
Closing the gap: Optimizing Guidance and Control Networks through Neural ODEs

Sebastien Origer1 and Dario Izzo1

1Advanced Concepts Team, European Space Research and Technology Centre (ESTEC),
Noordwijk, The Netherlands.

Abstract - We improve the accuracy of Guid-
ance & Control Networks (G&CNETs), trained
to represent the optimal control policies of a time-
optimal transfer and a mass-optimal landing, re-
spectively. In both cases we leverage the dy-
namics of the spacecraft, described by Ordinary
Differential Equations which incorporate a neural
network on their right-hand side (Neural ODEs).
Since the neural dynamics is differentiable, the
ODEs sensitivities to the network parameters
can be computed using the variational equations,
thereby allowing to update the G&CNET param-
eters based on the observed dynamics. We start
with a straightforward regression task, training
the G&CNETs on datasets of optimal trajecto-
ries using behavioural cloning. These networks
are then refined using the Neural ODE sensitiv-
ities by minimizing the error between the final
states and the target states. We demonstrate
that for the orbital transfer, the final error to
the target can be reduced by 99% on a single tra-
jectory and by 70% on a batch of 500 trajectories.
For the landing problem the reduction in error is
around 98 − 99% (position) and 40 − 44% (veloc-
ity). This step significantly enhances the accu-
racy of G&CNETs, which instills greater confi-
dence in their reliability for operational use. We
also compare our results to the popular Dataset
Aggregation method (DaGGER) and allude to
the strengths and weaknesses of both methods.

I. Introduction

Guidance and Control Networks (G&CNETs) represent
an emerging technique that holds promise for on-board
autonomy and the seamless integration of optimality
principles into spacecraft and space agents [1, 2, 3, 4,
5, 6, 7]. They serve as an alternative to model predictive
control schemes (MPC) [8], capitalizing on the numerous
improvements and advances arising from neural network-
based research. Both Reinforcement Learning (RL) and
Behavioural Cloning (BC) have already demonstrated
successful implementations in training G&CNETs for

both space and drone-related tasks [9]. However no
matter which learning paradigm one chooses, residual
approximation errors lead to orbit injection errors that
must be corrected at the cost of extra on-board propel-
lant. Therefore, after training a G&CNET, it is im-
portant to further reduce the final mismatch between
the targeted final orbit injection conditions and the ones
achieved by the on-board neural guidance and control.
This paper considers neural models to represent the op-
timal control policy for a time-optimal interplanetary
transfer targeting a generic low-thrust Earth rendezvous
starting from the asteroid belt [7] and a mass-optimal
landing on the asteroid Psyche. We chose these two opti-
mal control problems such that our study covers different
timescales and problems of varying difficulty. The trans-
fer is a complex low-thrust problem which lasts years. In
contrast, the landing problem requires the G&CNET to
learn a discontinuous function representing a bang-bang
control profile and lasts only minutes. In our work we use
the term Neural ODEs, popularized in [10], to describe
Ordinary Differential Equations which have an artificial
neural network on their right-hand side. We exploit the
fact that, for fixed initial conditions, the solution to such
a system depends only on the network parameters. We
thus proceed to study the use of Ordinary Differential
Equations (ODEs) sensitivities to the network parame-
ters. Since our Neural ODEs are differentiable, the vari-
ational equations, or equivalently Pontryagin’s adjoint
method, enable us to compute efficiently thousands of
ODE sensitivities (state transition matrix). These par-
tial derivatives are used to inform a local search into the
highly dimensional network parameters space, aligning
with the recent trend of Neural ODEs. We use a simple
gradient descent algorithm to update the G&CNET pa-
rameters such as to minimize the mismatch between the
final states and the target states.

II. Methods

A. Optimal control problems

Time-optimal interplanetary transfer

We consider the same time optimal, constant accelera-
tion rendezvous with a body in a perfectly circular orbit



of radius R as in [7]. Let F =
[̂
i, ĵ, k̂

]
be a rotating frame

with angular velocity Ω =
√

µ
R3 k̂. In this way, the target

body position Rî remains stationary in F . The dynamics
is described by the following ordinary differential equa-
tions: 

ẋ = vx
ẏ = vy
ż = vz
v̇x = − µ

r3x+ 2Ωvy +Ω2x+ Γix
v̇y = − µ

r3 y − 2Ωvx +Ω2y + Γiy
v̇z = − µ

r3 z + Γiz

(1)

The state vector xT (subscript 2T to indicate the
”transfer” optimal control problem) contains the posi-
tion r = [x, y, z] and velocity v = [vx, vy, vz] which
are both defined in the rotating frame F . Note that
r =

√
x2 + y2 + z2 and µ is the gravitational constant

of the Sun. The system is controlled by the thrust di-
rection described by the unit vector t̂ = [ix, iy, iz], gen-
erating an acceleration of magnitude Γ. The optimal
control problem boils down to finding the optimal time-
of-flight tf and a (piece-wise continuous) function for
t̂(t), where t ∈ [t0, tf ], such that, under the dynamics
described by Eq.1, the state is steered from any ini-
tial state r0, v0 to the desired target state rt = R̂i,
vt = 0. We are thus minimizing the following cost func-
tion: J = tf − t0 =

∫ tf
t0

dt [7]. Let’s solve this problem

using Pontryagin’s Maximum Principle [11], taking into
account some useful tips from [12]. Let H be the Hamil-
tonian:

H(r,v,λr,λv, t̂) = λr · v+

λv ·
(
− µ

r3
r− 2ω × v − ω × ω × r+ Γt̂

)
+ λJ

(2)

where λr and λv are the co-sates functions and λJ is
an additional constant coefficient used to multiple our
cost function J = λJ(tf − t0). This additional constant
increases numerical stability and offers an additional de-
gree of freedom when performing the Backward Genera-
tion of Optimal Examples (BGOE) in Sec.II.B [7]. For
a trajectory to be optimal the classical necessary condi-
tion tells us that thrust direction t̂∗ needs to minimize
the Hamiltonian, hence:

t̂∗ = − λv

|λv|
(3)

The augmented system of equations is then obtained by
taking the derivatives of the Hamiltonian with respect to

ẋT = ∂H
∂λ and λ̇ = − ∂H

∂xT
:

ṙ = v

v̇ = − µ
r3 r− 2ω × v − ω × ω × r− Γ λv

|λv|
λ̇r = µ

(
λv

r3 − 3(λv · r) r
r5

)
− ω × ω × λv

λ̇v = −λr + 2ω × λv

(4)

Since we consider this to be a free time problem, a trajec-
tory also need to fulfill the H|t=tf = 0 condition in order
to be optimal. Let’s find one solution, which we’ll refer to
as the ”nominal trajectory” for this problem in the rest
of the paper. We introduce a shooting function to solve
the Two Points Boundary Value Problem (TPBVP):

ϕ(λr0 ,λv0 , λJ , tf ) = {rf − rt,vf − vt,Hf , ||λ|| − 1}
(5)

where λr0 ,λv0
are the initial co-states values and tf is

the time-of-flight. The final conditions rf , vf , and Hf

are computed by propagating Eq.4 from the initial con-
ditions until tf . We find a root of ϕ using the sequential
quadratic programming solver SNOPT [13]. The con-
straint on the magnitude of the initial co-states ||λ|| − 1
is not strictly necessary, we use it here as it improves
numerical stability. As described in [7], the existence of
multiple roots for Eq.5 corresponds to the presence of
local minima. While not rigorous, we circumvent this
problem by solving this problem using different initial
guesses for the numerical solver, thereby increasing our
confidence that our solution corresponds to the optimal
strategy. The nominal trajectory for this optimal control
problem has a time-of-flight of t∗f = 4.62 years, see Fig. 1.
All values related to this problem are listed in App.A.

Mass-optimal landing on asteroid
We also consider a mass-optimal landing on the aster-

oid Psyche. Let R =
[̂
i, ĵ, k̂

]
be a rotating frame with

angular velocity ωk̂ such that the asteroid remains sta-
tionary in R. The dynamics is described by the following
ordinary differential equations:

ẋ = vx
ẏ = vy
ż = vz
v̇x = − µ

r3x+ 2ωvy + ω2x+ u c1
m ix

v̇y = − µ
r3 y − 2ωvx + ω2y + u c1

m iy
v̇z = − µ

r3 z + u c1
m iz

ṁ = −u c1
Ispg0

(6)

The state vector xL (subscript 2L to indicate the ”land-
ing” optimal control problem) contains the position r =
[x, y, z], velocity v = [vx, vy, vz] and mass m. The po-
sition r and velocity v are both defined in the rotating
frame R. Note that r =

√
x2 + y2 + z2. The system is
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Fig. 1: Interplanetary transfer shown in rotating frame F . Axis unit is AU.

controlled by the thrust direction described by the unit
vector t̂ = [ix, iy, iz] and the throttle u ∈ [0, 1]. This is
a free-time optimal control problem for which we need
to find the controls u(t) and t̂(t), where t ∈ [t0, tf ], such
that, under the dynamics described by Eq.6, the state is
steered from any initial state r0, v0, m0 to the desired
target state rt, vt and final mass mf (which is left free).
To avoid having to immediately solve the mass-optimal
control problem we follow the steps laid out in [2, 14]
and introduce the following cost function to minimize:

J(u(t), tf ) =

∫ tf

0

{u− ϵ log [u(1− u)]} dt (7)

where the continuation parameter ϵ and the logarithmic
barrier allow us to smooth out the problem and keep u ∈
[0, 1] in the desired bounds. The mass-optimal problem
corresponds to limϵ→0 J(u(t), tf ) = (m0 −mf ) · c1

Ispg0

(substitute Eq.6 in Eq.7) and is very difficult to solve
without a good initial guess. We bypass this issue by
first solving the problem with ϵ = 1 and use this solution
as an initial guess for a slightly smaller ϵ, repeating this
cycle until we reach ϵ < 10−6. Let’s find the necessary
conditions for optimality using Pontryagin’s Maximum
Principle [11]. We define the Hamiltonian:

H(r,v,m,λr,λv, λm, u, t̂) = λr · v+

λv ·
(
− µ

r3
r− 2ω × v − ω × ω × r+ u

c1
m
t̂

)
+λm

(
− u

c1
Ispg0

)
+ u− ϵ · log [u(1− u)]

(8)

where λr, λv and λm are the co-sates functions. Note
that we drop the dependence on time for brevity. The
optimal thrust direction t̂∗ and u∗ both need to minimize
the Hamiltonian, hence:

t̂∗ = − λv

|λv|
, u∗ =

2ϵ

2ϵ+ SF +
√
4ϵ2 + SF 2

(9)

where SF is a switching function whose zero-crossings
correspond to switches between minimal (u = 0) and
maximal throttle (u = 1):

SF = λv
c1
m
t̂∗ − λm ·

c1
Ispg0

+ 1 (10)

The augmented system of equations is again obtained by
taking the derivatives of the Hamiltonian with respect to
ẋL = ∂H

∂λ and λ̇ = − ∂H
∂xL

:

ṙ = v

v̇ = − µ
r3 r− 2ω × v − ω × ω × r− u∗ c1

m
λv

|λv|
ṁ = −u∗ c1

Ispg0

λ̇r = µ
(
λv

r3 − 3(λv · r) r
r5

)
− ω × ω × λv

λ̇v = −λr + 2ω × λv

λ̇m = − c1u
∗

m2 λv · λv

|λv|

(11)

Since this is free time problem, we need to add the con-
dition H|t=tf = 0 and to leave the final mass mf free
we need the transversality condition λm|t=tf = 0. We
introduce a shooting function to solve the TPBVP:

ϕ(λr0 ,λv0 , λm0 , tf ) =
{
rf − rt,vf − vt,Hf , λmf

}
(12)

where λr0 ,λv0 , λm0 are the initial co-states values and tf
is the time-of-flight. The final conditions rf , vf , Hf and
λmf

are computed by propagating Eq.4 from the initial
conditions until tf . As explained for the time-optimal
transfer, we solve this TPBVP with multiple restarts
(different initial guesses for the root solver) such as to
increase our confidence that our solution is the optimal
landing strategy. The nominal trajectory for this opti-
mal control problem has a time-of-flight of t∗f = 38 min,
see Fig.2. All values related to this problem are listed in
App.A.

B. Behavioural cloning
We train two separate neural models to represent to
optimal policies for each problem as a function of the
spacecraft state x. The resulting neural state feedback



100 0 100

100

0

100

200

i

j

100 0 100

80

0

80

i

k

100 0 100
80

0

80

j

k

Fig. 2: Landing on Psyche shown in rotating frame R. Axis unit is km.
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Fig. 3: G&CNET architectures: transfer (top) and land-
ing (bottom). Adapted from [2].

is called a G&CNET: Ntransfer(xT ) = t̂∗ for the trans-
fer and Nlanding(xL) = [u∗, t̂∗] for the landing. These
simple feedforward neural networks can then be used in
Eq.1 and Eq.6 respectively to simulate the spacecraft dy-
namics. The network architectures are shown in Fig.3,
for both problems we use 3 hidden layers, each with 128
neurons. We use softplus activation functions for the hid-
den layers, allowing us to obtain a continuous and differ-
entiable representation of the optimal controls. To avoid
saturation issues during training we use linear output ac-
tivation functions, except for the throttle in the landing
problem where we use a sigmoid activation function to
keep u bounded between [0, 1].

Training datasets
We generate training datasets for both optimal control
problems by leveraging a data augmentation technique
called the ”Backward Generation of Optimal Examples”
(BGOE) [2, 7]. This technique exploits the fact that any
solution to the augmented systems of equations (Eq.4 for
the transfer and Eq.11 for the landing problem) which
satisfies the necessary conditions for optimality is a local
optimal trajectory which can be used to learn from. The
basic premise of the BGOE is that once a nominal solu-
tion is found, one can perturb the final co-states of the
augmented system by some carefully crafted vector ∆:

λ+
f = λf + λf ·∆ (13)

where ∆ needs to be chosen such that the necessary con-
ditions for optimality are still satisfied. In the case of the
transfer, each element in ∆ is a number uniformly sam-
pled in U(−δ, δ) except for λJ which we use to satisfy the
free time condition Hf = 0. For the landing problem we
also sample each element in U(−δ, δ) except for λmf

= 0
which we leave unchanged (free final mass transversality
condition) and we use the final mass mf to satisfy the
free time condition Hf = 0 using a root solver and the
final mass mf of the nominal trajectory as initial guess.
λ+
f can then be used to back-propagate the augmented

system of equation in time. For small perturbations δ,
this will result in a new optimal trajectory with the same
final states as the nominal trajectory (except for the fi-
nal mass mf which is left free in the landing problem)
and different initial conditions. While we cannot directly
chose the initial conditions, the BGOE allows us to gen-
erate hundred thousand optimal trajectories at a fraction
of the computational cost one would incur if one had to
solve each TPBVP individually [2, 7].

For the transfer we use 400,000 optimal trajectories,
each of which is sampled in 100 points equally distance
in time, resulting in 40,000,000 optimal state-action pairs
to learn from. We show a portion of this dataset in Fig.4.
In our experiments, we found that decreasing the corre-
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Fig. 4: Bundle of 400 optimal trajectories. Co-state
perturbation δ: 1h (black), 8% (gold). Interplanetary
transfer shown in rotating frame F . Axis unit is AU.
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Fig. 5: Bundle of 2,000 optimal trajectories. Co-state
perturbation δ: 1h (black), 8h (gold), 2% (green).
Landing on Psyche shown in rotating frame R. Axis
unit is km.

lation with the nominal trajectory is crucial to success-
fully train the G&CNET. We do this by randomly sam-
pling the back-propagation time a(1+c)t∗fnom

where t∗fnom

is the optimal time-of-flight of the nominal trajectory,
a = 1 and c ∈ [0, 0.07]. We create two bundles of trajec-
tories, one with a small perturbation size δ = 1h, hence
it closely follows the nominal trajectory, and one with a
much larger perturbation size δ = 8%. As explained in
[7], while these trajectories are far away from the nom-
inal trajectory, they were crucial for successful training.
We also generate a separate dataset of 1,000 trajectories
with δ = 1h which will be used to in Subsec.III.

For the landing we use 300,000 optimal trajectories,
each of which is sampled in 100 points equally distance
in time, resulting in 30,000,000 optimal state-action pairs
to learn from, see a portion of the dataset in Fig.5. We
use c ∈ [0, 0.05] and create three bundles of different per-
turbation size and only back-propagated until a fraction
of t∗fnom

: δ = 1h (a = 1), δ = 8h (a = 0.8) and δ = 2%
(a = 0.5). We also generate a separate dataset of 1,000
trajectories with δ = 0.5h (a = 1) for Subsec.III.

Central to our work is the heyoka Python library [15],
which we use for all numerical propagation. This Taylor
based method allows us to quickly integrate our equa-
tions with a numerical tolerance set to machine level, i.e.
10−16. In addition, as we will see in Sec.II.C, the library
also allows for a seamless integration of feed forward neu-
ral networks in our ODEs and automatic differentiation.

Training procedure
The generated datasets are split up into 80% training
data and 20% validation data. We train the G&CNET
for the transfer problem over p = 500 epochs using an ini-
tial learning rate of α = 5·10−5 with the Adam optimizer
[16] and no weight decay. We also use a scheduler which
decreases the learning rate by a factor of 90% whenever
the loss does not improve over p = 10 epochs when evalu-
ated on the validation dataset. The loss function is com-
puted using the cosine similarity of the estimated thrust
direction t̂nn and the ground truth t̂∗, thereby allowing
the network to solely focus on the direction and ignoring
the norm:

cosine similarity
(
t̂nn, t̂

∗) = t̂∗ · t̂nn
|̂t∗||̂tnn|

(14)

Ltransfer

(
t̂nn, t̂

∗) = 1−cosine similarity
(
t̂nn, t̂

∗) (15)

We report the loss over the epochs during training and
the error in thrust direction (represented by the cosine
similarity) over one trajectory in the validation dataset
in Fig.6. Notice how the final part of the transfer (last
0.5 year) is usually where the largest errors occur, likely
due to a lack of training data in the region of space cor-
responding to the final part of the transfer.

For the landing problem we use exactly the same train-
ing setup except that the total amount of epochs is now
p = 400 and the loss function contains an additional term
to penalize the Mean Squared Error (MSE) between the
estimated throttle unn and the ground truth u∗:

Llanding

(
unn, u

∗, t̂nn, t̂
∗) = MSE(unn, u

∗) + 1

−cosine similarity
(
t̂nn, t̂

∗) (16)

Fig.6 shows the loss during training, the estimated throt-
tle versus the ground truth and the cosine similarity
between the estimated thrust direction and the ground
truth over one trajectory in the validation dataset.

C. Neural ODEs
We use the term Neural Ordinary Differential Equa-
tions (Neural ODEs), as popularized in [17], to denote
Ordinary Differential Equations which contain an arti-
ficial neural network on their right hand side. To il-
lustrate how these can be used to improve the perfor-
mance of G&CNETs let us a consider the generic sys-
tem ẋ = f(x,Nθ(x)), whose solution x(t;x0,θ) depends
explicitly on the initial conditions x0 and the network
parameters θ. Contrary to the behavioural cloning ap-
proach, which aims to minimize the approximation error
of the optimal control (see loss functions in Eq.15 and
Eq.16), imagine that we could update our neural network
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Fig. 6: Loss during training and cosine similarity between the estimated thrust direction and the ground truth over
one optimal trajectory in the validation dataset. Transfer (left) and landing (right). For the landing we also show
the estimated throttle versus ground truth.

Algorithm 1 Neural ODE fix algorithm.

1: Generate training dataset DBC ▷ Optimal trajectories [x∗,u∗, t∗]
2: Train G&CNET Nθ on DBC ▷ Behavioural Cloning
3: Generate training dataset DT ▷ Optimal trajectories [x∗,u∗, t∗]
4: Generate validation dataset DV ▷ Optimal trajectories [x∗,u∗, t∗]
5: for i = 1 to N do
6: Propagate dynamics ẋ and ODE sensitivities d

dt

(
∂x
∂θ

)
from x∗

0,i until t
∗
i in DT

7: Compute gradients: ∂LN

∂θ = ∂x
∂θ

∂LN

∂x
8: Find optimal learning rate α ▷ Line search or Adam Optimizer
9: Perform gradient descent step: θi+1 = θi − α · ∂LN

∂θ

10: Return Best Nθ on validation dataset DV

parameters θ such as to decrease some loss L(x(t;x0,θ)),
which instead depends on the current solution of the sys-
tem. Let us consider a new loss function LN which aims
to directly minimize the error between the target state
xtarget and the current solution of our system when eval-
uated from some initial conditions x0 until the corre-
sponding optimal time-of-flight t = t∗:

LN = (xtarget − x(t∗))2 (17)

The gradients of the loss with respect to the network
parameters can be rewritten as:

∂LN

∂θ
=

∂x

∂θ

∂LN

∂x
(18)

One can easily find ∂L
∂x analytically, hence we only need

to compute the ODE sensitivities ∂x
∂θ via the variational

equations (or the Pontryagin’s adjoint method):

d

dt

(∂x
∂θ

)
= ∇xẋ ·

∂x

∂θ
+

∂ẋ

∂θ
(19)

The heyoka library [15] allows to compute these deriva-
tives very easily, see tutorial1. Finally, a gradient descent
step can be used to update the neural network weights:

θi+1 = θi − α · ∂LN

∂θ
(20)

1Tutorial heyoka: https://bluescarni.github.io/heyoka.py/
notebooks/NeuralODEs.html

The training pipeline is provided as pseudo-code in Al-
gorithm 1, let’s walk through each step. First we follow
the same steps as in the behavioural cloning pipeline: we
generate a training dataset DBC (Line 1), and we train
the G&CNET Nθ on DBC (Line 2). We also generate
two separate datasets, which will be use to train (DT )
and validate (DV ) the Neural ODE fix algorithm (Lines
3 and 4). Until now, we always only used the optimal
state-action pairs [x∗,u∗] from our generated datasets.
However solving optimal trajectories also gives the opti-
mal time-of-flight t∗, recall that tf is part of the decision
vector in both shooting functions Eq.5 and Eq.12. This
is crucial here as it allows us to evaluate the following
system: {

ẋ = f(x,Nθ(x))
d
dt

(
∂x
∂θ

)
= ∇xẋ · ∂x∂θ + ∂ẋ

∂θ

(21)

from x∗
0,i until t = t∗i in DT (Line 6). Since Nθ approxi-

mates the optimal control policy, errors will accumulate
over the trajectory, resulting in a non-zero error to the
target state at t = t∗ which can be captured by the loss
LN in Eq.17. The ODE sensitivities to the network pa-
rameters θ can now be used to compute the gradients of
LN with respect to these parameters (Line 7). In our ex-
periments we found that using a line search (for instance
using scipy.optimize.minimize scalar) or the Adam Opti-
mizer [16] to find the optimal learning rate α for the gra-



dient descent step helps considerably to stabilize training
(Lines 8 and 9). Finally, we return the policy which per-
forms best on the validation dataset DV (Line 10). Note
that in our experiments we distinguish between looping
over a single trajectory or batches of trajectories in DT

(Line 5).

D. DAGGER
We compare our approach to the popular DAGGER
(Dataset Aggregation) algorithm [18]. The idea behind
this technique is to let the neural network explore the
environment and query an expert (in this case solve the
corresponding TPBVP) to obtain the optimal policy,
thereby gradually collecting optimal state-action pairs
from the states that the network is likely to visit. This
technique addresses the issue that the distribution of the
initial training data used in behavioural cloning rarely
covers the state-space encountered by the network per-
fectly. Since no new methods or equations need to be
introduced, let’s run through a concrete example by fol-
lowing the steps laid out in the pseudo-code Algorithm 2.
Just like for the Neural ODE fix algorithm we first follow
the behavioural cloning pipeline by generating a training
dataset DBC (Line 1) and training the G&CNET Nθ

on DBC (Line 2). Here we also generate two separate
datasets, which will be used to train (DT ) and validate
(DV ) the DAGGER algorithm (Lines 3 and 4). We then
propagate the dynamics ẋ = f(x,Nθ(x)) from initial
conditions x∗

0,i until the corresponding optimal time-of-
flight t∗i (Line 6). Note that compared to Algorithm 1,
here it is not as important to know the optimal time-
of-flight. The resulting trajectory is then sampled into
T steps (Line 7) and we solve all the TPBVPs starting
from the sampled states xj until the target state (Line
9). Now we can evaluate how well the network approxi-
mates the optimal control policy u∗ at state xj and add
the corresponding optimal trajectories to a new train-
ing datasetDDG when the approximation error surpasses
some user-defined threshold (Lines 10, 11 and 12). Fi-
nally the network is trained using Behavioural Cloning
on both the old dataset DBC and the new dataset DDG

which contains new state-action pairs that are likely to
be encountered when deployed and which the network
struggles to approximate accurately. In order to prevent
catastrophic forgetting, we found that it is necessary to
consider a slightly modified loss function when training
Nθ in Line 13:

L = LDBC
+ 0.1 · LDDG

(22)

where LDBC
and LDDG

are Eq.15 (transfer) or Eq.16
(landing) when evaluated on the optimal state-action
pairs of DBC and DDG. This new loss function allows

us to weigh the contribution of each dataset differently
which resulted in more accurate networks when evaluat-
ing these on the validation dataset DV (Line 14).

III. Results & Discussion

We show the final position and velocity errors on the
training dataset DT and validation dataset DV (500 tra-
jectories each) for both optimal control problems in Fig.7
and Fig.8. In all cases, the G&CNETs trained solely with
behavioural cloning can be improved considerably. The
Neural ODE fix reduces the final mean position and ve-
locity errors by 70% for the transfer and by 98% and 40%
for the landing. DaGGER reduces the final mean posi-
tion and velocity errors by 14% and 28% for the transfer
and by 22% and 15% for the landing. We also refined
G&CNETs on a single trajectory using the Neural ODE
fix. In the case of the interplanetary transfer we im-
proved the final position error from 1, 241, 662 km to 2991
km (99% reduction) and final velocity error from 9 ·10−2

km/s to 5 · 10−4 km/s (99% reduction). For the aster-
oid landing problem we improved the final position error
from 452 m to 5.4 m (99% reduction) and final velocity
error from 0.9 m/s to 0.5 m/s (44% reduction). We found
that the main advantages of DaGGER are twofold. First,
it allows us to collect states, with their corresponding
optimal controls, which are likely to be encountered by
the G&CNET, thereby forming a diverse dataset. Sec-
ond, the computational effort required scales well with
the size of the neural network, in contrast to the Neural
ODE fix which is better suited for small networks due to
the large amount of ODE sensitivities which need to be
computed during each iteration. The downsides of DaG-
GER are that one constantly needs to query an expert,
in our case this involves solving TPBVPs with a shooting
method. Hence, one constantly runs the risk of inject-
ing suboptimal trajectories (local minima) in the training
dataset. In addition, for difficult problems such as the
mass-optimal landing where a continuation (homotopy)
approach is required to even find a solution, the DaG-
GER approach suffers from long convergence times or
sometimes no convergence at all. Finally, the loss func-
tion and training hyper-parameters need to be carefully
chosen for DaGGER such as to avoid catastrophic for-
getting. The main advantages of the Neural ODE fix are
that it allows us to learn from the dynamics and it is
possible to give some final state errors more weight than
others, thereby correcting what is more important to the
user. Finally, in our experiments the Neural ODE fix did
not cause catastrophic forgetting.



Algorithm 2 DAGGER algorithm, adapted from [18].

1: Generate training dataset DBC ▷ Optimal trajectories [x∗,u∗, t∗]
2: Train G&CNET Nθ on DBC ▷ Behavioural Cloning
3: Generate training dataset DT ▷ Optimal trajectories [x∗,u∗, t∗]
4: Generate validation dataset DV ▷ Optimal trajectories [x∗,u∗, t∗]
5: for i = 1 to N do
6: Propagate ẋ = f(x,Nθ(x)) from x∗

0,i until t
∗
i in DT ▷ Eq.1 or Eq.6

7: Sample trajectory in T steps
8: for j = 1 to T do
9: Solve TPBVP from xj with Pontryagin Dj = {(x∗,u∗)} ▷ Eq.5 or Eq.12

10: Compute loss Lj = L(Nθ(xj),u
∗) ▷ Eq.15 or Eq.16

11: if Lj > threshold then
12: Aggregate datasets: DDG ← DDG ∪Dj

13: Train G&CNET Nθ on DDG and DBC ▷ Behavioural Cloning

14: Return Best Nθ on validation dataset DV

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Position error [km] 1e7

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

1e 7

Mean:
 5.17e+06 [km]

Mean: 
1.70e+06 [km] 

Mean: 
4.53e+06 [km] 

Training dataset DT

Type of training
Behavioural Cloning
Behavioural Cloning + Neural ODE fix
Behavioural Cloning + DaGGER

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Position error [km] 1e7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
De

ns
ity

1e 7

Mean:
 5.42e+06 [km]

Mean: 
1.75e+06 [km] 

Mean: 
4.69e+06 [km] 

Validation dataset DV

Type of training
Behavioural Cloning
Behavioural Cloning + Neural ODE fix
Behavioural Cloning + DaGGER

Final position errors.

0 50 100 150 200 250 300
Velocity error [m/s]

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

Mean:
 95.69 [m/s]

Mean:
28.54 [m/s] 

Mean:
61.15 [m/s] 

Training dataset DT

Type of training
Behavioural Cloning
Behavioural Cloning + Neural ODE fix
Behavioural Cloning + DaGGER

0 50 100 150 200 250 300
Velocity error [m/s]

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

Mean:
 96.58 [m/s]

Mean:
29.58 [m/s] 

Mean:
60.36 [m/s] 

Validation dataset DV

Type of training
Behavioural Cloning
Behavioural Cloning + Neural ODE fix
Behavioural Cloning + DaGGER

Final velocity errors.

Fig. 7: Position and velocity errors over training and testing dataset of initial G&CNET and refined G&CNETs
for interplanetary transfer problem.
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Fig. 8: Position and velocity errors over training and testing dataset of initial G&CNET and refined G&CNETs
for asteroid landing problem.

IV. Conclusion

The use of Neural ODEs to improve the accuracy of
Guidance & Control Networks has been studied. Both a
time-optimal interplanetary transfer and a mass-optimal
asteroid landing are considered. In all cases, we find that
the final position and velocity errors to the target can be
substantially reduced, both for a single trajectory and
for a batch of 500 different trajectories. In the case of
the interplanetary transfer the final position and velocity
errors were reduced by 99% for a single trajectory and
the mean position and velocity errors were reduced by
70% for a batch of trajectories. In the case of the as-
teroid landing the final position and velocity errors were
reduced by 99% and 44% for a single trajectory and by
the mean position and velocity errors were reduced by
98% and 40% for a batch of trajectories. We were not

able to reduce the final errors as drastically with the pop-
ular DaGGER approach. Nevertheless we acknowledge
the strength and weaknesses of both approaches, most
notably the fact that the Neural ODE fix is only suited
for small networks, due to the computational burden as-
sociated with computing the ODE sensitivities at each
iteration.

Appendix
A. Optimal control problems values
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