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Abstract - This study addresses optimal im-
pulsive trajectory design within the Circular Re-
stricted Three-Body Problem (CR3BP), present-
ing a global optimization-based approach to iden-
tify minimum ∆V transfers between periodic or-
bits, including heteroclinic connections. By com-
bining a Monotonic Basin Hopping (MBH) al-
gorithm with a sequential quadratic solver in a
parallel optimization framework, a wide range of
minimum ∆V transfers are efficiently found. To
validate this approach, known connections from
the literature are reproduced. Consequently,
three-dimensional periodic orbits are explored
and a systematic search for minimum propellant
trajectories is conducted within a selected inter-
val of Jacobi constants and a maximum time of
flight. Analysis of the results reveals the presence
of very low ∆V solutions and showcases the algo-
rithm’s effectiveness across various mission sce-
narios.

I. Introduction
Nowadays, as multiple space agencies and private compa-
nies are becoming more interested in developing missions
far beyond the Earth orbit, trajectory design in multi-
body environments becomes a fundamental asset. In par-
ticular, the Moon is considered the cornerstone of the
near future space exploration [1], with several missions
aiming to bring scientific discovery, technology advance-
ment, and acquire the essential skills needed to thrive in
a different planetary environment, specifically in prepa-
ration for upcoming human missions to other planets,
e.g. Mars. In this context, the Earth-Moon Circular Re-
stricted Three-Body Problem (CR3BP) represents a key
mathematical framework for preliminary mission analy-

sis studies, offering families of periodic orbits about the
lunar libration points with peculiar operational charac-
teristics, and providing a potential low-energy transport
network to move between these orbits, by means of the
invariant manifolds [2]. In the CR3BP, the process of
optimal trajectory design can be challenging and tradi-
tionally involves the use of Poincaré maps (PM), a tool
from dynamical systems theory, which allows the mission
designer to visualize the solution space and select promis-
ing candidate trajectories. In [3] Koon et al. exploited
this tool to compute propellant-free heteroclinic trans-
fers, between L1 and L2 periodic orbits in the planar
system. However, when the full 6-dimensional CR3BP
is considered, the use of PMs becomes more demand-
ing due to the higher dimensionality of the system which
does not enable a qualitative analysis of the maps [4].
Several optimization strategies were developed to tackle
this problem. For example, in [5] Haapala and How-
ell implemented a combination of interactive and auto-
mated search strategies to locate maneuver-free and low
∆V transfers between vertical Lyapunov, halo and axial
orbits with different Jacobi constant in the Earth-Moon
systems, and consequently established a catalog of these
transfers. In [6] Zhaoyu Li, together with the other au-
thors, proposed a global search strategy based on com-
paring the orbital state of the unstable and stable mani-
folds, incorporated with low-thrust techniques, to seek a
suitable matching point for maneuver application. The
obtained velocity increments were then refined to achieve
more fuel-optimal transfers using Sequential Quadratic
Programming techniques, also deriving the gradient of
the constraint to enhance the algorithm convergence ac-
curacy and rapidity. Recently, in [7] D. B. Henry and
D.J. Scheeres proposed a robust multiparameter continu-



ation scheme to retrieve the families of transfers between
both periodic and quasi-periodic orbits, using the PMs
to identify the starting solution.
In this work, we propose a black-box approach based

on combining the use of a global optimization algorithm,
the Monotonic Basin Hopping (MBH), with the sequen-
tial quadratic solver SNOPT [8] in a parallel optimization
framework to perform trajectory design in the CR3BP.
More specifically, we focus on impulsive minimum pro-
pellant transfers via invariant manifolds, between halo
and vertical Lyapunov orbits at the same value of Jacobi
constant (C), about the L1 and L2 libration points of the
Earth-Moon system. To validate the approach, we repro-
duce trajectories from the literature, both in the planar
and spatial scenarios. We consequently perform a sys-
tematic search of minimum propellant trajectories in a
region of Jacobi constants and accounting for a maximum
time of flight. We finally report on the best trajectories
found with low propellant consumption, for each transfer
type. The proposed approach can be used to retrieve ini-
tial low ∆V trajectories without employing preliminary
orbit cartography.

II. Theoretical background
In this section, we begin by describing the dynamical sys-
tem considered. Subsequently, we delve into the method
for retrieving the selected periodic orbits, followed by a
discussion on computing stable and unstable manifolds.

A. The Circular restricted three-body problem
The circular restricted three-body problem describes the
motion of an object (satellite) with a negligible mass un-
der the gravitational influence of two other masses m1

and m2. The larger of these two, m1 (Earth) is called the
primary, while m2 (Moon) is called the secondary. The
primary and secondary are assumed to orbit their center
of mass in a circular orbit. This dynamical system is usu-
ally implemented in a non-dimensional coordinate system
with distance unit (DU) equal to the distance between
m1 and m2 (i.e., DU = 384, 400 km for the Earth-Moon
system). The time unit (TU) is such that the mean angu-
lar motion of the primary and secondary bodies about the
system’s center of mass is unitary (TU = 375, 699.79375
s for the Earth-Moon system). The origin lies at the
center of mass of m1 and m2, and the x̂ axis points from
the primary to the secondary. Aligning parallel to the
angular momentum vector of the system is the ẑ axis,
while the ŷ axis completes the right-handed system. This
reference frame, known as Synodic reference frame, un-
dergoes a constant rotation around the ẑ axis, sharing
the same angular velocity as the orbital motion of the
primary and secondary, as depicted in Fig.1. Thus, the
coordinates of both the primary and secondary remain

Fig. 1: Synodic reference frame and location of the li-
bration points, L1 and L2

fixed. The dynamical system can be fully described by
(1): 

ẍ− 2ẏ = ∂U
∂x

ÿ + 2ẋ = ∂U
∂y

z̈ = ∂U
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(1)
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2
+
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r2
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represents the potential function, µ = m2

m1+m2
is the mass

ratio parameter, which relates the masses of the primary
and secondary (µ=0.01215058 for the Earth-Moon sys-
tem), r1 the distance of the object to the primary and
r2 its distance to the secondary. The CR3BP has five
equilibrium points, known as Lagrange points. Three of
these points are known as the collinear points and lie on
the x̂ axis. The two collinear points closest to the moon,
L1 and L2 are used for this study. This system admits
a first integral of motion, called the Jacobi constant, de-
fined through (3):

C = 2U − (ẋ2 + ẏ2 + ż2) (3)

This parameter is used in designing heteroclinic connec-
tions between different periodic orbits since it is required
that the departure and arrival orbits must have the same
Jacobi constant. Finally, by constraining the object to
move in the xy plane, a simplified framework is retrieved,
called Planar Circular Restricted Three-Body Problem
(PCR3BP).

B. Periodic orbits
The computation of periodic orbits is performed using
a predictor-corrector method. Initially, the state is nu-
merically integrated, which results in a deviation from
periodicity. This initial state is then corrected based on
information obtained from the monodromy matrix, de-
fined as the state transition matrix evaluated over one



complete period T of the orbit. To achieve this, rou-
tines from SEMpy, a Python library specialized in non-
Keplerian astrodynamics [9], were utilized and adapted
to retrieve the desired values of Jacobi constants for halo,
planar, and vertical Lyapunov orbits.

C. Invariant manifolds
Invariant Manifolds are higher-dimensional dynamical
structures that govern the asymptotic flow of motion
towards and away from unstable orbits. Those can be
computed by exploiting the properties of the monodromy
matrix. For each point XiXiXi = [x, y, z, ẋ, ẏ, ż] on the pe-
riodic orbit, the initial state of the stable and unstable
manifolds, can be computed using (4) and (5):

XS
iXS
iXS
i =XiXiXi ± ϵ

Φi,0ν
S
0∥∥Φi,0νS0
∥∥ . (4)

XU
iXU
iXU
i =XiXiXi ± ϵ

Φi,0ν
U
0∥∥Φi,0νU0
∥∥ . (5)

Where Φi,0 is the state transition matrix computed from
a reference stateX0X0X0 up toXiXiXi, while ν

S
0 and νU0 represent

the stable ad unstable eigenvectors of the monodromy
matrix evaluated at X0X0X0, corresponding to the smallest
and largest eigenvalue, respectively. The value of the
step parameter ϵ is applied to the whole state in the
positive and negative directions, i.e. interior and exte-
rior w.r.t. CR3BP’s center of mass [10]. In this study,
its value is taken constant and equal to 50km for both
manifolds, which is a common choice for the Earth-Moon
system [11]. Finally, the manifolds can be retrieved by
numerically integrating the state backward and forward
in time for the stable and unstable manifolds, respec-
tively. Intersections of the unstable and stable manifolds
result in low-energy transfers.

III. Trajectory design
In this section, the proposed approach is explained in de-
tail. First, the chosen problem formulation is addressed,
then the specific optimization architecture used is illus-
trated.

A. Problem formulation
In the proposed approach, the search for low ∆V trajec-
tories between periodic orbits is formulated as a single-
objective constrained optimization problem through (6),
(7) and (8):

minimize J = ∥∆V (x)∥ (6)

subject to ∆x = 0,∆y = 0,∆z = 0 (7)

lB ≤ x ≤ uB (8)

where the Euclidean norm of the difference in velocity
and the components of the difference in position, i.e. ∆x,

Fig. 2: Example of a simplified mission scenario, with
all the optimization variables represented

∆y and ∆z, both computed at the patching point of the
unstable and stable manifolds branches, represent the ob-
jective function J to be minimized and the three equality
constraints to be fulfilled. The decision vector x is com-
posed of four optimization variables: [θU , τU , θS,τS ]. In
particular (θU , θS), called the departure and arrival an-
gles, are defined as fractions of the orbit’s periods Tdep

and Tarr
through (9) and (10), respectively:

θU =
tdep
Tdep

(9)

θS =
tarr
Tarr

(10)

where tdep and tarr are the coasting times taken from
the reference starting points X0

UX0
UX0
U and X0

SX0
SX0
S along the de-

parture and arrival orbits. They are used to reach the
states Xi

UXi
UXi
U and Xi

SXi
SXi
S from which the unstable and stable

manifolds branches are computed. The coasting times
on the unstable and stable manifold branches are repre-
sented by (τU , τS). We will refer the sum of τU and τS as
the time of flight (TOF ) of a given trajectory. The opti-
mization variables are bounded between uL = [0, 0, 0, 0]
and uB = [1, 8, 1, 8]. An example of a transfer scenario
is depicted in Fig.2.

B. Optimization architecture
To solve the presented optimization problem a nested
optimization architecture is employed, where a Mono-
tonic Basin Hopping (MBH) algorithm uses sequential
quadratic programming (and in particular SNOPT) as
its local optimizer. MBH is a stochastic global optimiza-
tion algorithm [12] that works by continuously applying
a perturbation vector to the problem’s optimization vari-
ables in a method called hopping. Following each hop,
a local optimization is conducted on the new configura-
tion. If this step yields an improved solution, that solu-
tion updates the set of optimization variables for the next
perturbation. This iterative process is repeated until a
maximum number of hops is reached. Here we adopted a



Tab. 1: Key parameters used in the validation cases

Case µ ϵ TOF [TU ]
PCR3BP 0.012150585 1× 10−6 -
CR3BP 0.01215 1× 10−5 [0, 6]

modified version of the standard MBH. In particular, the
initial decision vector is obtained as the best individual
among a population of 200, generated from a random
seed. A tolerance of 10−6 is set for the three equal-
ity constraints. The architecture is then integrated in
a parallel optimization framework, where a number of
100 different computational unit, called islands, are used
to solve one optimization problem. The best solution
is then extracted among the best individual of each is-
land. Note that in principle, multiple trajectories can be
retrieved with the solution of a single optimization prob-
lem. This could allow the mission designer to make fur-
ther trade offs based on geometry and time of flight. The
resulted optimization architecture as well as the parallel
framework was created using the open-source Python li-
brary pyGMO [13]. Moreover, to increase the speed and
efficiency of the optimization process, the open-source
Python library Heyoka [14] was employed for fast inte-
gration of ODE systems.

IV. Validation
In this section we validate the proposed approach by re-
producing established trajectories from the literature. In
particular, the algorithm is first tested in the PCR3BP,
where heteroclinic connections between planar Lyapunov
orbits are sought. Then the CR3BP framework is con-
sidered, where heteroclinic connections between periodic
orbits become challenging to find. For this reason, a min-
imum fuel trajectory retrieved through a state-of-the-art
method in [7] is set as a reference solution for the vali-
dation of the algorithm. Furthermore, each trajectory is
characterized by the Euclidean norm of the velocity and
position differences at the patching point, i.e ∆V and
∆R, along with the TOF . The specific values of the key
parameters used in the two validation cases can be found
in Tab. 1.

A. Planar trajectories
The first task we tackle is the computation of heteroclinic
connections between planar Lyapunov orbits, belonging
to three different values of the Jacobi constant coming
from [15]. The detailed numerical results are reported in
Tab. 2., while the trajectories are represented in Fig.3.,
where the unstable and stable branches are depicted in
red and green, respectively. As one can see, in all the
three cases, the results successfully led to the reconstruc-

(a) (b)

(c)

Fig. 3: Representation of the obtained numerical hete-
roclinic connections between planar Lyapunov orbits for
cases (a), (b) and (c) in Tab. 2.

Tab. 2: Numerical results of the validation in the
PCR3BP

Case C ∆V [m/s] ∆R [m] TOF [dd]
(a) 3.130459 4.0× 10−5 25.53 48.075
(b) 3.097474 1.3× 10−4 491.80 52.787
(c) 3.025554 4.3× 10−4 360.08 75.079

tion of trajectories with the same qualitative geometry
as the ones in the reference paper, up to a precision of
about 10−4 m/s in velocity and of hundreds of meters in
position at the patching point.

B. Spatial trajectories

As a successive test, spatial trajectories are considered.
Since finding heteroclinic connections between three-
dimensional periodic orbits is very challenging due to the
low dimension of their manifolds relative to the phase
space, we perform the validation in the CR3BP case by
considering the example presented in [7]. This trajec-
tory connects with minimum propellant a L1 vertical
Lyapunov and a L2 southern halo orbits at a value of
C equal to 3.1328. The results led to the computation
of a comparable trajectory in terms of geometry, propel-
lant consumption and time of flight, as showed in Tab. 3.
Then, the best minimum fuel solution found by our ap-
proach is also retrieved. As one can see from Tab. 3., the



Tab. 3: Numerical results of the validation in the CR3BP

Case C ∆V [m/s] ∆R [m] TOF [dd]
Reference [7] 3.1328 280.47 - 39.570
Reproduced 3.1328 280.70 14.38 39.564
Best min-fuel 3.1328 149.10 64.04 44.789

Fig. 4: Representation of the trajectory from the repro-
duced case in Tab. 3. from [7]

best minimum fuel solution found by the presented algo-
rithm requires about 45% less fuel and about 13% longer
TOF . The corresponding trajectories are depicted in
Fig.4. and in Fig.5.

V. Applications
In this section, we apply the algorithm to three different
transfer types: halo to halo, vertical Lyapunov to verti-
cal Lyapunov and halo to vertical Lyapunov. Our specific
goal is to identify the global optimal trajectories that the
method can produce, for each transfer type. To achieve
this, we systematically explore minimum fuel trajectories
between halo and vertical Lyapunov orbits. This inves-
tigation covers a Jacobi constant range of [3.057, 3.152]
and a maximum time of flight of approximately 70 days.
Notably, both the interior and exterior manifolds are con-
sidered in this study. The upper bound of the Jacobi
constant corresponds to the value of the bifurcation of
the L2 halo family from the Lyapunov family [5]. A step
of 6 × 10−4 is used to determine the orbit’s Jacobi con-
stant and it comes from a trade-off between the number
of trajectories obtained and the dimension of successive
orbits, i.e. the z-amplitudes. Each mission scenario is
identified by:

1. The departure and arrival orbits characterized by a
value of C and their respective libration points;

2. The Family of each orbit;

3. The types of manifolds branches used.

(a) Three-dimensional trajectory

(b) Projections in the xy and xz planes

Fig. 5: Representation of the trajectory from the best
min-fuel case in Tab. 3., retrieved with the proposed al-
gorithm

Based on these characteristics, a compact notation is in-
troduced in Tab. 4. to identify a particular mission sce-
nario.

Tab. 4: Description of the notation adopted to identify
a mission scenario

Notation Description

NH1 L1 northern halo
SH1 L1 southern halo
V1 L1 vertical Lyapunov
NH2 L2 northern halo
SH2 L2 southern halo
V2 L2 vertical Lyapunov
+ interior manifold
- exterior manifold

outward L1 to L2

return L2 to L1

For example, with [NH1−, V 2+] we describe a trajec-
tory obtained departing from a L1 northern halo orbit
moving on the exterior unstable manifold branch and ar-
riving to a L2 vertical Lyapunov orbit using the interior
stable manifold branch. Trajectories which either ex-



Tab. 5: Numerical results for the optimal halo to halo
trajectories, in outward and return mission scenarios

Mission scenario C ∆V [m/s] ∆R [m] TOF [dd]
[NH1−, NH2−] 3.132397 3.000 110.76 50.976
[NH1+, SH2−] 3.080797 2.980 9.02 64.410
[SH1−, SH2−] 3.131797 2.684 144.10 51.077
[SH1+, NH2−] 3.071197 4.991 0.06 61.276
[NH2+, NH1−] 3.129397 3.903 446.72 49.83
[SH2−, NH1+] 3.080797 2.980 44.49 64.410
[SH2+, SH1+] 3.132397 2.999 414.86 50.976
[NH2−, SH1+] 3.080797 5.029 31.70 64.405

Fig. 6: Representation of the global optimum solution
for outward trajectories, corresponding to the mission
scenario [SH1−, SH2−] in Tab. 5.

hibit a ∆R ≥ 1 km or impact on the Moon surface are
discarded and excluded from the analysis. In the follow-
ing subsections, we report the global optimal trajectories
discovered with this algorithm, for each transfer type.

A. Halo to halo trajectories

The best solutions in terms of velocity increment for out-
ward and return trajectories are reported in Tab. 5. Ob-
serving the results, we found several trajectories with
remarkably low fuel requirements. Among them, the
trajectories with the lowest ∆V are then represented
in Fig.6. and Fig.7. Furthermore, the algorithm ex-
hibits a convergence toward outcomes that align with
those achievable through the application of CR3BP’s
symmetries [16]. For example, the successive applica-
tion of the image of the xy-plane and backward image
of the xz-plane to the [NH1+, SH2−] would produce
the [NH2−, SH1+] trajectory, while the use of only
the backward image of the xz-plane would result in the
[SH2−, NH1+], with the same C, ∆V and TOF val-
ues. Consistent findings emerged from solving the opti-
mization problems corresponding to these three mission
scenarios. This observed behavior validates the obtained
results and could offer an opportunity to streamline the
investigation of mission scenarios when employing this
numerical method.

Fig. 7: Representation of the global optimum solution
for return trajectories, corresponding to the mission sce-
nario [SH2−, NH1+] in Tab. 5.

Tab. 6: Numerical results for the optimal vertical to ver-
tical Lyapunov trajectories, in outward mission scenarios

Mission scenario C ∆V [m/s] ∆R [m] TOF [dd]
[V 1+, V 2+] 3.109600 39.629 95.48 41.583
[V 1−, V 2+] 3.086799 13.068 35.23 23.253
[V 1+, V 2−] 3.082600 9.150 1.16 38.803
[V 1−, V 2−] 3.089200 6.961 430.75 49.406
[V 2+, V 1+] 3.084400 4.128 0.50 63.482
[V 2−, V 1+] 3.104800 61.037 3.38 26.467
[V 2+, V 1−] 3.089200 6.962 2.27 49.406
[V 2−, V 1−] 3.086799 13.0776 25.45 23.251

B. Vertical Lyapunov to vertical Lyapunov trajectories
The second application we addressed involves computing
trajectories connecting vertical Lyapunov orbits. The
best solutions in terms of velocity increment for the out-
ward and return scenarios are reported in Tab. 6. Among
them, the trajectories with the lowest ∆V are then rep-
resented in Fig.8. and Fig.9. In particular, the mission
scenario [V 2+, V 1+] shows a ∆V of 4.128 m/s which
is, to the best of our knowledge and based of the liter-
ature we read, a value remarkably low for this type of
transfer. As for halo to halo trajectories, the algorithm
demonstrates adherence to the symmetry properties of
the CR3BP.

Fig. 8: Representation of the global optimum solution
for outward trajectories, corresponding to the mission
scenario [V 1−, V 2−] in Tab. 6.



Fig. 9: Representation of the global optimum solution
for return trajectories, corresponding to the mission sce-
nario [V 2+, V 1+] in Tab. 6.

Fig. 10: Representation of the global optimum solution
for outward trajectories, corresponding to the mission
scenario [SH1+, V 2−] in Tab. 7.

C. Halo to vertical Lyapunov trajectories

The last application concerns transfers associated with
halo orbits and vertical Lyapunov orbits. The best solu-
tions in terms of velocity increment for the outward and
return scenarios are reported in Tab. 7. Among them,
the trajectories with the lowest ∆V are then represented
in Fig.10. and Fig.11. Higher values of the ∆V are no-
ticed compared to previous transfer types. Also in this
scenario, the algorithm follows symmetry properties, as
one can see in Tab. 7.

Tab. 7: Numerical results for the optimal halo to vertical
Lyapunov trajectories, in outward mission scenarios

Mission scenario C ∆V [m/s] ∆R [m] TOF [dd]
[NH1+, V 2−] 3.084997 29.338 6.37 58.522
[NH1−, V 2−] 3.138997 37.159 269.83 63.321
[SH1+, V 2−] 3.084397 29.283 0.11 58.630
[SH1−, V 2−] 3.108397 32.678 187.17 63.670
[V 2+, NH1+] 3.083197 31.950 13.89 58.866
[V 2+, NH1−] 3.086197 30.731 38.40 58.317
[V 2+, SH1+] 3.106597 20.939 49.32 64.209
[V 2+, SH1−] 3.086197 30.731 0.14 58.317

Fig. 11: Representation of the global optimum solution
for return trajectories, corresponding to the mission sce-
nario [V 2+, SH1+] in Tab. 7.

VI. Conclusions
In this study, we introduce a general black-box method-
ology for trajectory design within the framework of the
CR3BP. Our validation demonstrates that the proposed
approach yields low-cost trajectories that are compara-
ble to those found in the literature. Leveraging a direct
problem formulation and an optimized computational ar-
chitecture, we efficiently compute a large number of tra-
jectories across various scenarios in an automated man-
ner. The numerical results reveal very low ∆V solutions,
but also alternative trajectories that could serve as initial
approximations for existing methodologies. Remarkably,
despite its reliance on a numerical approach, the algo-
rithm demonstrates convergence toward the symmetries
of the CR3BP, achieving a certain precision. Further-
more, our proposed approach suggests an exploration of
a broader search space compared to traditional methods
that rely on Poincaré maps. Indeed, the algorithm we
employed operates without the need for defining a surface
of section or imposing problem-dependent constraints to
reduce system dimensionality. These unique character-
istics could facilitate the uncovering of new fuel-optimal
solutions, as evidenced by the numerical results for tra-
jectories from vertical Lyapunov to southern halo orbits.
Our future research will delve into a more detailed study
and analysis of this property, along with an investigation
into the convergence limits of the algorithm.
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C. “Study refinement of semi-analytical halo or-
bit theory.” Final Report, ESOC Contract No:
8625/89/D/MD (SC), 1991.

[12] Eason, G., Noble, B., and Sneddon, I. N. “On cer-
tain Wales, D. J. & Doye, J. P. K. Global optimiza-
tion by basin-hopping and the lowest energy struc-
tures of Lennard–Jones clusters containing up to 110
atoms.” J. Phys. Chem. A, Vol. 101, pp. 5111–5116,
1997.

[13] Biscani, F. and Izzo, D. “A parallel global multiob-
jective framework for optimization: pagmo.” Jour-
nal of Open Source Software, Vol. 5, No. 53, p. 2338,
2020.

[14] Biscani, F. and Izzo, D. “Revisiting high-order Tay-
lor methods for astrodynamics and celestial mechan-
ics.” Monthly Notices of the Royal Astronomical
Society, Vol. 504, No. 2, pp. 2614–2628, 2021.

[15] Barrabés, E., Mondelo, J. M., and Ollé, M. “Numer-
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