 ≈ 𝑀(𝐬(𝜏𝑚), 𝐬(𝜏0), 𝑡𝑓 , 𝑡0) + 

+(𝑡𝑓 − 𝑡0)∑𝑤𝑖  𝑙(𝐬(𝑡𝑖), 𝐮(𝑡𝑖), 𝑡𝑖) d𝜎𝑖

𝑚

𝑖=0

. 

 

In the above, 𝑤𝑖  defines the quadrature weights 

associated to each of the collocation points 𝜏𝑖. Given 

that, in general, the physical time ℑ ≠ [𝑡0, 𝑡𝑓] shall be 

evaluated as a function of the points 𝜏𝑖  through the 

nonlinear map 𝜎,  the quadrature shall be scaled by its 

differential d𝜎𝑖. 
 

The imposition of the dynamic constraints is 

intrinsically achieved by computing the control law 𝐮 as 

a residual of the differential form of the dynamics, 

similarly to differential inclusions [67] or dynamics 

inversion [68], with differentially flat systems as the 

maximal expression of the latter [69,70]. SBOPT 

directly works in the tangent space of the dynamics. This 

approach avoids the need of any implicit integration, 

compared to classical direct methods [71], as it imposes 

the dynamic constraints, the crux of all direct methods 

[67], in differential, rather than integral form. In short, 

the control law 𝐮 evaluated at the discrete grid Τ can be 

computed as the solution to 

 

𝐮(𝜏𝑖) ∶ 𝒇(𝜇, 𝑡𝑖 , 𝐬𝑖) + 𝒈(𝜇, 𝑡𝑖 , 𝐬𝑖 , 𝐮𝑖) =  𝟎. 
 

In this way, when compared to traditional direct 

collocation schemes (including PS methods), the control 

signal 𝐮 is not part of the decision variables to be 

optimized, but it is just computed as a byproduct of the 

geometrical optimization of the configuration vector  𝐬. 
This results in a major reduction of the computational 

needs of the problem. 

 

Additionally, in our approach, the inclusion of the 

boundary conditions is explicitly achieved by 

prescribing the functional/polynomial shape of the 

trajectory. In this way, the optimization solver only 

needs to handle path constraints. This is achieved by 

defining the symmetric set ℬ = {𝒄0, 𝒄1, 𝒄𝑁 , 𝒄𝑁+1} of 

polynomial coefficients and then fixing it to satisfy the 

boundary conditions at each iteration of the 

optimization, through an appropriate linear system of 

equations in close form. 

 

∑𝒄𝑗 𝑃𝑗(𝜏𝑖)

𝒄∈ℬ

= 𝐬𝑖 − ∑𝒄𝑗  𝑃𝑗(𝜏𝑖)

𝒄∉ℬ

, 𝑖 = 0, 𝑓. 

 

All in all, the decision variable set to be optimized 

within the solver is therefore reduced to 𝒁 =

[{𝒄𝑗
T}
𝒄𝑗∉ℬ

, 𝑡0, 𝑡𝑓 , 𝜷
𝑇]
T

, where 𝜷 includes any additional 

degree of freedom or parameter of the problem. 

 

For a given TBVP problem of Bolza of the form of. (1), 

the final transcripted version is now the following 

geometrical problem 

 

min
𝒁
𝐽 =  𝑀(𝐬(𝜏𝑚), 𝐬(𝜏0), 𝑡𝑓 , 𝑡0) + 

+(𝑡𝑓 − 𝑡0)∑𝑤𝑖  𝑙(𝐬(𝑡𝑖), 𝐮(𝑡𝑖), 𝑡𝑖) d𝜎𝑖

𝑚

𝑖=0

, 

 

                   𝑠. 𝑡      𝒆0(𝑡0, 𝐬(𝑡0)) = 𝟎,                           (3) 

𝒆𝑓 (𝑡𝑓 , 𝐬(𝑡𝑓)) = 𝟎, 

𝒉(𝝁, 𝑡𝑖 , 𝐬i, 𝐮i) ≤ 𝟎. 
 

Standard NLP solver algorithms suffice to compute the 

solution of problem (3), without the need of accurate 

initial guesses 𝒁0 (which can be easily nonetheless 

provided to speed up convergence). In this paper, these 

are generated by simply collocating a 3rd order spline to 

satisfy the boundary conditions and over-sampling it to 

generate 𝐶0 [63]. Moreover, all examples have been 

computed using SQP, as built in Matlab's fmincon 

function [72,73]. 

 

In summary, the proposed methodology shares common 

features with PS methods (collocation in differential 

form, use of orthogonal polynomials as main 

representations of the state) but they fundamental differ 

in the following:  

• The state is represented in modal versus 

nodal form in standard PS algorithms: the 

polynomial coefficients become the main 

optimization variables, instead of 

optimizing sampled snapshots of the state 

evolution. This leads to usually smaller 

optimization problems in terms of memory 

and cost. 

• Moreover, such representation only affects 

the configuration vector instead of the state 

one, allowing to handle systems in its direct 

differential order form (Newton's Laws 
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versus first-order state space 

representations). Again, this impacts the 

memory requirements of the process [74]. 

• Differentiation is not performed by means 

of spectral matrices, but directly through 

analytic computation of the derivative of the 

basis during the setup of the method. The 

avoidance of such differentiation matrices 

leads to numerically better conditioned 

collocation for dense grids, as opposed to 

standard PS cases [75]. In particular, 

SBOPT is an inexact realization of the 

computationally advantageous Birkhoff PS 

methods [76,77], aiming to constitute an 

example of HMP in the near future. 

• The control signal 𝐮 is not an optimization 

variable. Instead, it is computed by means 

of the dynamics inversion principle, leading 

to pure problems from calculus of 

variations. While this comes with additional 

flaws, as seen next, it also avoids the need 

to interpolation in order to implement the 

control law in real time. Indeed, it leads to 

close-form, analytical expressions of the 

optimal control solution. 

 

Before introducing the design of berthing missions, 

three simple OCP examples are discussed quantitatively 

to expose the virtues and drawbacks of SBOPT and 

compare its performance against sequential convex 

programming (as a state-of-the-art numerical OCP 

solving technique). 

 

Quadratic optimization is the workhorse in space 

optimization, given the availability of close-form 

(sometimes analytical) solutions, among which 

Kalman’s Linear Quadratic Regulator (LQR) stands out. 

Naturally, the LQR will provide our first opportunity to 

demonstrate the capabilities of the solver. Consider the 

following 1D OCP 

 

min 𝐽 =
1

2
∫ u2
𝑡𝑓

𝑡0

 d𝑡,  

𝑠. 𝑡.     s̈ = u,                      
(s0, ṡ0) = 𝟎,   

(s𝑓 , ṡ𝑓) = (1,0), 

𝑡0 = 0, 𝑡𝑓 = 1. 

 

The application of PMP leads to the following optimal 

control law  

 

u∗ = −12𝑡 + 6, s∗ = −2𝑡3 + 3𝑡2; 
 

which, as seen in the following Fig. 1 and 2, is perfectly 

reproduced by SBOPT. 

 

 

 
Figure 1. SBOPT and analytical solution of the 1D LQR 

problem (state). 

 
Figure 2. SBOPT and analytical solution of the 1D LQR 

problem (control). 

Consider now the classical Breakwell’s problem [48] (a 

state-constrained LQR), whose statement reads 

 

min 𝐽 =
1

2
∫ u2
𝑡𝑓

𝑡0

 d𝑡,  

𝑠. 𝑡.     s̈ = u,                      
(s0, ṡ0) = 𝟎,   

(s𝑓 , ṡ𝑓) = (1,0), 

s ≤ 𝑙, 
𝑡0 = 0, 𝑡𝑓 = 1. 

 

In the above, 𝑙 > 0 is a parameter of the system. When 

solved numerically via SBOPT (for 𝑁 = 10  and 𝑚 =
 100, using LGL quadrature, in less than 0.11s), the 

results are able to capture the discontinuous nature of the 

optimal control law, as seen in Fig. 3 and 4. However, 

Gibbs’ phenomenon is present in the solution. In short, 

the solver implicitly assumes a level of regularity of the 

control application which is in this case not in agreement 

with the true solution. Such effect roots in the fact that 

the control is computed as a residual, and therefore 

inherits the polynomial nature of the operations in the 
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dynamics function: in this case, given that 𝐬 is 

prescribed to be polynomial and differentiation is a 

polynomial operation, the control is forced to be 

polynomial also. For the general optimal control 

problem, however, this is not the case (technically, the 

common assumption is 𝐬 ∈ 𝑊1,1, but 𝐮 ∈ 𝐿∞; the solver 

here assumed 𝐮 ∈ 𝑊1,1). Traditional PS methods avoid 

such nuance by resorting into the nodal representation of 

the state-control pair (discrete evaluation over the 

independent variable) [48] versus our more compact 

modal representation of the solution. 

 

 
Figure 3. SBOPT and analytical solution to Breakwell's 

problem (state). 

 
Figure 4. SBOPT and analytical solution of Breakwell's 

problem (control). 

Finally, SBOPT will now be compared against standard 

OCP solving techniques, to demonstrate its capabilities. 

In particular, the following attitude slewing problem in 

Modified Rodrigues Parameters (MPR) is conceived.  

 

 

 

 

 

 

min 𝐽 =
1

2
∫ 𝐮𝐓𝐮
𝑡𝑓

𝑡0

 d𝑡,  

𝑠. 𝑡.     𝝈̇ =
1

4
𝐵(𝝈)𝝎,                      

𝐼𝝎 + 𝝎 × 𝐼𝝎 = 𝐮, 

𝒉̇ + 𝝎 × 𝒉 = −𝐮, 
||𝝎(𝑡)||∞ ≤ 𝜔max, 
||𝒉(𝑡)||∞ ≤ ℎmax, 
||𝐮(𝑡)||2 ≤ umax, 
||𝝈(𝑡)||2 ≤ 1, 

(𝝈𝟎, 𝝎0, 𝒉0) = 𝟎,   
(𝝈𝟎, 𝝎0, 𝒉0) = (1,0,0, 𝟎),   

𝑡0 = 0, 𝑡𝑓 = 𝑡𝑓
max. 

  

For brevity, we do not go into describing the derivation 

and formalities of this formulation. The nonlinear nature 

of the kinematic-dynamic equations requires of 

Sequential Convex Programming (SCP) to solve the 

problem. Nonetheless, when linearized, the above can 

be posed as a Second Order Cone Programming 

Problem (SOCP), which can be efficiently solved by 

available numerical techniques, such as through ECOS 

(an embbedable, user-friendly, and lightweight 

algorithm capable of handling general SOCP [78]). To 

solve the problem, discretization/collocation is needed. 

In this case, classical Lagrange PS theory will be used to 

provide the finite NLP problem to be solved.  

 

The results obtained for the same, arbitrary problem by 

this architecture (SCP via ECOS and the techniques 

outlined in [79,80]) are compared against those of 

SBOPT in the following Table 1. Fig. 5 and 6 depict the 

state evolution and relevant variables of the problem. 

Remarkably, despite showing similar results for the 

optimal cost value, the difference in the computational 

cost (measured on the same machine) allows to 

quantitively compare SBOPT to these state-of-the-art 

methods in OCP (a truly objective conclusion would 

deserve a discussion on its own right on the numerical 

implementation of both techniques). 

 
Table 1. Results comparison between ECOS-PS and SBOPT 

for a generic attitude slew problem. 

 SCP-ECOS-PS SBOPT 

N N/A 7 

m 50 50 

Optimal cost 1.47E-8 5.45E-09 

Comp. cost [s] 27.67 1.42 
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Figure 5. Predicted open-loop MRP trajectory. 

 
Figure 6. Predicted open-loop angular momentum trajectory 

(reaction wheel actuators). 

III. FLAT INTEGRAL BERTHING 

This Section present the different modelling techniques 

used to provide a computationally feasible OCP, to be 

solved in real time through SBOPT. Because of the 

solver, specific differentially flat models are used. These 

will be referred as GNC models, in comparison to the 

ones used in simulations. 

 

Consider a general nonlinear system  

 

 𝐱̇ = 𝒇(𝐱, 𝐮),   

 

where 𝐱 is taken to live in an appropriate n dimensional 

state space and 𝐮 is the control input. The system is 

defined to be flat if there exists an m dimensional state 

vector 𝝌 of differentially independent components such 

that [81] 

  𝝌 =  𝝋(𝐱, 𝐮, 𝐮̇, … , 𝐮𝑘),         {
𝐱 =  𝝓x(𝝌, 𝝌̇, … , 𝛘

𝑘)

𝐮 =  𝝓u(𝝌, 𝝌̇, … , 𝛘
𝑘)
 ,  

 

The elements of  𝝌  are known as flat outputs. See [82] 

for in-depth technical details of flat systems. For linear 

systems, differential flatness implies controllability and 

vice versa [82]. 

 

Flat systems are interesting for onboard optimal 

guidance, as they allow to restrict the formulation of 

OCP to a pure geometrical optimization within the realm 

of the calculus of variations. In particular, they set a 

generic Bolza problem into a (much more reduced) 

problem of the form  

 

                       min 𝐽(𝝌) , 𝑠. 𝑡   𝒉(𝝁, 𝑡, 𝝌) ≤ 𝟎.             (4) 

 

When cast into a finite dimensional problem (by means 

of discretization or collocation), the above results into a 

suitable NLP, usually much simpler than its in original 

Bolza statement. Moreover, if the problem enjoys 

additional properties (convexity), (4) can be solved by 

efficient means. 

 

Berthing missions with uncooperative, passive targets 

require of both the translational and rotational path 

planning of the chaser to allow the capture of the former. 

As a result, both the relative orbital motion and attitude 

kinematics and dynamics shall be studied by appropriate 

models. 

 

While linear models in rendezvous scenarios are 

supported by the nature of the mission itself 

(approaching the target), berthing in arbitrary elliptic 

orbits discards the celebrated Hill-Clohessy-Wiltshire 

model [83] as a valid modelling approach. Instead, in 

this work the more general, anomaly-dependent 

Tschauner-Hempel model (TH) is leveraged [44]. 

Moreover, it benefits from flat properties [81]. Denote 

by 𝐫𝑡 the target position vector, realised in a suitable 

Local Vertical Local Horizontal (LVLH) reference 

frame defined by  

 

𝒌 =  −
𝐫𝑡
r𝑡
, 𝒋 =  −

𝐫𝑡 × 𝐫̇𝑡
||𝐫𝑡 × 𝐫̇𝑡||

, 𝒊 =  𝒋 × 𝒌. 

 

Let 𝝆 = [𝑥, 𝑦, 𝑧]𝐓 be the relative position vector of the 

chaser with respect to the target, in the LVLH frame. 

Introduce the transformation parameter 𝑘  

 

𝑘(𝜃) = 1 + 𝑒 cos 𝜃, 
 

where 𝑒 is the osculating target orbit eccentricity and 𝜃 

is the corresponding true anomaly, which replaces time 

as the independent variable. Equally, let 𝑛 = 𝜇/ℎ3/2 be 

the target’s orbit mean motion. In arbitrarily canonical 

units (𝜇 = 1), the relative dynamics of the chaser are 

driven by  

 



 

 

29th International Symposium on Space Flight Dynamics 

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany. 

{
 
 

 
 𝑥′′ = 2𝑧′ + 

1

𝑛2𝑘3
𝑢𝑥

𝑦′′ = −𝑦 +
1

𝑛2𝑘3
𝑢𝑦

𝑧′′ =
3

𝑘
𝑧 − 2𝑥′ + 

1

𝑛2𝑘3
𝑢𝑧 

 

 

The TH model provides the control flow of 3 out of the 

6 DoF of the chaser as a rigid body. The remaining 3 

correspond to the rotational dynamics of the problem 

(which will also include those of the target).  

 

Define a body reference frame 𝛣𝑖  as a dexteral triad of 

versors {𝒊𝑖 , 𝒋𝑖 , 𝒌𝑖} attached to the center of mass of either 

the target or the chaser. The evolution of the angular 

velocity 𝝎𝒊 between the body and inertial frames, 

realised in the former, is dictated by the Euler-Poinsot 

Initial Value Problem (IVP) system  

 

𝐼𝝎𝑖̇ +  𝝎𝑖 × 𝐼 𝝎𝑖 = 𝝉, 𝝎𝑖(𝑡0) = 𝝎𝑖
0            (5) 

 

in which 𝐼 is the associated inertia matrix in the body 

frame. Typically, the inertia of the target will not be 

accurately known but shall be observed online. This 

work assumes an observability condition on 𝐼. Here, 𝝉 

denotes the control input of the system, i.e., the applied 

torque. Because the target is passive, it is clear that 𝝉 =
𝟎, thus undergoing free-torque motion (abundant 

literature approaches the target capture phase by 

aligning the docking fixture of the chaser with the 

invariant spinning axis of the target). 

 

Once the evolution of the body frame angular velocity is 

known (or predicted), the attitude kinematics between 

the body frame and an arbitrary reference system can be 

studied, by means of the following IVP 

 

𝝈𝑗̇ =
1

4
𝐵(𝝈)𝝎𝑗 , 𝝈𝑖(𝑡0) = 𝝈𝑖

0. 

 

The Modified Rodrigues Parameters (MRP) 𝝈, the 

stereographic projection of the attitude configuration 

manifold 𝑆3 [45], are used to parametrize the attitude 

kinematics because they can be demonstrated to be flat 

[84] Matrix 𝐵 is a quadratic form on 𝝈, see [84] for 

details. In the above, 𝝎𝑗 represents the angular velocity 

between the body frame and the arbitrary selected one, 

and 𝝈 transforms vector realisations from the later to the 

former. The use of MRP comes with additional flavours: 

when compared to other typical covers of 𝑆3, such as 

quaternions, these lead to convex non-holonomic 

geometric constraints 

 

||𝝈(𝑡)|| ≤ 1, 
 

which are computationally preferred over other options 

(such as the classical unit quaternion constraint). If the 

shadow set 𝝈𝑆 is introduced,  

 

𝝈𝑆(𝑡) =  −
𝝈

𝝈T𝝈
, 

 

the MRP become a non-singular double-cover of 𝑆3. For 

both the regular and shadow MRP, the attitude 

kinematics remain the same. Because SBOPT works 

directly on the tangent space of the trajectory, this is 

computationally advantageous, because the non-

holonomic constraint can be replaced through a trivial 

normalization operation in the kinematics vector field. 

 

Precisely, the flat outputs of the system are 𝝈. When 

exploited, this leads to the following flat form of the 

attitude problem. 

 

{
 

 𝝎𝑗 = 4 𝐵
𝑇(𝝈)

𝝈̇

(1 + 𝝈𝑇𝝈)2

𝝉 =  𝝎𝑗 × 𝐼 𝝎𝑗 +
4

(1 + 𝝈𝑇𝝈 )2
  𝐵𝑇(𝝈) [𝝈̈ −

1

4
𝐵̇(𝝈)𝝎𝑗]

 

 

To complete the IVP, initial conditions shall be 

expressed as the initial values for both the MRP and its 

first-order derivative. This can always be accomplished 

by mapping the physical angular velocity 𝝎0 to 𝝈̇0 

through the attitude kinematics field. 

 

In fact, the attitude problem will be studied with respect 

to the LVLH frame, which introduces inertial terms into 

(5), corresponding to restricting the evolution of 𝝎 to be 

that of the body frame with respect to the LVLH (both 

being not inertial). These are not contemplated in 

SBOPT but hold in the high-fidelity simulations for the 

MIL campaign. 

 

We are now able to pose the berthing OCP problem as 

the following coupled, geometrical optimization  

 

min 𝐽 = ∫ 𝐮T𝐮
𝑡max

𝑡0

+ 𝝉T𝝉  d𝑡,  

           𝑠. 𝑡.     [𝐮𝑻, 𝝉𝑻]𝑻 = 𝒇(𝑛, 𝑒, 𝜃, ℎ, 𝐼, 𝐬),        
𝐬(𝑡0) = 𝐬0,  
||𝝆̇||∞ ≤ 𝑣max, 

    ||𝝎||∞ ≤ 𝜔max,             (6) 

||𝐮||2 ≤ umax, 
||𝛕||∞ ≤ umax, 

 ||𝒈(δ𝝈𝑡)𝝎𝒄(𝑡max) − 𝝎𝑡(𝑡max)||∞ ≤ 𝜖𝜔, 
𝐴𝒈(δ𝝈𝑡)𝝆 ≤ 𝑐,  

−𝒈(δ𝝈𝑡)𝒅𝑐
𝑇𝒅𝑡 ≥ cos 𝜃𝑎, 

𝝆𝑇𝝆 ≤ 𝐿𝑔. 

 

The dynamics constraints 𝒇, following they are flat, are 

interpreted as the way to compute the control vectors 

[𝒖𝑻, 𝝉𝑻]𝑻. Here 𝐬 is the flat output of the system. The 

relative attitude between the chaser and the target is 

characterized by the relative MRP δ𝝈𝑡. 
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The problem constraints correspond to saturation of both 

the angular and linear velocity of the chaser, as well as 

bounds on its control authority. Moreover, a LOS 

corridor constraint (through the convex inequality 

{𝐴, 𝑐}) is enforced, together with a requirement of 

alignment between the graspling fixtures of the chaser 

and target, 𝒅𝑐 and 𝒅𝑡 (realised in their respective body 

frames). Note that the boundary conditions at the final 

epoch are open (while fixed at 𝑡0), but restricted through 

the above LOS and alignment constraints, together with 

the need of ending the manoeuvre within a sphere of 

radius 𝐿𝑔 centred at the target (corresponding to the 

maximum reachability of the robotic arm to be 

deployed). Finally, at the end epoch, the angular velocity 

of both vehicles shall match up to a tolerance of 𝜖𝜔. Note 

that the attitude problem requires of appropriate 

transformations to be expressed as a function of the 

target’s true anomaly, as required by the TH model.  

Both open and close-loop solutions for the above non-

convex, yet flat Problem via SBOPT will be presented 

and analysed in Section V.  

 

Once the rendezvous is achieved, the deployment of the 

robotic arm and the pre-capture phase start. This process 

is characterized by the interaction between the chaser's 

robotic end-effector with the RSO.  

 

Motion planning for the end-effector is mainly 

conceived in two manners: either the chaser is assumed 

to be a free-flying body or free-floating [7]. In this 

communication, the latter approach is assumed, and the 

regulation of the centre-of-mass state is tasked to a 

secondary GNC loop. In the free-flying scenario, motion 

planning is fundamentally an inverse kinematics 

problem, see [7,85] and the references therein. In 

particular, the end-effector position and attitude shall be 

regulated to a given reference state, which describes that 

of the berthing device or port on the target spacecraft. 

Ultimately in this case, the following simplified problem 

holds 

 

min 𝐽 = ∫ 𝒒̇𝑇𝒒̇
𝑡max

𝑡0

 d𝑡,  

            𝑠. 𝑡.     𝒒̇ = 𝒖,        
𝒒(𝑡0) = 𝒒

0,  
𝐽(𝒒) 𝒒̇ = [𝒓̇𝑒 , 𝝎 ], 

𝒆𝑓(𝑡𝑓 , 𝒒) − 𝒔ref =  𝟎,  

||𝝎||∞ ≤ 𝜔max, 
||𝒓̇𝑒||∞ ≤ 𝑣max, 
||𝒒̇||∞ ≤ 𝑞̇max. 

 

The end-effector state vector is comprised by its 

internal, operational degrees of freedom (as a multi-

body system) 𝒒. For robotic arms, these are usually 

conformed by either linear displacements (in telescopic 

joints) or 1 DoF angles (for revolute joints) [85]. The 

dynamics in play are dictated by the robot Jacobian 𝐽, 

which maps the internal velocities 𝒒̇ with those in the 

task space (linear 𝒓̇𝑒 and angular 𝝎 velocity, up to some 

transformation). Such linear map may be constructed 

systematically by means of the robot homogeneous 

transformation matrices 𝑅(𝒒) ∈ SE(3) provided, for 

example, by the Denavit–Hartenberg (DH) parameters 

[85]. The capture shall be accomplished in a fixed time 

𝑡max. The initial state of the end-effector is given by the 

final conditions on the close-range rendezvous (pre-

deployment state), while the final boundary conditions 

are imposed by the target docking port 𝐬ref at the capture 

epoch through a nonlinear transformation 𝒆𝑓(𝒒) −

𝐬ref = 𝟎  (determined by the very same DH parameters). 

Both the end-effector linear 𝒓̇𝑒 and angular velocity 𝝎𝑒  

are mechanically and operatively upper-bounded, and so 

they are the operational internal velocities 𝒒̇. Note that 

this formulation is independent of the robot itself, as it 

proposes a purely kinematic solution. 

 

IV. NMPC-RTI FOR REAL TIME OPTIMAL 

CONTROL 

The real-time implementation of SBOPT as close-loop 

optimal control technique requires of an additional 

architecture in which to embed such guidance engine. In 

practice, both general measurement noise, unmodelled 

disturbances and both implementation errors and 

numerical considerations come into play in demising of 

the open-loop solutions provided by SBOPT. This is 

especially true for these missions when compared to 

traditional cooperative rendezvous and proximity 

operations, as the target's physical parameters may not 

be known accurately, and online identification is usually 

needed [7]. In this work, we use Nonlinear Model 

Predictive Control (NMPC) as a method to handle 

uncertainties in real mission cases. 

 

MPC can be understood as a practical application of the 

more general Real Time Optimal Control (RTOC). In a 

broader sense, RTOC is comprised with the 

'instantaneous' availability of optimal control laws      

[48, 86]. RTOC has only become computationally 

feasible for most applications after the first decade of the 

21st century [4,48]. As for MPC, when deployed for 

processes of faster dynamics (greater Lipschitz constant 

[86]), usually only linear approximations or QP 

relaxations of the original optimal control problem are 

leveraged, to maintain the computational burden low. 

For nonlinear MPC (NMPC), these approaches 

generalizes into some iterative optimization technique, 

such as SQP or SCP. Still, when dealing with embedded 

applications, these techniques are not usually compliant 

with strict computational delay requirements. For such 

purpose, this communication advocates for a modified 

version of the standard Real-Time Iteration (RTI) 

scheme, which is described in detail in [87]. It shall be 

noticed that orbital motion is particularly well-suited for 

MPC deployments [34], as the typical time scales may 
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be considered to be slow. On the other hand, this is not 

applicable to attitude slews and motion planning, which 

shows considerably smaller characteristic times. As a 

result, a fast NMPC is needed when addressing the 

close-range rendezvous and the pre-capture phase, in 

which the end-effector is deployed. 

 

Basically, in NMPC-RTI, a surrogate formulation of the 

problem at hands is solved through standard techniques 

(such as QP), but only for a single iterative pass 

(probably without convergence), with the latest 

information on the state of the system. The optimization 

process is warm-started with the shifted solution for the 

previous instant; in this way, only the initial iteration of 

the scheme requires of completing the optimization 

process. When compared to traditional RTI cores, our 

SBOPT algorithm replaces the standard QP solver as the 

inner guidance planner. The SBOPT collocation 

scheme, as described in Section III, employs a 

differential (not integral) form of the dynamics, and 

assumes differential flatness for the system, so that the 

configuration variables of the problem are the only 

needed solution (avoiding the need to store the control 

plan solution). Moreover, these are assumed to be 

polynomial, and initial guesses are naturally generated 

to comply with boundary conditions within the method. 

Most importantly, because it is lies on PS theory, it 

shows pseudospectral convergence [88], requiring of a 

small number of collocation points and polynomial 

degree to converge (exponentially under mild 

assumptions). However, this is usually against the 

Lipschitz constant of the system, and thus, against 

feasibility of the solution: less collocation points leads 

to aliasing between collocation nodes. In any case, even 

if the optimization is inexact (as in classical RTI), when 

compared to the standard architecture, our scheme is in 

this way more compact, requires of less memory and 

computational workload. All in all, it is particularly 

suited for embedded application, once an NLP solver is 

available. 

 

In our NMPC scheme, OCP are iteratively solved and 

refreshed with new information of the system at a 

frequency of 𝑇𝑠. No assumptions are made regarding our 

control or prediction horizons, which may be selected to 

cover the full mission time span (𝑡max). In general, we 

use a classical receding scheme. The optimization 

outputs a (general) rational polynomial (through 

applying the optimal configuration evolution 𝐬 to the 

inverse dynamics equation), to be used as an open-loop 

controller as a function of the independent variable of 

the problem. This is implemented via functional 

decomposition on Legendre polynomials, leading to the 

map 𝑡 ↦ 𝐮(𝑡). 
 

During the synthesis of this new controller, the previous 

solution is used to steer the system until the new ones is 

available. The sampling time is thus the sum of the 𝑇𝑠 

period and the synthesis computational cost Δ𝑡. 
Moreover, in this way, a feasible solution is always 

available. 

 

As a relevant remark, Problem (6) has its final boundary 

conditions open. This has severe implications on the 

feasibility of the NMPC scheme. In order to handle it, 

we include a Mayer term in the cost function penalizing 

deviations from previously computed boundary 

conditions (which are used as warm start), as if they 

were an equilibrium trajectory of the system [43]. 

 

V. MISSION APPLICATIONS 

The following Section is dedicated to present practical 

examples of the above NMPC architecture. In particular, 

an integral berthing mission is design, from the 

rendezvous with the target to the pre-capture phase, 

finishing with the deployment and contact of a robotic 

manipulator with the target. 

 

The OCP presented in Section III were intended to be 

computationally tractable. In practice, simulations 

consider unmodelled effects and disturbances to test the 

robustness of the approach. These include the effect of 

the 𝐽2 acceleration in the orbital motion, as well as the 

oscularing LVLH frame of the target for the translational 

problem; in the attitude problem case, gravity gradient 

disturbances is also included into the analysis, as well as 

the appropriate inertial terms in the Euler-Poinsot 

system, avoided in the GNC model. Unmodelled 

uncertainty is introduced into the pre-capture phase via 

a spring-damper model for the joints, together with 

sinusoidal control errors. In all cases, initial conditions 

are corrupted with Gaussian noise without any 

navigation solution to filter it.  

 

Simulations were completed in Matlab 2021b using an 

11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80 GHz 

with 15.7 GB of RAM. 

 

The mission starts with an uncoupled long-range 

rendezvous, in which the following reference state for 

the target shall be achieved- 

 

𝝆(𝑡𝑓) = 0, 𝝆̇(𝑡𝑓) = 0, 𝝈(𝑡𝑓) = [
1

3
,
1

3
,
1

3
] , 𝝎(𝑡𝑓) = 0. 

 

The control authority is bounded by 0.005 m/s2 and 

0.005 Nm for the chaser. The linear velocity is 

constrained to be less than 5 m/s and for angular case, 1 

rad/s. The chaser inertia is given by 𝐼 = [1,2,3] in 

arbitrarily selected mass units. The initial conditions for 

the rendezvous are taken from [47], corresponding to a 

range of nearly 500 meters and rest attitude conditions. 

 

The mission is to be accomplished in 1 hour, with a 

control sampling time of 10 seconds (thanks to the 

controller synthesis via SBOPT, when compared to 
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traditional 1s values [43]). The following figures 

demonstrate the rendezvous trajectory, as well as the 

associated control effort. The numerical MPC setup is 

given by 𝑁 = 7 and 𝑚 = 30, using Legendre 

polynomials and the LGL quadrature. In this case, both 

the orbital and attitude problems can be solved 

individually, as the feasible region of the problem 

uncouples the flat outputs of the system. 

 

 
Figure 7. MPC Attitude state trajectory for the long-range 

rendezvous. 

 
Figure 8. Relative position trajectory for the long-range 

rendezvous. 

Note that, as the final time of flight approaches, the 

solver is not able to find reasonable control laws to 

achieve the last steps in the rendezvous, leading to 

unfeasible solutions for the control vector, see the next 

figure.  

 

 
Figure 9. Control acceleration during the long-range 

rendezvous. 

The coupled, close-range rendezvous follows this initial 

phase for the next 1800s. The remaining constraining 

parameters, as well as the target initial conditions, are 

given by [43], while the rest of the numerical setup is 

kept the same. 

 

While the open-loop trajectory is satisfactorily 

optimized, being both feasible and at least being a local 

minimum, the computational load of the problem makes 

the deployment of the algorithm infeasible for fast 

rotating targets. The computational time taken by the 

solver, in the order of 10s, clearly exceeds the one 

needed by the intrinsic dynamics of the problem. Thus, 

the close-loop berthing problem remains an open line of 

research; in particular, the optimization of either the 

problem or the solver for this type of missions (note that 

the technique has been demonstrated previously for 

cooperative rendezvous, for which the above examples 

provide mild approximations).  

 

Considering the rendezvous accomplished, a generic 

pre-capture phase is considered, characterized by the 

following reference end-effector state to be acquired by 

the robotic arm (linear position and attitude, 

parametrized by MRP). For simplicity, we take these 

refence states to be constant, although general reference 

trajectory tracking may be instead used. 

 

𝒓ref = [0.2, −0.05, 0.01 ]
𝑇   m, 𝒗ref = 𝟎

m

s
, 

 

𝝈ref = [0.33, 0.01, 0.33]𝑇 ,  𝝎ref = 5 𝒌
rad

s
. 

 

The robotic arm used follows the physical design of 

UR3e [89], from which its DH parameters are available. 

The capture shall be achieved in a total of 300 s, with a 

refresh rate of 𝑇𝑠 = 2 s. Both the prediction and control 

horizons are set as 300 s. The problem is constrained via 

𝜔max = 20
deg

s
, 𝑣max = 2

m

s
 and 𝒒̇max = 180

deg

s
. 
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The solver is set with a maximum polynomial order of 

𝑁 = 5 and 𝑚 = 20 LGL quadrature points, while 

Legendre polynomials are used. The computational cost 

of each optimization can be analysed in the following 

figure.  

 

 
Figure 10. Computational time versus NMPC iteration for 

the manipulator problem. 

Once the initial optimization is completed, the 

computational time is safely under the 𝑇𝑠 frequency, 

remaining steadily all throughout the operation of the 

robot. 

 

Gaussian noise is added to each of the joint angle 

measurements at each iteration, with diagonal 

covariance matrix characterized by the following 

standard deviation 𝝈𝑞
2 = 0.01 deg2 . 

 

The following Figures summarize the results obtained, 

showing that the end-effector achieves the reference 

state at the final epoch. No constraint violation is found 

across the simulation. 

 

 
Figure 11. NMPC trajectory in the joints space. 

 
Figure 12. NMPC end-effector position trajectory. 

 

 
Figure 13. NMPC attitude (MRP) end-effector trajectory. 

 

VI. HARDWARE IN THE LOOP CAMPAIGN 

Final validation and verification of the proposed 

guidance and control architecture is achieved through a 

Hardware in the Loop campaign (HIL) at the University 

Rey Juan Carlos SPOL laboratory.  

 

Verification and validation simulations were carried out 

for the very two different phases in which the berthing 

mission has been divided. Figs. 14 to 16 graphically 

compiles the tracking performance of the algorithm, 

together with the end-effector position and attitude, as 

commanded by the NMPC-RTI scheme, for a pre-

capture phase example.  
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Figure 14. Example of HIL pre-capture phase onboard a 6 

DoF robotic arm (end-effector space). 

 
Figure 15. Example of HIL pre-capture phase onboard a 6 

DoF robotic arm (joint space). 

 

 
Figure 16. Robotic arm and end-effector during the pre-

capture phase. 

VII. CONCLUSIONS 

The optimal design of general berthing missions, from 

start (long-range rendezvous) to end (pre-capture 

phase), is studied in this communication through the lens 

of computational Real Time Optimal Control. Building 

on previous results, this paper extends open-loop 

trajectory optimization to an NMPC-RTI architecture 

capable of close-loop, online guidance and control. 

 

First, we explore the benefits and flaws of a novel 

generic optimal control solver, both from a theoretical 

and practical perspective. Special attention is risen 

towards its online computational capabilities. Once its 

capabilities are shown within classical OCP examples, 

the algorithm is systematically applied as the guidance 

engine in charge of designing the optimal berthing 

missions of interest. Moreover, to close the loop and 

proposed a complete guidance and control architecture, 

this novel optimization engine is combined with a 

NPMC scheme. The solver is shown to have great 

synergies with such design, especially interesting for 

embedded GNC applications onboard real hardware. 

Both Model and Hardware in the Loop campaigns are 

introduced to analyse the proposed architecture. 

 

Despite the results obtained, several lines of research 

remain open and may be discussed. Primarily, these root 

in the theoretical foundations upon which the solver is 

constructed. As examples, exact convergence proofs are 

still to be developed, and the global optimality of 

solutions cannot be verified at the current stage; 

feasibility and stability of the NMPC loop cannot be also 

guaranteed. In this sense, the hybridization of the solver 

design with classical optimal control techniques (such as 

PMP) appears promising. By the time of writing this 

communication, the authors aim the solver foundations 

to root in the newborn field of Hamiltonian 

Programming (in contrast to traditional NLP), to 

formally exploit the particular mathematical structure of 

Optimal Control Problem for practical applications. 
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