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Abstract – The purpose of this work is to present 

a nonlinear guidance algorithm for spacecraft 
navigation that can be applied in any mission 
scenario. This approach allows to reliably estimate 
the navigation Delta-V (DV) budget and obtain a 
more accurate and reliable orbit insertion 
performance. 

The proposed nonlinear guidance algorithm is 
applied for a lunar mission scenario, focusing on the 
transfer orbit up to lunar orbit injection. The key 
performance parameters under analysis include the 
navigation DV budget for the mission and the orbital 
parameters scattering at arrival with respect to the 
targets. To perform a realistic and reliable analysis, 
the study takes into account the main factors that 
affect spacecraft navigation, namely the accuracy of 
the launcher insertion, the manoeuvres execution 
errors, and the knowledge of the spacecraft state. As 
a last step, we investigate how the navigation 
performances are affected by the ground station 
operations schedule, namely by the orbit 
determination arc and the flight dynamics 
operations cycle. The duration of the orbit 
determination arc is related to the observation time 
window used to estimate the spacecraft's position. 
The flight dynamics operations cycle consists of the 
timing for the ground infrastructure procedures, 
such as orbit determination, manoeuvres planning, 
and TT&C. 
 

I. INTRODUCTION 
In recent years, the Moon has drawn significant attention 
not only from space agencies (such as NASA [1],ESA 

[2], JAXA [3] and ISRO [4])  but also from private 
entities. Numerous commercials and institutional 
missions are already planned for the upcoming decade 
[5]. This renewed focus on the Moon comes from 
several factors, including the desire to establish a 
permanent human presence on our satellite, its potential 
as a testing ground for crucial technologies needed for 
deep space exploration (particularly for future manned 
missions to Mars), and the recent discovery of water ice 
at the Moon’s South Pole [6]. 
Even if each mission has different goals, all of them 
share the same necessity for guidance and navigation, 
with different constraints. A usual approach for deep-
space mission design is to adopt linear guidance for the 
spacecraft. However, in a lunar transfer scenario due to 
its high non-linearity especially in the lunar orbit 
insertion phase, this approximation can lead to 
inaccurate orbit targeting and underestimation of the 
navigation Delta-V (DV) budget, together with large and 
unrealistic dispersions. The navigation DV budget is 
defined as the difference between the design DV and the 
required DV not only to reach the reference orbit but also 
to compensate for the mission perturbations inside a 
certain confidence interval. The orbit insertion 
performance is evaluated as the scatter of the final orbit 
parameters with respect to the design ones. 
This paper aims to present a nonlinear navigation 
algorithm for lunar transfer trajectories. While the 
associated numerical simulations are tailored to a 
specific scenario, the methodology outlined can be 
applied to various mission definitions. Estimating the 
navigation DV budget of the proposed algorithm is 
essential. 
The proposed nonlinear navigation algorithm allows us 
to improve not only the targeting performance but also 



the propellant consumption, especially for a highly 
nonlinear problem, such as in the analysed lunar transfer 
orbit. 
The research considers that both the orbit determination 
and the navigation of the satellite are performed at the 
ground station, hence the computational burden is not 
reflected on the spacecraft design. The major drawback 
of the nonlinear guidance with respect to the 
approximated linear one is the increased computational 
cost of the procedure. 
The simulation was performed with the ESA/ESOC 
flight dynamics software GODOT (General Orbit 
Determination and Optimization Toolkit), which allows 
users to perform orbit-related computations for 
estimation, optimization, and analysis of orbits for 
mission analysis and in-flight operations [7]. For the 
navigation analysis, the GODOT software was used in 
conjunction with PyGMO, a scientific library providing 
many parallelizable optimisation problems and 
algorithms [8]. 
The paper structure is the following: 

- Section II presents the simulation setup, 
namely the orbit geometry, the Orbit 
Determination (OD) assumptions, and the 
navigation algorithm. 

- Section III sums up the results for a 
conservative scenario of the lunar transfer 
orbit. 

- Section IV shows the difference in 
performance of the guidance algorithm 
changing the navigation assumptions. 

- Section V summarizes the results and 
performances of the proposed approach. 

 
II. SIMULATION SETUP 

The nonlinear guidance algorithm is tested on a lunar 
transfer scenario, targeting a low lunar circular polar 
orbit with radius equal to 1838.1 km, thus an altitude of 
100.7 km using the Moon mean radius of 1737.4 km. 
The selected target orbit is particularly relevant and 
suitable for the Moon exploration and observation (see 
[9], [10] and [11]). 
A. Lunar Transfer Geometry 
The navigation analysis examines various design 
trajectories spanning five years to assess the impact of 
the Earth-Moon relative geometry on the lunar transfer 
orbit and guidance performance. The design trajectories 
were optimized to perform the lunar transfer targeting 
the Moon at the ascending or descending node, 
minimizing the propellant consumption [11]. This stems 
from the assumption of launching from Kourou with a 
maximum performance, low-inclination lunar transfer 
orbit. The schema for the lunar transfer trajectory 
includes: 

- Launcher separation (SEP). 
- Apogee Correction Manoeuvre (ACM), 1 day 

after launcher separation. It can be adjusted, 

see section III. 
- Trajectory Correction Manoeuvre (TCM) if 

necessary. It is executed at least 1 day after the 
ACM and 1 day before the Lunar Orbit 
Insertion (LOI). It can be adjusted, see section 
III. 

- Lunar orbit insertion. 
The Time Of Flight (TOF) for the transfer orbit depends 
on the specific solution, according to the launch day 
within a launch period. However, the spacecraft always 
performs only one ACM and TCM during the lunar 
transfer. Additionally, each launch opportunity presents 
multiple possible trajectories within a specific launch 
window. This analysis does not address the design of the 
lunar transfer orbit itself (done in [11]); it focuses on 
evaluating the satellite guidance performance along a 
predetermined trajectory. 
Fig. 1 illustrates the different lunar transfer orbits for a 
selected launch window among those analysed over five 
years. 

 
Fig. 1. A typical set of lunar transfer orbit 3-dimensional 
representation in the EMEJ2000 reference frame for a 
selected launch window. 

B. Orbit Determination Assumptions 
The primary goal of orbit determination is to ascertain 
the dynamic state of a spacecraft, specifically its 
position and velocity evolution over time. This process 
relies on precise measurements of observable quantities 
and accurate models describing spacecraft dynamics and 
observables [12]. 
The numerical simulation of the OD process involves 
two main stages: data simulation and parameter 
estimation. During the data simulation phase, reference 
trajectories (considered the "real" or "true" trajectories) 
are generated, along with corresponding observed 
observables. In the subsequent estimation phase, these 
simulated data along with computed observables 
derived from observation equations, undergo 
processing. A batch least-squares filter is employed to 
refine first-guess trajectories and adjust other 
parameters within the dynamical model. 
The orbit determination of the spacecraft during the 
lunar transfer orbit is assumed to be performed on the 
ground. The satellite establishes a two-way coherent 
radio link in the X-band with the stations of the 
European Space Tracking Network (ESTRACK), 
namely Cebreros (Spain), New Norcia (Australia), and 
Malargüe (Argentina). Therefore, in the orbit 



determination, two-way range and Doppler observables 
are processed. Table 1 presents conservative 
assumptions regarding the measurement noise and 
sampling time for a typical mission, given that we did 
not perform a detailed error budget for the radio link 
between the spacecraft and the stations. 
Table 1. Measurement noise and count time for the radio-
tracking observables. 

Observations Noise Count Time 
Range 2 m 1 hour 

Doppler 0.3 mm/s 60 s 
In any OD process, inaccuracies within the dynamical 
model arising from missing or poorly modelled 
accelerations inevitably introduce biases in the 
estimated model parameters [13]. For instance, 
accurately modelling the Solar Radiation Pressure 
(SRP) acceleration acting on the spacecraft proves 
challenging, with errors often exceeding 2% of the 
central value [14]. In the estimation phase, we accounted 
for these inaccuracies by incorporating estimated 
stochastic accelerations into the dynamical model. This 
adjustment addresses potential discrepancies in a 
realistic scenario due to dynamical mismodeling. While 
various formulations could be utilized for this purpose, 
we opted for a stochastic piecewise-constant 
accelerations model for this analysis with an apriori 
uncertainty of the order of 10-10 m/s2 on each component 
in the International Celestial Reference Frame (ICRF). 
The other estimated parameters in the OD filter are: 

- spacecraft dynamical state at the launcher 
separation epoch defined as Keplerian 
parameters with an apriori uncertainty vector 
of 1 km for the pericentre and apocenter radius 
and 6° for inclination, RAAN, the argument of 
perigee and true anomaly. 

- range biases for each tracking station with an 
apriori uncertainty of 10 m. 

- manoeuvre with an apriori uncertainty of 1 m/s. 
C. Nonlinear guidance algorithm 
The proposed nonlinear guidance algorithm, depicted in 
Fig. 2, is applied to the reference lunar transfer orbit. 
However, the same approach is suitable for any satellite 
orbit and scenario. 

 
Fig. 2. Nonlinear guidance scheme for the lunar transfer orbit. 

As depicted in Fig. 2, the process begins with an orbit 
determination arc followed by a command point. At this 
point, the estimated trajectory is used to optimize the 
following manoeuvres to minimize the propellant 

consumption and reach the desired target orbit. When 
determining the design manoeuvres, it is crucial to 
consider the Flight Dynamic (FD) cycle, which dictates 
constraints on the earliest epoch for manoeuvre 
execution. The FD cycle encompasses all operations 
required for spacecraft navigation, from orbit 
determination to telecommand uploads for manoeuvre 
execution. 
To estimate the navigation budget and the targeting 
accuracy of the desired orbit, we conducted a Monte 
Carlo analysis on a set of designed trajectories spanning 
a 5-year period. We perturbed the initial satellite state of 
each trajectory according to a putative launcher 
dispersion to generate 1000 sample reference 
trajectories with a standard deviation of 2 km in position 
and 1 m/s in velocity for each 3D component. We then 
apply the navigation algorithm presented in Fig. 2 to 
each sample. It involves propagating the initial 
perturbed state to the command point and performing 
the OD process with the collected observations to obtain 
the estimated trajectory and the associated covariance 
matrix (to compute the uncertainty evolution over time 
on position and velocity). The estimated covariance 
matrix is used to perturb the trajectory to introduce the 
error related to the spacecraft positioning accuracy. This 
OD perturbed trajectory is the one used for the 
optimization procedure to design the commanded 
manoeuvre to reach the target orbit while minimizing 
the propellant consumption. 
After this, to emulate a realistic scenario, we apply a 
Gaussian manoeuvre execution error on both the 
magnitude and the thrusting direction with a standard 
deviation of 1% in the DV magnitude and 1° in the 
pointing direction to reflect a realistic propulsion system 
and obtain the executed manoeuvre. Finally, the 
executed manoeuvre is applied to the reference sample 
obtaining the trajectory flown by the spacecraft. 
The same procedure is applied for each couple of 
command point-manoeuvre with the constrain that the 
time interval between the command point and the 
previous manoeuvre is the OD arc duration, while the 
time span between the command point and the next 
manoeuvre is at least the duration of the FD cycle. 
In this paper, for computational efficiency, we perform 
the orbit determination process only for the design 
trajectory and use the same covariance matrix evolution 
for all the Monte Carlo samples. This is an acceptable 
assumption given that the initial perturbation related to 
the launcher dispersion does not significantly modify the 
covariance matrix evolution of the new reference lunar 
transfer orbit with respect to the design one. 
The duration of the OD arc and FD cycle impact the 
manoeuvre execution epochs, thus the associated 
navigation budget for the lunar transfer orbit. Moreover, 
the number of observables collected during the OD arc 
affects the orbit reconstruction accuracy and, therefore, 
the covariance matrix evolution, especially at the control 
point. 



This analysis focuses on the orbit targeting and 
navigation budget just before the LOI, given that the 
lunar orbit insertion procedure can be further optimized 
by considering different approaches, also according to 
the orbital parameters scattered at the end of the lunar 
transfer trajectory. 
 

III. SIMULATION RESULTS 
In this study, we explored various scenarios by adjusting 
the durations of the orbit determination arc and flight 
dynamics cycle to investigate their impact on the 
navigation budget for the lunar transfer orbit, as 
represented in Table 2.  
Table 2. OD arc and FD cycle durations for the analysed 
scenarios. 

Case OD arc FD cycle 
Conservative 12 h 12 h 

Mean 8 h 8 h 
Best 8 h 4 h 

 
A. Monte Carlo analysis for a single design trajectory 
The reference scenario, and the more conservative one, 
assumes OD arc and FD cycle durations of 12 hours 
each, requiring the ACM to be executed at least a day 
after launcher separation. Fig. 3 and Fig. 4 depict the 
position and velocity accuracy over time for one of the 
analysed design trajectories. Despite differences in 
reference epoch and time of flight for each lunar transfer 
orbit, the covariance evolution of the satellite state 
exhibits a similar trend. It is important to stress that both 
Fig. 3 and Fig. 4 show the uncertainty of the desired state 
component at various epochs, processing only the 
observations before each epoch. 
The discrepancy in accuracy between the x and y 
components of position and velocity, compared to others 
(almost one order of magnitude), can be attributed to 
orbit geometry. In fact, the lunar transfer orbital plane 
nearly aligns with the Earth's equatorial plane (close to 
the X-Y ICRF plane), resulting in radio tracking data 
collected predominantly along these two directions. The 
spike in the velocity components uncertainty 
represented in Fig. 4 is associated with the ACM 
execution in the design trajectory. 

 
Fig. 3. Satellite position uncertainty components and their root 
sum of squares (RSS) in ICRF as a function of the time after 
launcher separation. The blue, magenta, green, and black 
curves represent, respectively, the X, Y, and Z components and 
the norm of the position uncertainty. The shaded area 
represents the timeslots of tracking data for each ground 

station, namely New Norcia (red), Cebreros (orange), and 
Malargüe (yellow). 

 
Fig. 4. Satellite velocity uncertainty components and their RSS 
in ICRF as a function of the time after launcher separation. 
The blue, magenta, green, and black curves represent, 
respectively, the X, Y, and Z components and the norm of the 
velocity uncertainty. The shaded area represents the timeslots 
of tracking data for each ground station, namely New Norcia 
(red), Cebreros (orange), and Malargüe (yellow). 

Fig. 5 depicts the range of the executed (commanded 
plus execution error) ACMs and TCMs across all the 
perturbed reference trajectories (1000 samples) 
compared to the values of the design trajectory. These 
values are a function of the relative change in specific 
orbital energy (DE) between each perturbed trajectory 
and the design trajectory at launcher separation. 
The ACMs are optimized to compensate for the launcher 
dispersion at separation, as their evolution shows a 
strong correlation with the change in orbital energy. The 
scattering of ACMs around this trend is related to the 
manoeuvre execution error. Meanwhile, the TCMs 
mainly recover the ACM execution error and the orbit 
determination error at the first command point. 
Fig. 5 highlights that some reference trajectories exhibit 
a lower executed manoeuvre DV than the design 
trajectory, leading to reduced propellant consumption 
and a higher spacecraft mass at lunar insertion. This 
difference arises because launcher dispersion modifies 
the satellite's state in such a way that part of the required 
ACM DV is provided by the launcher. However, these 
more efficient lunar transfer orbits were not identified 
during trajectory design because the launcher needs to 
exceed its nominal performance to obtain them. For 
example, it can insert the same spacecraft mass on a 
higher energy orbit. 
For each design orbit, the relation between the ACM and 
the DE changes due to the Earth-Moon relative 
geometry. The general trend is a parabola where the 
ACM is minimized for a certain orbit energy. If the 
launcher inserts the spacecraft on a more (or less) 
energetic orbit, the ACM must compensate for this 
additional (or decreased) energy. However, achieving 
these optimal trajectories with nominal launcher 
performances is not always feasible. 



 
Fig. 5. Executed ACM (left), TCM (middle), and their sum 
(right) as a function of the change in specific orbital energy 
between each perturbed reference trajectory (1000 samples) 
and the design orbit at launcher separation. The horizontal red 
line represents the design value for the respective manoeuvre. 

Finally, Fig. 6 shows the orbital parameters scattering 
before the lunar orbit insertion as a function of the 
sample number. It represents the targeting accuracy of 
the proposed nonlinear guidance algorithm. It is 
important to note that the parameter scattering is mainly 
related to the TCM execution error and the orbit 
determination accuracy at the associated command 
point. Indeed, the optimized trajectory correction 
manoeuvre is designed to target the desired spacecraft 
state. 

 
Fig. 6. Orbital parameters scattering before the LOI as a 
function of the sample number. From left to right, the first row 
shows the pericentre altitude and the hyperbolic excess 
velocity. The second row represents the inclination and the 
true anomaly. The horizontal red line in each plot indicates the 
desired target values. 

B. Lunar transfer performance 
We conducted the same Monte Carlo analysis for all 
design trajectories, assuming an OD arc and FD cycle 
duration of 12 hours. 
Due to the significant nonlinearity of the problem under 
consideration, the distribution of orbital parameters 
before the LOI with respect to the design values is not 
symmetric. Therefore, we computed a pseudo 3-s 
standard deviation of the resulting distribution for each 
individual case to observe trends over the analysed time 
span. This value is calculated by determining the 
difference between the 99.85th and 0.15th percentile 
values (thus encompassing 99.7% of the samples) of the 
distribution of interest and then dividing it by 2. This 
formulation allows us to account for both the 
overshooting and undershooting cases, thereby avoiding 
potential overestimation of targeting performance. 

Fig. 7 depicts the pseudo 3-s scatter for the pericentre 
altitude, inclination, and true anomaly of the various 
design trajectories as a function of the launcher 
separation epoch. In most cases, it is possible to target 
the desired low lunar circular polar orbit with an 
accuracy of approximately 10 km in altitude, 0.3° in 
inclination, and 1.0° in true anomaly. 

 
Fig. 7. Orbital parameters (before LOI) pseudo 3-s as a 
function of the launcher separation epoch, namely pericentre 
altitude (top), inclination (middle) and true anomaly (bottom). 

Instead Fig. 8 represents the 99.7th percentile of the 
hyperbolic excess velocity for the different launcher 
separation epochs. In this last case, we adopt the 99.7th 
percentile because we are interested in the actual values 
of the overshooting side of the distribution (higher 
energy than the design trajectory) rather than the 
accuracy with respect to the target variable. Indeed, 
given that the hyperbolic excess velocity represents the 
specific orbital energy of the lunar transfer orbit, and 
that the energy of the target low circular orbit is known 
given the semi-major axis, Fig. 8 represents the orbital 
energy variation needed for the lunar orbit insertion 
procedure. 



 
Fig. 8. Hyperbolic excess velocity 99.97th percentile as a 
function of the launcher separation epoch. 

The navigation budget for the analysed lunar transfer 
orbit is about 35 m/s, as shown in Fig. 9. It represents 
the 99.7th percentile of the difference between the 
executed manoeuvres (commanded plus execution 
error) and the design ones for each launcher separation 
epoch. 

 
Fig. 9. Navigation budget defined as the difference between 
the 99.7th percentile of the executed manoeuvres and the 
design ones as a function of the launcher separation epoch. 

IV. SUPPLEMENTARY ANALYSIS 
This paper analyses the effect of different assumptions 
on the OD arc and FD cycle durations, see Table 2. As 
said before, decreasing the OD arc duration allows us to 
decrease the time between the manoeuvre and the 
successive command point, but at the same time, it 
reduces the number of observables collected, therefore, 
the positioning accuracy of the satellite. On one hand, 
decreasing the OD arc duration allows to anticipate the 
manoeuvre, especially the ACM after launcher 
separation, thus reducing the requested DV (lower 
gravitational losses). On the other hand, the reduced 
number of observables affects the satellite orbit 
reconstruction decreasing the positioning accuracy, thus 
increasing the perturbation on the trajectory used to 
optimize the commanded manoeuvres that are going to 
affect the propellant consumption of the successive 
manoeuvres. 
The reduction of the FD cycle decreases the minimum 
required time between the control point and the 
successive manoeuvre. This reduction allows us to 
anticipate the manoeuvre and reduce the propellant 
consumption as the OD arc without the drawback of the 
reduced positioning accuracy. However, it is not 
possible to freely decrease the FD cycle duration given 

that it is related to a series of necessary operations at the 
ground station to allow satellite navigation (such as the 
OD process or the telecommand generation and 
uploading). 
Fig. 10 represents the propellant consumption 
comparison between the conservative case analysed in 
the previous subsection (OD arc and FD cycle of 12 
hours) and a mean and best-case scenario, with an OD 
arc of 8 hours for both and an FD cycle duration of 8 
hours and 4 hours respectively. The comparison is on a 
subset of the previously analysed trajectories, and it 
shows that the average propellant consumption with 
respect to the conservative approach decreases by ~11 
m/s for the mean-case scenario and ~17 m/s for the best-
case one. 

 
Fig. 10. Executed manoeuvres DV as a function of the launcher 
separation epoch. The blue, red, and green scatter points 
represent, respectively, the conservative (left), mean (middle), 
and best-case (right) scenarios. The corresponding dotted 
lines represent the average values. 

 
V. CONCLUSION 

This paper introduces a nonlinear guidance algorithm 
designed for spacecraft navigation across various 
mission scenarios. In this study, we apply the algorithm 
to analyse a lunar transfer orbit, focusing on evaluating 
both targeting accuracy and the associated navigation 
budget. We operate under the assumption that the 
ground station will execute the procedure. 
In the conservative scenario discussed earlier, the 
guidance algorithm, accounting for a presumed 
manoeuvre execution error (1% in magnitude and 1° in 
thrusting direction), ensures precise targeting to the 
desired low lunar polar circular orbit. Specifically, it 
achieves an accuracy of approximately 10 km in 
pericentre altitude and 0.3° in inclination. The 
navigation budget estimated for this scenario is around 
~35 m/s. 
Additionally, this analysis considers the impact of 
varying the duration of the orbit determination arc and 
the flight dynamics cycle on propellant consumption. 
Reducing both time intervals decreases the required DV 
for the lunar transfer orbit, in the best-case scenario of 
~17 m/s. However, practical constraints limit the extent 
to which these time intervals can be reduced. For 
instance, decreasing the OD arc reduces the number of 
radio-tracking data collected, thus affecting satellite 



state reconstruction and accuracy. Similarly, constraints 
on the FD cycle derive from essential ground operations 
such as the OD process and telecommand generation 
and upload. 
Nevertheless, one potential solution is to implement the 
same navigation algorithm onboard the satellite, 
allowing for autonomous guidance. This approach 
significantly shortens the FD cycle to only the 
computational time needed for applying the nonlinear 
guidance scheme onboard the spacecraft. In conjunction 
with this onboard navigation approach, it is possible to 
utilize a space-born GNSS receiver [15] to perform the 
OD process autonomously. Moreover, using GNSS 
pseudo-range and pseudo-range rate observables allows 
us to obtain an accurate positioning, especially right 
after the launcher separation which happens below the 
GNSS satellite orbits. Finally, this onboard autonomous 
guidance approach reduces the time interval between 
each manoeuvre, thus allowing to perform more 
manoeuvres during the lunar transfer orbit. 
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