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4Space Science and Technology Centre, Curtin University, Perth, Australia

Abstract—This paper presents a station-keeping strategy for
extremely low-altitude lunar orbits (eLLOs) using eccentricity-
vector control. The desired altitude range of 18 ± 9km poses
considerable challenges due to the Moon’s highly nonlinear
gravity field, and is too low for potentially stable frozen orbits.
To overcome these challenges, we propose a station-keeping
strategy based on the predictable nature of the polar phase
plot for eccentricity, e, and argument of periapsis, ω, typical
of low lunar orbits. This enables the optimisation of e and
ω to maximise the time before altitude violation. sequential
convex programming (SCP) is used to optimise the manoeuvres to
provide a guidance strategy that could be implemented on-board.
The results improve significantly on circularisation strategies,
both in terms of ∆v and frequency of manoeuvres. This is a
general strategy applicable to different altitude lunar orbits and
constraints.

I. INTRODUCTION

Designing long-duration lunar orbiter missions poses con-
siderable challenges due to the Moon’s highly nonlinear grav-
ity field and the third-body perturbations induced by the Earth
and Sun. The absence of a lunar atmosphere provides the
opportunity to explore extremely low-altitude orbits that offer
unique scientific prospects, including high-resolution imaging,
magnetometry, and gravitational studies.

Maintaining these orbits becomes particularly intricate. Sig-
nificant past efforts have been directed towards stable near-
frozen Lunar orbits to maintain such orbits. Frozen orbits
around the Moon have been studied by various researchers,
including Konopliv et al. [1], Lara [2], Russell and Lara et
al. [3], and Folta and Quinn [4], amongst others. Most studies
necessitate a simplification of the gravitational model, often
to solely zonal terms. In addition, the altitudes considered
rarely go below 50 km and show a lack of frozen orbits
with low eccentricity close to polar latitudes [2]. Beckman
and Lamb [5] studied the station-keeping prospects for the
Lunar Reconnaissance Orbiter (LRO), which was designed
to maintain an orbit of 50 ± 20 km. Singh et al. [6] have
investigated the feasibility of quasi-frozen, near-polar and
extremely low-altitude lunar orbits. However, their analysis
currently allows for a large increase in eccentricity over time.

This work has been inspired by the Binar Prospector mis-
sion [7, 8, 9]. Binar’s mission aims to achieve a extremely
low-altitude lunar orbit (eLLO) with a range of altitudes
around 18 ± 9 km, whilst maintaining a polar inclination.
The conventional use of frozen orbits has proven inadequate
for this mission’s specific requirements, primarily due to its
inclination, circular nature and low altitude. To overcome these

challenges, we propose an alternative approach based on the
predictable nature of the polar phase plot for eccentricity,
e, and argument of periapsis, ω, typical of low lunar orbits
[5]. This pattern exhibits almost repetitive nature for low
eccentricities. As such, we can approximate the evolution of
the e − ω profile - a feature that was named the “translation
theorem” in [5].

A station-keeping strategy is developed based on the key in-
sight of optimising the starting conditions in (e,ω) to maximise
the time duration before the 18 ± 9 km altitude constraints
are violated, a process which is facilitated by the “translation
theorem”. Upon violation, a new target (e,ω) pair is computed.
The manoeuvre optimisation in done using sequential convex
programming (SCP), and results are presented for different
initial conditions with varying objectives such as minimising
the number of manoeuvres and minimising the predicated total
∆v.

The paper is structured as follows. Firstly, the Moon’s
dynamics are introduced, and a detailed analysis of the “trans-
lation theorem” is given in Section III-A. Next, the e − ω
optimisation strategy is presented, and then a grid search over
possible initial conditions is given in Section III-C. The SCP
approach is discussed in Section III-D and the results presented
in Section IV.

II. PROBLEM SETUP

A. Binar Prospector

Binar Prospector is an Australian lunar resource prospect-
ing mission. The principal payload will be a magnetometer
designed to identify localised accessible volatile deposits and
mineralisation. It will have a novel mission architecture, with
a propulsion systems and fuel payload dedicated to main-
taining eLLOs. Prospecting for such resources requires high-
resolution geophysical datasets, of which magnetometry is a
prerequisite. A high-resolution magnetic survey would provide
a deeper understanding of the geology of the Moon, and its
resource potential, but the current global lunar magnetic survey
has insufficient resolution to deliver that. In magnetometry,
because the field decays with the inverse of distance, better
resolution means lower altitude observations. However, such
eLLOs require regular station-keeping manoeuvres and often a
prohibitively high ∆v budget, shortening the mission lifetime
and making them undesirable for large missions with multiple
payloads.

By being the first lunar mission with magnetometers as the
primary payload, Binar Prospector will be able to prioritise
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extremely low altitude data collection. As such, the nominal
goal is to orbit within a range of altitudes around 18 ± 9
km at polar inclinations for a mission duration of 3 months.
This architecture should deliver a 10 fold improvement on the
current average magnetic survey resolution, and it will explore
the potential of a radically new mission architecture. Low
altitude is a requirement for high resolution magnetometry, but
by exploring the ability to inexpensively acquire high value,
high resolution datasets at low altitudes, it could open up a
range of other mission types and profiles.

B. Dynamical Model

When considering eLLOs, the main disturbances to account
for are the highly non-spherical gravity field of the Moon and
the gravitational pull of the Earth. In this work, given the low
altitude of 18± 9 km, we are going to focus our analysis on
the non-spherical gravity field of the Moon. The gravitational
field is thus given by the potential:

V = −µ
r
−Rm, (1)

where µ is the gravitational parameter of the central body,
r the distance of the satellite to the origin, and Rm is the
disturbing potential due to the non-centrality of the central
body’s gravitational potential:

Rm =
µ

r

∑
j≥2

αj

rj

j∑
k=0

(Cj,k cos kλ+ Sj,k sin kλ)Pj,k(sinφ)

(2)
where α is the equatorial radius of the central body, φ is lati-
tude, λ is longitude, Cj,k and Sj,k are harmonic coefficients,
and Pi,j are associated Legendre polynomials of degree i order
j. Data for the harmonic coefficients, and thus the lunar gravity
field, was obtained using the GRAIL mission data from the Jet
Propulsion Laboratory (specifically the GRGM1200A model1,
truncated to 660). The body-fixed frame, where these spherical
harmonics are defined, is the Lunar principal axis (PA) frame2.
The orbital propagation is done in the Lunar Mean Equator
of Date J2000 (LME2000), defined as: +z axis points toward
Moon’s north polar of data J2000, +x axis points toward the
intersection between the Moon’s equator of date and the J2000
equator; +y axis completes the right-hand frame. The origin
of this frame is Moon’s centre of mass.

III. METHODOLOGY

A. Dynamical analysis and the Translation “Theorem”

A popular reformulation of (1) in the usual Keplerian
elements (a, e, I,Ω, ω,M) was provided by Kaula [10]. We
rewrite the disturbing part of it in closed form of the eccen-
tricity as [11]

P ≡ −Rm = −µ
a

(
a2η

r2

)∑
i≥2

i∑
j=0

Vi,j , (3)

1https://pgda.gsfc.nasa.gov/products/50
2moon pa de421 1900-2050.bpc

in which

Vi,j =
αi

pi
η

i∑
k=0

Fi,j,k

i−1∑
m=0

(
i− 1

m

)
em

2m

m∑
l=0

(
m

l

)[
(Si,j cosψi,j,k

− Ci,j sinψi,j,k) sin(i− 2k −m+ 2l)f + (cosψi,j,k

× Ci,j + Si,j sinψi,j,k) cos(i− 2k −m+ 2l)f
]
, (4)

where Fi,j,k ≡ Fi,j,k(I) denote Kaula’s inclination functions,

ψi,j,k = (i− 2k)ω + jϕ− (i− j)π, (5)

and #π = π
2 (# mod 2) denotes a parity correction. p = aη2,

η =
√
1− e2, ϕ = Ω − ϑ̇t is the argument of the node in

the moon’s fixed frame, with t denoting the time and ϑ̇ the
moon’s rotation rate, and f ≡ f(M, e) is true anomaly. The
problem is conservative in the moon-fixed frame. Hence the
scalar function H = − 1

2 (µ/a) − ϑ̇H + P (the Hamiltonian)
remains constant, where H = Θcos I denotes the projection
of the angular momentum vector along the moon’s rotation
axis, and Θ =

√
µaη is the specific angular momentum.

Kaula’s formulation discloses the different time scales of
the problem. The short-period terms, related to M , simply
modulate the long-term dynamics driven by the slow motion
of ω. Deep tesseral resonances between the variation of ϕ and
the mean motion n =

√
µ/a3 may have dominant long-period

effects. But they are not a concern for low-lunar orbits, whose
periods barely reach 2 hours compared to the month spent by
the moon on its rotation. Still, ϕ evolves much faster than ω,
which typically completes one period in a scale of years. [5]

While the moon’s harmonic coefficients are O(10−4) or
smaller, the Coriolis term −ϑ̇H = −(ϑ̇/n)(µ/a)η cos I is
O(10−3) compared to the Keplerian − 1

2 (µ/a) for low-lunar
orbits. This fact makes the computation of perturbation so-
lutions natural, whose use is customary in the preliminary
steps of mission design. In particular, a transformation from
mean to osculating elements is used to remove the short-
period terms from (3) up to higher-order effects, thus re-
ducing the dimension of the problem from 3 to 2 degrees
of freedom. This transformation turns the Hamiltonian into
H′ = − 1

2 (µ/a
′) − ϑ̇H ′ + ⟨P⟩M , where primes denote mean

elements or functions of them. From (3)

⟨P⟩M =

〈
P r2

a2η

〉
f

= − µ

a′

∑
i≥2

⟨Vi,0⟩f − µ

a′

∑
i≥2

i∑
j=1

⟨Vi,j⟩f .

(6)
Making l = k + 1

2 (m− i) in (4), we obtain

⟨Vi,j⟩f =
αi

a′i

i∑
k=1

F ′
i,j,kGi,k(Ci,j cosψ

′
i,j,k + Si,j sinψ

′
i,j,k),

(7)
where Gi,k are particular instances of Kaula’s eccentricity
functions Gi,k,l. In the fashion of Kaula’s linear theory,
an approximate solution is then obtained by combining the
solution to the mean variations stemming from (6) with the
short-period corrections in (3.76) of [10].

Terms of (6) with j ≥ 1 depend on ϕ, whose period
is brief compared to the time needed by the periselene
of non-impact lunar orbits to repeat its path. Therefore,
we remove these terms by an additional transformation to
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(a) SH: 9x9 Altitude 18 km (b) SH: 51x51 Altitude 18 km

Fig. 1: Gravitational acceleration for 9x9 and 51x51 gravitational potentials at 18 km above the equatorial radius of the Moon,
α = 1737.4 km.

double-prime variables that makes ⟨⟨Vi,j⟩f ⟩h = ⟨Vi,0⟩f ≡
Ci,0(α/a

′)i
∑i

k=1 F
′
i,0,kGi,k cos[(i − 2k)ω′ − iπ], which is

obtained making j = 0 in (6). These zonal terms only depend
on ω and hence drive the long-term dynamics.

The solution in mean elements is analogously obtained
using Kaula’s approach. That is, the solution of the vari-
ations stemming from the perturbation ⟨⟨P⟩M ⟩h is com-
plemented with similar periodic corrections to Kaula’s
(3.76). For instance, for the eccentricity e′(t) = e′′(t) +∑

i≥2

∑i
j=1

∑i
k=1 ∆e

′
i,j,k, where, neglecting terms O(ω̇/ϑ̇)

and O(Ω̇/ϑ̇),

∆e′i,j,k =
n′

ϑ̇

2k − i

j

αi

a′i
F ′
i,j,k

η′

e′
G′

i,k

× (Ci,j cosψ
′
i,j,k + Si,j sinψ

′
i,j,k) (8)

The term n′/ϑ̇ in (8) may reach two orders of magnitude for
of low lunar orbits, thus showing the notably larger amplitude
of these terms compared to the short-period corrections.

The double-averaging process turned both a and H
into integrals. Moreover, the disturbing potential P ′′ =
P(a′′, e′′, i′′,−, ω′′,−) is also an integral as follows from the
constancy of H. Therefore, for each point on the parameters
plane (a′′, H ′′), the long-term dynamics is described by a one-
degree-of-freedom problem in the mean eccentricity and mean
argument of the periapsis. In particular,

dω′′

dt
=
∂P ′′

∂Θ′′ ,
de′′

dt
= − ∂e′′

∂Θ′′
∂P ′′

∂ω′′ . (9)

The equilibria of (9) yield orbits with constant eccentricity and
frozen argument of the periapsis, on average—the so-called
frozen orbits. The mean variation of the eccentricity vanishes
for orbits with ω′′ = ± 1

2π, leaving a single condition for the
vanishing of the mean variation of ω. Namely, Φ(e′′, i′′, ω′′ =
±π

2 ; a
′′) = 0, which can be viewed as the curve of frozen

orbits e′′ = e′′(i′′;ω′′ = ±π
2 ; a

′′).
Fig. 2 shows an example for a = α + 20 km above the

lunar surface. The mean selenopotential is truncated to degree
30, which is enough to illustrate the complexity of the frozen
orbits problem. As shown in the left plot of Fig. (2), frozen
lunar orbits exist for all inclinations. Yet, low-lunar frozen

orbits only exist in very narrow strips about I ≈ 70, 74, 78,
and 86 deg, as shown in the right plot, where the dotted lines
mark the eccentricity limit for impact.

0 20 40 60 80
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e
si
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π
/2
)

70 75 80 85 90

-0.01

0

0.01
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Fig. 2: Diagram of frozen orbits with a detail for high I .

On the other hand, the phase space of the integrable, reduced
flow is made of fixed points, either of the elliptic or hyperbolic
types, and closed curves. The fixed points correspond to frozen
orbits. Apart from them, specific orbits will have oscillating
or rotating periapses in the different regions of phase space
bounded by the manifolds with the same Hamiltonian value
of the hyperbolic fixed points, which may define either homo-
clinic or heteroclinic connections in phase space.

Contour plots of P ′′ = P(e′′, ω′′; a′′, H ′′) show the re-
duced (e′′ω′′) phase space without need of integrating (9). A
sequence a)–g) for increasing Icircular = arccos(H ′′/

√
µa′′)

from 78◦−83◦ is depicted in Fig. 3. The dotted circle bounds
the region of nonimpact orbits and h) shows a magnification
of g). There are no frozen orbits in a), which is close to a
saddle-node bifurcation. The bifurcation at ω = +π

2 already
occurred in b), where stable (e = 0.015) and unstable (e = 0)
frozen orbits exist. However, increasing Icircular has the effect
of increasing sharply the eccentricity of the frozen orbits, as
shown in c), thus flattening the phase space in the non-impact
region, as depicted in d). Eventually, the mean dynamics will
be driven by almost horizontal lines, as illustrated in e) and
f). Note that cos I = η−1 cos Icircular ≈ (1+ 1

2e
2) cos Icircular,

and hence I slightly decreases for increasing e.
Note that the amplitude of the periodic corrections due

to tesseral and sectoral terms, previously illustrated with (8),
could push the eccentricity vector clearly out of the allowed
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Fig. 3: Changes of the e-ω phase space with inclination.

region. Hence, for mission designing purposes, these important
variations of the mean values must be superimposed to the
long-term dynamics. That is, periodic corrections ∆(e cosω)
and ∆(e sinω) must be computed analogously to (8) to be
superimposed to the eccentricity vector plots. It is readily
found that the dominant terms of these corrections are O(e0)
and do not depend on the argument of the periselene. For
instance, for the contribution of the Moon’s C3,1 ≈ 3× 10−5,
straightforward computations yield

∆(e cosω) =
n

ϑ̇
C3,1

α3

a3
3

8
cos I

(
11− 15 cos2 I

)
cosϕ+O(e),

∆(e sinω) =− n

ϑ̇
C3,1

α3

a3
3

8

(
1− 5 cos2 I

)
sinϕ+O(e).

Therefore, up to O(e), the monthly pattern generated by the
eccentricity vector when starting from the same a, I , and ϕ, is

Fig. 4: Diagram illustrating the e − ω optimisation. ∆eω
indicates the translation distance, which is balanced against
the objective of maximising tf .

the same irrespective of the initial e and ω values—a feature
that was named the “translation theorem” in [5].

B. Optimising e− ω translation

For a given initial condition, i, ϕ pair, we can nominally
set e0 = 0, ω0 = 0 and propagate the natural evolution of
the orbit until it crashes into the lunar surface. Approximating
this evolution as the true evolution, the “translation theorem”
mentioned above, it is possible to optimise the initial off-set in
(e0, ω0) to maximise the time duration before e ≥ elim. Here
where elim is given by the 18± 9 km altitude constraints.

Fig. 4 illustrates this e − w optimisation scheme, which
is also discussed in Algorithm 1. Figures 5 show the natural
motion of of an orbit from a given initial condition, with a =
1755.4km, i = 86◦ in 9× 9 and 51× 51 spherical harmonics.
The evolution at (e, ω)=(0, 0) is generated in blue. This is
then “translated” to maximise the duration with e < elim by
finding the initial offset (e0, ω0), shown in orange. The true
propagation at (e0, ω0) is show in yellow. This strategy is
discussed in Algorithm 1, where the objective is set to Time
by setting λ = 0.

Using the newly obtained (e0, ω0), the spacecraft needs
to perform a manoeuvre to go from (ei, ωi) to this desired
(e0, ω0). Subsequently, the spacecraft can be propagated in
the natural dynamics until e ≥ elim. Upon this violation, the
whole process can be repeated as the spacecraft is effectively
in a new set of ”initial conditions“.

C. Station-Keeping Strategy

Using the e− ω translation strategy discussed above, there
are two remaining variables for the mission designer to con-
sider when defining the SK strategy.

• First: determine the weighting of the Objective function.
λ = 0 corresponds to J = tf . This aims to maximise the
duration of natural motion for the next SK segment. Its
a greedy approach to allow a long period before the next
SK manoeuvre is required. Alternatively, if λ ̸= 0, then
the objective begins to balance the time-of-flight with the
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(a) SH: 9x9 (b) SH: 51x51

Fig. 5: Natural Motion of a spacecraft with a = 1755.4km, i = 86◦ in 9× 9 and 51× 51 spherical harmonics. The evolution
at e = 0, ω = 0 is generated in blue. This is then “translated” to maximize the duration with e < elim by finding the initial
offset (e0, ω0), shown in orange. The true propagation at (e0, ω0) is show in yellow.

Algorithm 1 e− ω optimisation

1: Extract current time t and state a, e, i,Ω, ω, θ ▷ Violate SK requirements
2: Store ei = e, ωi = ω ▷ Initial location for Translation Manoeuvre
3: Set e = 0, ω = 0 ▷ Re-centre for e− ω optimisation
4: while |r| > RMoon do ▷ Natural Motion until it crashes into Moon Radius
5: Propagate Ballistic Trajectory
6: Store e(t) and ω(t) ▷ Evolution of e and ω
7: Set eccentricity limit elim ▷ Defined by the altitude requirements
8: Let the optimisation vector be ∆x1 = e0 cos(ω0) and ∆x2 = e0 sin(ω0) ▷ Initial off-set that is to be optimised
9: Define Translation Distance ∆eω =

√
(∆x1 − ei cos(ωi))2 + (∆x2 − ei sin(ωi))2 ▷ Distance from ei, ωi to the newly

optimised e0,ω0

10: Set the Objective, J(λ) = tf
∆eωλ ▷ Use λ = 0 to maximise time, λ = 1 for a trade-off

11: Optimise ∆x1 and ∆x1 to maximise J(λ) such that√
(∆x1 + e(t) cos(ω(t)))2 + (∆x2 + e(t) sin(ω(t)))2 < elim ∀ t ≤ tf ▷ Maximise J(λ) for states inside elim

12: Compute e0 =
√
∆(e cosω)2 +∆(e sinω)2 and ω0 = arctan(∆(e sinω)/∆(e cosω)) ▷ Optimal initial conditions

“translation” distance, which acts as a proxy for the ∆v
required for SK manoeuvre from (ei, ωi) to (e0, ω0).

• Secondly, determine a suitable set of initial conditions
i0, ϕ0 that helps reduce the SK cost. This can either
be maximising the time interval between station-keeping
manoeuvres, or reducing the total ∆v cost.

In this work, the initial conditions are sought by setting
λ = 0, and therefore optimising for the time between ma-
noeuvres. A grid search on both i0, ϕ0 was performed, with
1◦ spacing in inclination, and 10◦ spacing in ϕ0. In this initial
grid search, the manoeuvres themselves are assumed to be
possible and instantaneous. The total number of manoeuvres
(assuming a bi-impulsive transfer) and the translation distance
∆eω are stored for each initial condition. The results for 9×9

spherical harmonics are shown in Fig. 6. Using this, three
initial conditions appear promising: the minimum number of
manoeuvres is 26 for i0 = 94◦, ϕ0 = 127.76◦ and i0 = 86◦,
ϕ0 = 357.76◦; the minimum translation distance occurs at
i0 = 94◦, ϕ0 = 177.76◦; and the minimum average distance
is at i0 = 94◦, ϕ0 = 157.76◦. The same analysis was also run
for 51× 51 spherical harmonics, with a grid spacing of 5◦ in
ϕ0, to see if the pattern remains viable or not - see Fig. 7.
The minimum number of manoeuvres minimum number of
manoeuvres is 24 for i0 = 88◦, ϕ0 = 342.76◦; the minimum
translation distance occurs at i0 = 87◦, ϕ0 = 7.76◦; and the
minimum average distance is also at i0 = 87◦, ϕ0 = 7.76◦.
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(a) Number of Manoeuvres (b) Total Translation Distance (c) Average Translation per Manoeuvre

Fig. 6: Grid Search for i0, ϕ0 in 9 × 9 Spherical Harmonics. The minimum number of manoeuvres is 26 for i0 = 94◦,
ϕ0 = 127.76◦ and i0 = 86◦, ϕ0 = 357.76◦, whilst the minimum translation distance occurs at i0 = 94◦, ϕ0 = 177.76◦, with
the minimum average distance at i0 = 94◦, ϕ0 = 157.76◦.

(a) Number of Manoeuvres (b) Total Translation Distance (c) Average Translation per Manoeuvre

Fig. 7: Grid Search for i0, ϕ0 in 51 × 51 Spherical Harmonics. The minimum number of manoeuvres is 24 for i0 = 88◦,
ϕ0 = 342.76◦, whilst the minimum translation distance occurs at i0 = 87◦, ϕ0 = 7.76◦, with the minimum average distance
also at i0 = 87◦, ϕ0 = 7.76◦.

D. Convex Optimisation

Initially, the manoeuvre optimisation involved approximat-
ing manoeuvres with Lambert transfers and subsequently refin-
ing trajectory adjustments using MATLAB’s fsolve. However,
for a more accurate assessment of the ∆v required, a more
sophisticated approach using convex optimisation techniques
was implemented. Applying the general approach of SCP [12],
we start by finding an appropriate linearisation of the dynam-
ical system. The dynamics of the spacecraft are provided with
the state x = [r,v]:

ẋ = f(x,∆v, t) =

{
ṙ = v
v̇ = ∇V + δ(t− tn)∆v

(10)

where µ is the gravitational constant of the Moon, m the
mass, and 0 ≤ T ≤ 1 the thrust of the spacecraft, which
is normalized to Tmax.

A ballistic arc is used as the reference trajectory for
linearization. This was often close to the optimal low-thrust
trajectory due to the relatively short time-frames experienced
when compared to some low-thrust applications. Thus, given
a reference trajectory (x̄), the dynamical linearization can

be performed, which is calculated along segments of the
reference trajectory, where each discretisation segment is 10
minutes. An impulsive model is used here, but a zero-order-
hold (ZOH) control model could easily be considered in future
work. Thus, we obtain the discrete form of the dynamics
for n = 1, 2, ..., N , which is able to be used as a convex
constraint:

xn+1 = Anxn +Bn∆vn + Cn (11)

with

An =

[
∂

∂x

∫ tn+1

tn

ẋ dt
]∣∣∣∣

(x̄n,∆v̄n)

(12)

Bn =

[
∂

∂∆v

∫ tn+1

tn

ẋ dt
]∣∣∣∣

(x̄n,∆v̄n)

(13)

Cn = x̄n −Anx̄n −Bn∆vn (14)

The matrix An is the state transition matrix (STM) and is
computed via automatic differentiation (AD). The process to
use AD is as follows: the dynamical equations are placed into
an adaptive step-size numerical integrator, and AD is used
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to calculate the Jacobian of the output with respect to the
input state and control. The Vern9 [13] numerical integrator
was used from DifferentialEquations.jl [14] with
absolute tolerance 10−12 and relative tolerance 10−12, and
ForwardDiff.jl [15] was used to perform the forward-
mode automatic differentiation. The dynamics are left in their
Cartesian form. The controllable parameter is the ∆v added
to the velocity at each node.

Additionally, we can perform a linearization on the altitude
constraints by introducing an additional variable for each
segment, hn = [hmin

n , hmax
n ]. This is a 2-dimensional vector

containing the minimum and maximum height encountered in
segment n. The linearized constraint for hn is therefore:

hn+1 = Dnxn + En∆vn + Fn (15)

with

Dn =

[
∂

∂x
h∗

(∫ tn+1

tn

ẋ dt
)]∣∣∣∣

(x̄n,∆v̄n)

(16)

En =

[
∂

∂∆v
h∗

(∫ tn+1

tn

ẋ dt
)]∣∣∣∣

(x̄n,∆v̄n)

(17)

Fn = h̄n −Dnx̄n − En∆vn (18)

where the function h∗ takes the integration as input and returns
h, and h̄ is derived from the reference trajectory. All of these
matrices are calculated using AD in a similar manner to An.
The altitude constraint is therefore:

hmin
n ≥ amin

hmax
n ≤ amax (19)

with amin and amax the minimum and maximum permitted
altitudes respectively.

Because the optimization problem is formulated using
Cartesian orbital elements, we must also use linearization for
the terminal target constraint, wherein we target a specific
eccentricity e, argument of periapsis ω, and semi-major axis a.
This target is denoted ytarget = [e, ω, a]. The semi-major axis
is targeted to correct for the drift that may occur if we only
optimally target e and ω. The linearized terminal constraint is
thus:

GxN +H = ytarget (20)

with

G =
∂c

∂x

∣∣∣∣
(x̄N )

(21)

H = ȳtarget −Gx̄N (22)

where c is a function which obtains the classical orbital ele-
ments y = [e, ω, a] from the Cartesian state, and ȳtarget derived
from the reference trajectory. The initial state constraint is:

x1 = xinitial (23)

The objective function is to minimize the ∆v use throughout
the trajectory. This form of objective necessitates obtaining
the 2-norm of the control, which can be achieved through a
lossless relaxation via a second-order-cone (SOC) constraint:

∆vn ≥ ||∆vn||2 (SOC) (24)

with the 2-norm denoted by the non-bold ∆vn. Because we
are minimizing ∆vn, this constraint is binding at optimality.

Combined, these constraints define a convex optimization
problem, but this generally exhibits significant convergence
and feasibility challenges. A common approach to resolving
these issues is the introduction of trust regions and virtual
controls with penalty parameters [16]. This implementation
uses a trust region on (11) and penalized virtual controls on
(19) and (20).

The entire optimization problem is therefore:

min

N∑
n=1

∆vn

s.t. (11), (15), (19), (24) n = 1, 2, . . . , N

(20), (23)

(25)

The SCP process repeatedly solves (25) using a convex
optimizer and updates the linearized constraints (11), (15) and
(20) with the optimal solution from the previous iteration. The
convergence of the algorithm is determined by the accuracy
of the linearization when compared to truth.

In terms of implementation, JuMP.jl [17] was used to
create and modify the convex problems and MOSEK to solve
them.

We demonstrate this SCP approach by computing transfers
from a particular e = elim, ω state to potential e, ω states,
assuming a constant semi-major axis, inclination, and RAAN.
Fig. 8 shows the ∆v required, the resulting propagation time
tf , and the ratio tf/∆v. We can see that translation distance
∆eω acts as a proxy for the required ∆v.

IV. RESULTS

Four different results are presented. The first two consider
the e − ω translation strategy discussed in this paper, with
λ = 0 to maximise the time between SK manoeuvres, and
λ = 1 to balance time and translation distance. Two other
strategies are also presented for completeness: circularisation
and convex-only. The circularisation takes a similar approach
to the e − ω translation strategy, applying manoeuvres only
when the altitude violation occurs. However, instead of tar-
geting a (e0, ω0) pair to maximise the subsequent ballistic
segment, it circularises the orbit by targeting e0 = 0, ω0 = 0.
This should represent the upper bound for the e−ω strategy. In
the convex-only strategy, the 90 day SK interval is discretised
into 120 minute segments, with manoeuvres allowed at each
segment. The only constraint is to maintain the altitude within
18 ± 9 km. This should provide a lower bound on e − ω
strategy and an indication as to what the optimal ∆v might
be to maintain such an eLLO.

Table I and II show the results for 9×9 and 51×51 dynamics
respectively. The station-keeping strategy was performed for
a 90-day period starting from 21st March 2024 at 12pm
UTC, although this strategy is independent of the specific
epoch used. Two different initial conditions were considered,
both as a result of the grid search on i and ϕ shown in
Figs. 7 and 6: the minimum number of manoeuvres and the
minimum total translation distance accumulation. The first
thing to note is the decrease in required ∆v for the 51 × 51
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(a) Propagation time tf before e ≥ elim (b) ∆v for e, ω translation (c) Ratio tf/∆v

Fig. 8: Example set of SCP transfers from a given e = elim, ω state to potential e, ω states, assuming a constant semi-major
axis, inclination and RAAN. The ∆v required, the resulting propagation time tf , and the ratio tf/∆v are shown. We can see
that translation distance ∆eω acts as a proxy for the required ∆v. This is done with 9x9 spherical harmonics.

model compared to the 9×9 model, which demonstrates whilst
the station-keeping strategy works for both, accurate estimates
are best obtained at the desired model resolution, as higher-
order spherical harmonics can, in some instances, be beneficial
to orbit maintenance.

Figure 10 shows the results for the minimum manoeuvre
initial condition. The subplots on the left show the altitude
(blue) above the Moon’s mean radius, 1737.4km, along with
the perilune and apolune (red). The black markers along the
x-axis indicate the periods where a manoeuvre was conducted
within a 24-hour sliding window. This is similarly indicated
in the Coast (%) column in the tables, although a 3 hour
sliding window is used there. The right-hand subplots show an
averaged evolution of e and ω throughout the 90-day period,
where darker colours indicate earlier times.

The convex-only approach achieves a minimum ∆v of
51.32 m/s for the minimum cumulative translation distance
initial condition, indicating the translation distance acts as
an appropriate proxy for the total ∆v. However, this is not
appropriate for an operational strategy due to the very high
manoeuvre frequency (28.87% of the total time is within 3
hours of a manoeuvre) and the need to optimise the entire 90-
day sequence together. However, the proposed e−ω strategy is
able to achieve a minimum ∆v of 75.86 m/s using the λ = 1
in the objective function. In this fashion, only the current
manoeuvre to the target (e0, ω0) needs to be optimised, making
it suitable as an onboard station-keeping strategy. This slightly
outperforms the λ = 0 strategy in terms of ∆v, it uses slightly
more manoeuvres (7.37% of the total time is within 3 hours of
a manoeuvre as opposed to 5.59%). It is clear that optimising
the target (e0, ω0) significantly increases the performance, both
in terms of ∆v and frequency of manoeuvres, compared to
the circularisation strategy, which for the equivalent initial
condition is 1.95x more expensive.

If the objective is to minimise the number of manoeuvres,
then other initial condition can be used, where the e − ω
strategy maximising the time between manoeuvres (λ = 0)
reduces total time within 3 hours of a manoeuvre to 5.23%, 12
total station keeping sequences. This also only requires 77.23
m/s ∆v, and offers long coast arcs between manoeuvres, an
attractive option from the perspective of operational costs.

V. CONCLUSION

This paper presents a station-keeping strategy for extremely
low-altitude lunar orbits (eLLOs) using eccentricity-vector
control. The desired altitude range of 18± 9km is too low for
potentially stable frozen orbits, however, the low eccentricity
results in an e − ω profile that exhibits an almost repetitive
pattern. This “translation theorem” enables a station-keeping
strategy that can control the eccentricity vector by optimising
the initial conditions in the e− ω phase space using a single
propagation. A grid search is used to find the inclination
and body-fixed argument of ascending node that minimise the
total number of manoeuvres or minimises the total cumula-
tive translation distance throughout a 90-day station-keeping
period. Then, sequential convex programming (SCP) is used
to optimise the manoeuvres to provide a guidance strategy
that could be implemented onboard. The results indicate a
minimum of 12 station-keeping sequences, using a total of
77.23 m/s can maintain this eLLO. This can be reduced
to 75.86 m/s at the cost of slightly increasing the number
of manoeuvres required. The station-keeping strategy can be
readily applied to different altitude lunar orbits, with varying
altitude constraints.
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