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Abstract – Scientists have identified several ocean 

worlds, mostly orbiting the outer planets, with large 

subsurface oceans that could be hospitable to some 

form of life. Of these worlds, Europa and Enceladus 

have emerged as the most promising targets. 

Designing trajectories to such deep space targets 

requires balancing multiple objectives. Science 

objectives are limited by fuel and time constraints. 

Study of the Circular Restricted Three-Body 

Problem (CR3BP) has allowed mission designers to 

find very efficient trajectories that arrive in realistic 

time frames. Dynamical systems theory has been 

successfully applied to the CR3BP to compute 

periodic and quasiperiodic orbits, and their 

invariant manifolds. Here, we review the idea of 

invariant funnels, which are sets of trajectories that 

converge in position space to a target point. We 

describe our method for computing them, which 

involves selecting initial conditions with parallel 

velocities, and we review some of their applications 

to mission design for the ocean worlds. We examine 

the topology of the CR3BP to identify why the 

velocity direction is key to the observed funneling 

behavior. 

 

I. INTRODUCTION 

A. Motivation 

Water, a fundamental necessity for all known forms of 

life, serves as the starting point in the quest for 

extraterrestrial life. Fortunately, within our own solar 

system, oceans harboring liquid water are not exclusive 

to Earth. Evidence of subsurface oceans has been 

observed on several moons orbiting the outer planets, 

including Europa, Enceladus, Titan, Ganymede, and 

Callisto [1].  

 

Among these, Europa (a moon of Jupiter) and Enceladus 

(a moon of Saturn) stand out as the most intriguing 

targets. Europa is estimated to hold more liquid water 

than all of Earth's oceans combined, while Enceladus's 

southern pole features lengthy crevices from which 

geysers continuously vent water vapor into space. 

NASA has set a strategic objective to explore these 

celestial bodies using robotic spacecraft capable of 

sampling water and detecting signs of life. This ambition 

is reflected in missions like the upcoming Europa 

Clipper and the proposed Enceladus Orbilander, as 

outlined in [2]. 

 

Efficient mission design for these distant targets 

necessitates the application of dynamical systems 

theory. Originating from Henri Poincaré’s 

investigations into the chaotic dynamics of the three-

body problem, dynamical systems theory has been 

instrumental in astrodynamics and celestial mechanics. 

When employed in ocean world missions, it facilitates 

the design of trajectories that optimize fuel consumption 

and minimize travel time. In dynamical systems theory, 

periodic and quasiperiodic orbits are the skeleton of the 

phase space, and their hyperbolic invariant manifolds 

connect the space together. 

 

B. Circular Restricted Three-Body Problem 

The Circular Restricted Three-Body Problem (CR3BP) 

is a common model used in astrodynamics to model the 

motion of an infinitesimal particle under the influence of 

two massive bodies in circular orbits about their mutual 

barycenter. See [3] for more details on the CR3BP. The 

equations of motion rely on a single parameter, the mass 

ratio of the massive bodies 

𝜇 = m2/(m1 + m2), where 𝑚1 and 𝑚2 are the masses 

of the larger and smaller body, respectively. We 

normalize the units such that the distance between the 

bodies, their total mass, and their angular velocity are all 

unity. We use a rotating frame, as shown in Fig. 1, to fix 

the bodies on the 𝑥-axis and make the equations of 

motion autonomous. 

 

Fig. 1 - CR3BP in the coordinate system of the rotating frame 

with the larger body at 𝑥 = −𝜇 and the smaller body at 𝑥 =
1 − 𝜇. The origin of the coordinate system is the barycenter of 

the massive bodies. 
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The vector 𝒓 = [𝑥, 𝑦, 𝑧]𝑇 represents of the position of 

the spacecraft with respect to the barycenter. The 

equations of motion in the rotating frame are 

𝑥̈ =  − (
1 − 𝜇

𝑟1
3

(𝑥 + 𝜇) +
𝜇

𝑟2
3

(𝑥 − 1 + 𝜇)) + 𝑥 + 2𝑦̇

𝑦̈ = − (
1 − 𝜇

𝑟1
3 𝑦 +

𝜇

𝑟2
3 𝑦) + 𝑦 − 2𝑥̇ (1)

𝑧̈ = − (
1 − 𝜇

𝑟1
3 𝑧 +

𝜇

𝑟2
3 𝑧) ,

 

where 𝑟1 and 𝑟2 are the distances of the spacecraft from 

the larger and smaller bodies respectively.  

 

The CR3BP is a Hamiltonian system, with a single 

integral, the Jacobi constant 

𝐶 = 𝑥2 + 𝑦2 + 2
1 − 𝜇

𝑟1

+ 2
𝜇

𝑟2

− (𝑥̇2 + 𝑦̇2 + 𝑧̇2). (2) 

For a given 𝐶, there exists a zero-velocity surface (ZVS), 

a locus of points in the position space where the velocity 

must be zero for the state to have the appropriate Jacobi 

constant. The ZVS bounds the forbidden region, where 

motion is not possible. 

 

There are five equilibrium points in the CR3BP, referred 

to as Lagrange points. There are also diverse families of 

periodic and quasi-periodic orbits around the Lagrange 

points. In fact, the phase space is foliated by invariant 

tori, the hyperbolic manifolds of which provide a 

structure for designing trajectories between orbits of 

interest.  

 

The Planar CR3BP (PCR3BP) is a common simplified 

model that assumes there is no out-of-plane motion (i.e. 

𝑧 = 𝑧̇ = 0. We use it in this work to help build intuition, 

due to its lower-dimensional state space. 

 

C. Invariant Funnels 

In previous work [4] [5], we describe invariant funnels, 

which are sets of trajectories that converge toward some 

nominal trajectory. We discovered these structures when 

searching for low-energy trajectories that reach high 

latitudes on Europa [6] and have since applied them to 

mission design problems for Europa [7] and Enceladus 

[8]. We compute invariant funnels by sampling a closed 

surface of initial conditions around a state on the 

nominal trajectory, while constraining the velocities (in 

the 𝑥𝑦 plane of each sampled state to be parallel to each 

other. This parallel velocity condition seems to be the 

key. When these sampled states are integrated backward 

in time, they spread out in position space, forming a 

funnel. An example is shown in Fig. 2, in which a ring 

of points 50 km wide on the surface of Europa is 

integrated backward. 

 

In terms of nomenclature, we define an invariant funnel 

as all the trajectories that reach a given region around 

the final state of a nominal trajectory 𝑥̅(𝑡). The final 

state is denoted 𝒙∗ = (𝒓∗, 𝒓̇∗). We sample states, 𝒙𝑖 =
(𝒓𝑖, 𝒓̇𝑖), along closed curve centered on 𝒙∗. The 𝑥𝑦 

projection of each 𝒓̇𝑖 is parallel and all states share the 

same Jacobi constant. We refer to these points as the 

initial boundary of the funnel, denoted 𝜕ℱ0, see Fig. 3. 

When we integrate the initial boundary backward, it 

gives us the full boundary of the funnel as a function of 

time 𝜕ℱ(𝑡). For a selected time 𝑡, the boundary 𝜕ℱ𝑡 

remains homeomorphic to the initial boundary, as long 

as 𝑡 is not too long and the initial boundary is not too 

large. 

 

One question that we have had since beginning this work 

is whether we can define an interior/exterior to the 

funnels. For example, if we have an arbitrary spacecraft 

state, can we derive an analytical expression that quickly 

determines if that spacecraft is inside the funnel? By 

doing so, we could program a controller to target the 

interior of the funnel, which is a much larger target than 

the trajectory itself. The hope is that such an algorithm 

would be using natural dynamics to improve efficiency. 

 

In our previous work [7], we attempted to approach this 

problem by integrating a set of trajectories on the funnel 

boundary with a fixed time step. At each time step, we 

fit a hyperellipsoid to the corresponding funnel points. 

Therefore, we had a discrete sampling of time, with a 

Fig. 2 - An invariant funnel converging in position space 

around a resonant landing orbit to Europa’s north pole.  

Fig. 3 – Discrete sampling of the initial boundary of an 

invariant funnel. In this work, we only integrate the boundary 
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hyperellipsoid defined at each time step. We defined our 

spacecraft state in terms of deviations from the time-

discretized nominal trajectory, so at each time step, we 

could plug the deviation from the corresponding 

nominal trajectory into the equation of a hyperellipsoid 

to determine if it was “inside” the funnel or not. This 

was good enough for our simple case study with small 

funnels and small deviations from a nominal trajectory 

with pre-defined knot points. We showed that an MPC 

control scheme can reduce the amount of fuel required 

by including the approximate funnels as terminal sets. 

However, we would like to explore the idea of an 

interior to the funnel more deeply, potentially 

developing a method to classify whether an arbitrary 

state, far away from the nominal trajectory, is 

inside/outside a funnel. 

 

II. METHODS 

A. Topology of manifolds 

To divide an 𝑁-dimensional space, an (𝑁 − 1)-

dimensional surface is required, which can be created by 

extruding an (𝑁 − 2)-dimensional closed surface 

through time. Fig. 4 shows an example of a 3D space 

being divided by a 2D cylinder created by extruding a 

1D curve. Note that, to form a surface with an interior 

and exterior, the direction of extrusion must be 

transverse to the closed surface on which the initial 

conditions lie. For example, if the circle in Fig. 4 was 

extruded straight up and down, there would be no 

interior. We discuss this idea more in section III.A. 

 

In the spatial CR3BP, the phase space is six-

dimensional, meaning there is a five-dimensional energy 

surface (i.e., 𝑁 = 5). with a four-dimensional parallel 

velocity surface embedded in it, if only the direction of 

the velocity projected into the 𝑥𝑦 plane is fixed.  Note 

that, if both angles that define the velocity direction are 

fixed entirely then the parallel velocity surface is three-

dimensional. This doesn’t leave us enough dimensions 

to sample a closed surface of dimension 𝑁 − 2 = 3. 

However, since it is very difficult to visualize such high 

dimensional state spaces, we will first work with the 

PCR3BP to gain more intuition into the problem at hand. 

 

The PCR3BP has two degrees of freedom, meaning the 

phase space is four-dimensional. By fixing the Jacobi 

constant, we are left with a 3D energy surface (i.e., 𝑁 =
3). We sample the initial conditions of an invariant 

funnel such that they all have parallel velocities. This 

parallel velocity condition defines a 2D surface 

embedded in the 3D energy surface. On this 2D parallel 

velocity surface, we sample a 1D ring of points. This 

gives us a 1D curve that we can extrude to generate a 2D 

surface that will divide the 3D energy surface. Note that 

extrusion corresponds to propagation through time here. 

 

B. Cylindrical Isomorphic Mapping 

In his thesis [9], Travis Swenson extended the work of 

Charles Conley on the topology of transit orbits in the 

CR3BP. He used a cylindrical isomorphic mapping to 

better visualize the phase space of the PCR3BP. For a 

fixed Jacobi constant, only three parameters are needed 

to uniquely identify a state. However, if using three of 

the four (𝑥, 𝑦, 𝑥̇, 𝑦̇) coordinates, there is ambiguity in the 

sign of the velocity components. This seemingly 

innocuous problem becomes more malicious when we 

realize that trajectories may appear to intersect when 

plotted in such a phase space. This is remedied by fixing 

the velocity magnitude 𝑟̇ = √(𝑥̇2 + 𝑦̇2) and using the 

velocity direction in the 𝑥𝑦 plane, 𝜃, as a coordinate. 

Topologically speaking, the energy surface is 

homeomorphic to a ring cross a strip, and this new 

coordinate system reflects that. The new coordinates are 
𝑥 = 𝑥

𝑟 =
𝑦̃ − 𝑦

2𝑦̃
(3)

𝜃 = 𝑎𝑡𝑎𝑛2(𝑦̇, 𝑥̇),

 

Fig. 5 - An example of a 3D space divided by the 2D 

extrusion of a 1D closed curve. 

Fig. 4 – All sampled states on an invariant funnel share the 

same angle 𝜃. In the spatial problem, we allow for variation 

in the 𝑧̇ direction. 
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where 𝑦̃ is the maximum possible value of 𝑦 for a given 

value of 𝑥, normally coinciding with the ZVS. Note that 

the 𝑥-coordinate is unchanged and 𝑟 is simply a scaled 

version of 𝑦. Do not confuse this 𝑟 with the distance 

from the barycenter. See Fig. 6 for an illustration of the 

space. Note that a parallel velocity surface is simply a 

half-plane with the 𝑥-axis as a border. 

 

To compute 𝑦̃, given values for 𝑥 and 𝐶, we solve for 𝑦 

in (2) assuming the velocity terms are all zero. In other 

words, we solve for the zeros of  

𝑓(𝑦̃; 𝑥, 𝐶) = 𝑥2 + 𝑦̃2 + 2
1 − 𝜇

𝑟1

+ 2
𝜇

𝑟2

− 𝐶. (4) 

We use Newton iteration to solve for 𝑦̃, starting 

with  𝑦̃ = 0.02 as an initial guess in the Jupiter-Europa 

system with 𝐶 = 3.0027. In Fig. 7, we can see that this 

initialization converges to the ZVS for 𝑥 values close to 

the secondary body, and to a nearly constant value near 

0.02 farther away. 

 

III. RESULTS 

A. Funnel in the PCR3BP 

We computed an invariant funnel around a resonant 

landing trajectory in the Jupiter-Europa system, as 

shown in Fig. 8. The boundary of the funnel, 𝜕ℱ, is 

made up by backward propagating a closed curve 

sampled around the landing site. In this case, the closed 

curve is a circle of radius 50 km in position space. As 

we follow the evolution of the circle of initial conditions 

backward in time, we see that it overlaps itself in the 𝑥𝑦 

projection, as shown in Fig. 9. We know from the 

uniqueness and existence theorem that trajectories do 

not cross in the phase space, which becomes 

immediately clear when we perform the cylindrical 

isomorphic mapping and plot in the cylindrical space. 

 

Fig. 7 – The 𝑦̃ points shown in red coincide with the ZVS 

that bounds the forbidden region for 𝑥 values close to the 

secondary body. As the ZVS turns sharply away, 𝑦̃ slowly 

increases. 

Fig. 8 – Invariant funnel, 𝜕ℱ(red), around a nominal 

trajectory, 𝒙ഥ (black),. The nominal trajectory is tangent to the 

surface of Europa and the velocity is purely in the (negative) 

𝑥-direction. The evolution of the initial ring (blue) is shown 

every hour. The total integration time is -64 hours and 𝐶 =
3.0027. 

Fig. 6 - Cylindrical space homeomorphic to the energy surface 

in the PCR3BP. The outer surface corresponds to the lower 

ZVS while the central line corresponds to the upper ZVS. The 

Lagrange points and the secondary mass become circles 

rather than points. 

Fig. 9 – A zoomed in view of Fig. 8 showing the ring 

turning inside out. 
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B. Funnel in Cylindrical Space 

Recall that, in the PCR3BP, the phase space is 4D. 

Fixing the Jacobi constant yields a 3D energy surface. 

This surface can be faithfully represented in the (𝑥, 𝑟, 𝜃) 

coordinates as a coaxial pipe. Fig. 10 shows the funnel 

plotted in this cylindrical space. The initial ring of 

conditions is sampled on the half-plane representing 𝜃 =
𝜋 and near the green ring representing the secondary 

body. We note that the initial direction of integration is 

transverse to the 𝜃 = 𝜋 halfplane, as shown in Fig. 11. 

 

C. Transversality Condition 

Now that we have the appropriate coordinate system, it 

is simple to define a transversality condition. As 

mentioned before, the direction of extrusion 

(integration) must be transverse to the surface on which 

the initial conditions lie. In essence, we must make sure 

that none of the sampled points lie on the same 

trajectory, in which case we would be extruding an open 

curve and wouldn’t be able to identify an interior. Note 

that, if the transversality condition holds for our initial 

boundary, the funnel will not overlap itself. Even as the 

funnel passes through regions where 𝜃 = 0̇ , the 

evolution of the initial boundary will longer share a 

plane defined by a single 𝜃. In fact, they won’t likely lie 

on a single plane at all. 

 

In our new coordinates, since we sample on a half-plane 

defined by a fixed 𝜃, the transversality condition can be 

expressed simply as 𝜃̇ ≠ 0. Since 𝜃 is a function of both 

𝑥̇ and 𝑦̇, we use the total derivative,  
𝜃 = 𝑎𝑡𝑎𝑛2(𝑦̇, 𝑥̇)

𝑑𝜃

𝑑𝑡
=

𝜕𝜃

𝜕𝑥̇

𝑑𝑥̇

𝑑𝑡
+

𝜕𝜃

𝜕𝑦̇

𝑑𝑦̇

𝑑𝑡
(5)

𝜃̇ =
𝑥̇𝑦̈ − 𝑦̇𝑥̈

𝑥̇2 + 𝑦̇2
.

  

The 𝑥̈, and 𝑦̈ terms are readily available from the 

equations of motion. Therefore, when sampling initial 

conditions for an invariant funnel, a simple check of 𝜃̇ 

for the nominal landing state to make sure it is not close 

to zero should suffice. If a large funnel is desired, one 

should check the entire sample to make sure that they all 

have the same sign. 

 

We sampled a million points on the energy surface (pipe 

space) and computed 𝜃̇ at each point. The result is shown 

in Fig. 12, where we have colored positive and negative 

values of 𝜃̇ blue and red, respectively. Taking slices of 

this section at certain values of 𝑥 gives some insight into 

the internal structure, as shown in Fig. 13. We can see 

that the locus of zeros at 𝑥 = 𝑥𝐿2
 is small and 

concentrated near both ZVS (center and outside of the 

circle). As we move down the 𝑥-axis towards the 

secondary body, we see an arm of negative values 

stretch out toward the center, completing a circuit 

around the secondary body itself. As we pass the 

secondary body, we are left with a mirror situation: an 

arm of negative values shrinking away from the center 

now. When we reach 𝑥 = 𝑥𝐿1
, we have a small locus of 

zeros concentrated near the ZVS again. 

 

 

Fig. 10  –  The same funnel from Fig. 8 shown in the 

cylindrical space. We can see that the funnel has width and 

does not intersect itself. 

Fig. 11 – A zoomed in view of Fig. 10 shows the 

transversality of the initial integration direction to the half 

plane 𝜃 = 𝜋. 

𝜃 = 𝜋 

Fig. 12 – The positive and negative values of 𝜃̇ shown in blue 

and red respectively. The boundary between the red and blue 

regions is the locus of zeros of (5). 
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D. Topology in the Spatial CR3BP 

In the 6D phase space of the spatial CR3BP, the energy 

surface will have two added dimensions. Fixing the 

Jacobi constant and allowing freedom in all three of the 

position coordinates means that the velocity magnitude 

can be determined uniquely, and two degrees of freedom 

remain: the azimuth and elevation of the velocity vector. 

Therefore, the energy surface is homeomorphic to a 

volume cross a sphere. Obviously, this is a much more 

complicated space to visualize. Fixing the azimuth, 𝜃 of 

the velocity vector, no longer defines a half-plane, but 

rather a 4D volume. However, the 𝜃̇ ≠ 0 condition 

should still guarantee transversality of the integration 

direction with that 4D volume. We can sample a 

hyperellipsoid in that 4D volume as the initial boundary, 

and if our transversality condition holds, then we will 

have a 4D surface that divides the 5D energy surface. 

 

Determining whether an arbitrary state lies within that 

energy surface can be achieved by integrating the state 

forward and taking a Poincaré section of the passes 
through the parallel velocity condition. Like in the 
PCR3BP, there will be multiple passes through the 
parallel velocity surface, but we can select the passes 
within some threshold distance to the 𝑥-value of the 
secondary body. Then the point on the Poincaré section 
can be plugged into the expression defining the closed 
curve (the equation of a circle or an ellipsoid), which 

has a well-defined interior. 
 

IV. CONCLUSION 

In conclusion, we have examined the behavior of 

invariant funnels in the PCR3BP by using a cylindrical 

isomorphic mapping to visualize the phase space for a 

fixed Jacobi constant. We have seen that this change of 

coordinates makes it easy to define a surface of parallel 

velocity embedded in the energy surface. Furthermore, 

it enables us to identify a transversality condition that 

will guarantee that the funnel divides the energy surface 

into an interior and exterior. We have performed a 

numerical experiment to identify the regions where the 

transversality condition may not hold, which seem to 

pass through the center of the secondary body and 

approach the ZVS. 

 

Future work will include using jet transport to compute 
high order approximations of the Poincaré map using 
just the nominal trajectory. This would allow for an 
arbitrary state close to the nominal trajectory to be 
classified as interior/exterior by evaluating a 
polynomial. 
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