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Abstract —Europa has been a prime target for space
exploration ever since 1997, when the Galileo space-
craft magnetic measurements of Europa suggested
the moon might hide a vast, salty ocean beneath its
icy surface. To investigate its habitability, NASA de-
veloped Europa Clipper, which will be launched in
October 2024 on a Falcon Heavy rocket from Cape
Canaveral. After a 5.5-year interplanetary journey
that includes one Mars gravity assist and one Earth
gravity assist, Europa Clipper will reach Jupiter in
April 2030 and insert into a 200-day orbit in the Jo-
vian system. Subsequently, a complex gravity as-
sist trajectory (tour) will commence. This paper will
present the reference tour, 21F31, which is com-
prised of 53 flybys of Europa, 9 flybys of Callisto, 7
flybys of Ganymede and culminates with Ganymede
impact to meet planetary protection requirements.
The principles, design process, and evolution of tour
designs—which leverage on more than two decades
of research in astrodynamics and multiple interac-
tions with planetary scientists and engineers—as
well as the science objectives and mission con-
straints that drive the design of the tour will be cov-
ered in this paper. This paper is part of a series
of papers describing the mission design and navi-
gation analysis of Europa Clipper, which have been
presented at different international conferences.

I. INTRODUCTION

Europa is one of the most scientifically interesting tar-
gets of the solar system, as it may possess what are
thought to be the three necessary ingredients for life: an
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extensive ocean of liquid water, an energy source, and
a suite of biogenic elements. To explore the habitabil-
ity of Europa, NASA will launch Europa Clipper mission
in October 2024. Europa resides deep inside the grav-
ity well of Jupiter, in a region of the magnetosphere with
many trapped ionized particles, that when accelerated
to near relativistic speeds, result in a radiation environ-
ment detrimental to unprotected spacecraft electronics.
Europa Clipper will utilize a high number of Europa fly-
bys, connected by resonant and non-resonant transfers
to build up a global understanding of Europa. Science
data is collected during high-radiation Europa flybys, and
returned to Earth during the rest of the highly elliptical
Jovian orbits, where the spacecraft is exposed to a much
lower radiation dose.

Europa Clipper will reach the Jupiter system utilizing
a Mars-Earth Gravity Assist (MEGA) interplanetary tra-
jectory [1], with the opening day of the launch period on
October 10, 2024. At Jupiter, Europa Clipper will execute
a multi-moon tour, designed to meet the ~300 require-
ments levied on the mission design. The tour is nearly
ballistic, using on average just a few meters per second of
deterministic maneuvers between flybys. All Level 1 re-
quirements/objectives will be met over the nominal prime
mission, which consists of 49 Europa flybys with closest-
approaches at varying altitudes, longitudes and latitudes
on both the sub-Jovian and anti-Jovian hemispheres.

This paper presents the tour design process, and the
21F31 tour that was selected as mission baseline. The
tour is the product of many years of research in astrody-
namics and seven design cycles that involved the Mission
Design Team (mission analysis, navigation, and mission
planning) and the Project Science Group (PSG).
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Fig. 1: Since Europa is tidally locked, Europa’s terrain maintains the same orientation relative to Jupiter. Different part of
Europa are illuminated depending on the position on the orbit. The 14 panels are defined by the PSG to assess "global-
regional" coverage.

( Shallow Subsurface Structure )
1 1
( Ice Shell Properties )
( Ocean Properties )
SCIENCE I I
THEME ( Surface Thermal Anomaly Search )
1 1
( Surface Activity Evidence )
: — Remote Plume
( ITocaI Scale Surface Propertle? ) Search (and
(Global Surface Mapping ) (__Landform Geology ) (_Characterization)
INSTRUMENT Global Thermal Regional Thermal Plume Search
DATASET Imaging Dataset Imaging Dataset Thermal Dataset
| [ U P
=<60,000 km =500 km { 100-60,000 km
ALTITUDE [ (ETH.005) J [ (ETH.006) } _____ (ETH.PG.025)
Day: 8:30-15:30 (ETH.010)
LST/ Outside Jupiter umbra +2 hours (ETH.026,
SOLAR PHASE [ Night: 18:30- 6:00 }
(ETH.011)
EMISSION [ =70° ] [ <5° ]
ANGLE (ETH‘._021) (ETH|.008)
VELOCITY C <7.5km/s (ETH.017)
L F > 6 distinct sites
SPFI‘\ZI&IE. :ﬁg E = 80% surface (day+night)J = 40 distinct sites ]5 separated by <90°in
_DISTRIBUTION | | ~———— e | e —— e L
INTERNAL
CORRELATIONS
DIVERSITY AND = 3 day/night sites in each ]
SPECIAL CASE hemisphere (ETH.113)

Fig. 2: Schematic of science requirements and planning guidelines levied on Mission Design by the thermal imager E-
THEMIS.
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Instrument tour on dataset
Magnetometer ECM 6 3
Mass spectrometer MASPEX 11 5
Plasma instrument PIMS 8 12
Dust Analyizer SUDA 9 8
Radars REASON 17 22
Ultraviolet Spectrograph Europa-UVS 8 8
Themral Imager E-THEMIS 5 8
Camera (Narrow and Wide Angle) EIS 26 21
Infrared spectrometer MISE 5 5
TOTAL 95 92

Fig. 3: Science requirements levied on Mission Design by the different instruments.
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[I. EUROPA CLIPPER MISSION DESIGN

A. The Jovian System

The Galilean moons are the four largest moons of Jupiter.
Discovered by the lItalian astronomer Galileo Galilei in
1610, these moons are named lo, Europa, Ganymede,
and Callisto. They are among the most fascinating ob-
jects in our celestial neighborhood and have captivated
astronomers and space enthusiasts for centuries.

lo, Europa, and Ganymede orbits are in a Laplace
resonance. In particular, their orbital periods are in a
1:2:4 resonance: Ganymede’s period is twice that of Eu-
ropa, and Europa’s period is twice that of lo. The small
eccentricity of their orbits causes tidal heating, which
keeps the water in liquid state under the surfaces of Eu-
ropa, Ganymede and Callisto. The same process is re-
sponsible for the volcanic activity at lo; its ejecta are
ionised and accelerated by the powerful magnetic filed
of Jupiter, creating a belt of high-energy radiation parti-
cles that can damage a spacecraft electronics and make
the exploration of Europa very challenging.

Like most the moons in the solar system, Europa is
tidally locked. Europa’s rotation period matches its or-
bital period, so that the moon always faces the same
hemisphere to Jupiter (the sub-Jovian hemisphere). As
Europa moves on its roughly 3.5 day orbit, and keeps
its prime meridian towards Jupiter, it exposes different
part of its surface to the Sun. The anti-Jovian hemi-
sphere is illuminated when the Sun-Jupiter-Europa an-
gle (SJE), is near 0°; while the sub-Jovian hemisphere
is illuminated when SJE is about 180°. Figure 1 shows
a Jupiter-centered plot of Europa’s orbit, viewed from
Jupiter’s north pole in the rotating frame with the y-axis
pointing to the Sun (top of the page), z-axis normal to
Europa’s orbital plane, and x-axis completing the right-
handed rule. Also shown are maps of Europa with the
fourteen roughly equal-area regions [2] and the surface
illumination around Jupiter.

B. Science Requirements

On May 26, 2015, NASA officially selected 10 scientific
instruments from 6 different U.S. research facilities and
universities for the Europa Clipper payload. Over the
subsequent years, a rich set of science measurement
requirements have been developed to meet the Level
1 (L1) science requirements. A large sub-set of these
requirements have been levied on Mission Design
(trajectory design, navigation, and mission planning). Of
the over 180 science requirements levied on Mission
Design, about half are requirements that the data sets
need to meet, and the other half are constraints on
observations to be counted towards these data sets
(such as illumination conditions or spatial resolution).
As an example, the thermal imager E-THEMIS collects
day and night images of large parts of Europa surface;
one requirement specifies that at least 50% of the areas
observed in the day are also observed in the night:

ETH.012 Global Day/Night Coverage For the global
thermal imaging dataset, at least 50% of the area covered
on the dayside shall be covered by data acquired on the
nightside.

Additional requirements then define constraints the
observations need to meet, for them to be included in
the thermal imaging dataset. A graphical representa-
tions on the requirements levied by E-THEMIS is shown

in Fig. 2 (see [3] for a complete description of science re-
quirements on the Europa Clipper trajectory design). The
number of science requirements per instrument is shown
in Fig. 3.

On top of the science requirements, more than 100
Planning Guideline are defined by the PSG, to guide the
Mission Design Team to deliver trajectories with the high-
est scientific return.

C. Non-Science Requirements

A multitude of non-science requirements are also levied
on mission design, stemming from project policies, plan-
etary protection, and the evolved capability and char-
acteristics of the Flight System and Mission Operations
System. The most driving requirements on the trajec-
tory specify the maximum allocated mission AV, the time-
of-flight for the tour, the accumulated total ionizing dose
(TID)', as well operation constraints on the timing of the
maneuvers and of the flybys. A subset of these require-
ments, and their compliance by 21F31_V86, is shown in
the next section. More requirements levied on the navi-
gation are specified in other papers[4—6]. Probability of
impact requirements are described in detail in Campag-
nola at al.[7].

D. Tour Design Cycle

Given the full set of requirements and planning guide-
lines, the Mission Design Team computes candidate
tours for consideration by the PSG. Figure 4 on the
top shows the details of this mission design task. The
tour designers compute preliminary tours in high fidelity
model (Mission Analysis block) and then run a prelimi-
nary check of the requirements - for example, a simpli-
fied probability of impact analysis is performed assum-
ing perfect knowledge, and a default scheduling is used
to check a subset of science requirements. When non-
compliances are found, the tour designers can try to mit-
igate them with trajectory changes, before passing the
tours to the navigators.

Then a full navigation analysis (Navigation Analysis
block) computes the spacecraft dispersion, the predicted
and reconstructed knowledge, the probability of impact,
and the compliance to the navigation requirements. If
needed, the trajectories are passed back to the tour de-
signers for adjustments.

Finally, the tours are passed to the mission planners,
who use activity-scheduling rules and the APGenX soft-
ware (Activity Plan Generator[8, 9]), to produce a time-
line of activities that represents the project’s best under-
standing of the planned operations profile. The mission
planners then use VERITaS (Verification of Europa Re-
quirements Integrating Tour and Science[3, 10]) to sim-
ulate the instrument observations, using the timeline of
activities from APGenX, and to assess compliance to the
science requirements and planning guidelines. VERITaS
reports are analyzed by the tour designers, who have the
opportunity to implement changes to the trajectories, be-
fore they are passed to the PSG. Fig. 5 and Fig. 6
show an example of VERITaS product for tour 21F31_V6,
for the E-THEMIS requirement ETH.012 on the day/night
coverage. The first figure shows the simulated coverage,
and the second shows that the requirement is met with
E28.

"Total ionizing dose Si behind a 100mil Al, spherical shell (GRID3 ra-
diation model)
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Fig. 5: Day/Night coverage by the thermal imager E-THEMIS for 21F31_V6, as simulated by VERITaS
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Fig. 6: Compliance to the Day/Night coverage requirement for 21F31_V6, as simulated by VERITaS

29th International Symposium on Space Flight Dynamics
22 - 26 April 2024 at ESOC in Darmstadt, Germany



17F12 19F22/ 21F31 21F31

Tour Name 13F7 15F10

V2 F23 v4 V6

Gate Review MCR SRR/MDR PDR CDR SIR FRR
Design Cycle 6 7
Launch Date 2021 2022 6/4/22  11/7/23 10/10/24 10/10/24
Arrival Date 12/23/24 9/29/29 4/10/30 4/10/30
Interplanetary Trajectory VEEGA  Direct Direct VEEGA MEGA  MEGA
Tour Duration (years) 3.5 3.4 3.7 3.84 4.27 4.27
EC1 Europa Resonance 4:1 4:1 4:1 4:1 6:1 6:1
Number of Flybys

Europa 45 42 46 51 53 53

Ganymede 5 4 4 6 7 7

Callisto 9 8 9 7 9 9
Elc;,.bc;,fleght Side Europa 9 11 11 1
No. of Jupiter Orbits 76 79 70 77 79 79
Time between Flybys (days)

Maximum 50 50 71.6 64.4 64.4

Minimum 5.5 8.3 5.4 5.7 9.4 9.4

Minimum (Europa-to-Europa) 10.1 10.6 13.8 13.8
?r:/t:)’m'“'s“c AN (e AL 164 118 182 199 2252 21438
Maximum Inclination (deg.) 201 21.2 18.9 21 7.5 7.7
No. of Jupiter Eclipses 33 48 47 49 57 57
mzﬁ'r';‘)”m Eclipse Duration 4.5 8.8 915 922 7.8 7.8
Total lonizing Dose (Mrad)® 2.82 2.99 2.5 2.88 2.97 2.97

Fig. 7: Europa Clipper history of baseline tours
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The described mission design process takes about 3
to 5 months, and is challenging and time consuming for
many reasons.

1. The tour design is complicated by the large
amount of distant untargeted flybys, which require
the design and optimization of the trajectory in
high-fidelity model.

2. The science requirements are not formulated in a
way that they can be directly translated into path
or boundary constraints for a trajectory optimiza-
tion program. This is because most requirements
can only be evaluated after integrating the obser-
vations over the entire tour, for a chosen attitude
and activity plan, conforming to mission system
and flight system constraints. Instead, tour de-
signers have to come up with tailored astrody-
namics techniques or solutions to meet sets of
requirements.

3. All tours must meet driving navigation require-
ments, like probability of impact or the predicted
and reconstructed knowledge, which can be as-
sessed only with a full navigation analysis, and
cannot be included directly as constraints in the
trajectory optimization?2.

4. Some measure of the scientific return of the tour
can only be determined after the scheduler has
optimized hundreds of thousand of activities (a
process that can take days) and VERITaS has
produced a vast report, with infographics and ta-
bles to help the mission designer find the best way
to mitigate any non-compliances.

At the end of this process, the candidate trajectories
are passed to the PSG for evaluations, as show in Figure
4 on the bottom. The PSG down-selects candidate tours
and recommends for some trajectory tweaks to further
improve science, sometime beyond what was captured
by the requirements and planning guidelines. Then the
mission design is repeated and the tweaked trajectories
are passed back to the PSG, which selects the baseline
tour for the project for the upcoming gate review. This tour
design cycle lasts about a year and has been repeated
seven times in the last decade. Every iteration is used
to consolidate requirements, add new, or declass others
to planning guidelines. At the same time, tour design-
ers use the feedback from PSG to improve astrodynamic
techniques.

In 2021, at the end of the sixth cycle, the project de-
cided to adopt the 21F31 trajectory as baseline (in partic-
ular, 21F31_V4). The seventh and final cycle was carried
to further tweak the tour, producing 21F31_V6, which is
presented in this paper. Figure 7 shows a history of past
selected tours, with their main characteristics.

Ill. OVERVIEW OF TOUR DESIGN TECHNIQUES

The exploration of planetary systems relies on complex
trajectories, designed with astrodynamics techniques
that exploit the short time scales (days to weeks) of the
underlying dynamical system. This section provides a
brief overview of the main techniques used for Europa
Clipper (the interested reader can find more information
in the cited literature).

Tour design techniques are typically developed in
simplified models, like the patched conics model (where

2Recent works by the team have tried to address this issue by optimiz-
ing trajectories with chance constraints [11]

the trajectory is split in conic sections, patched by instan-
taneous AV’s, to simulate each moon flyby), or the three-
body problem. The techniques help mission designers
quickly identify promising strategies to meet specific sci-
ence requirements. However, the spacecraft trajectories
must ultimately be designed and optimized in higher fi-
delity models, which at minimum include the gravity field
of the Sun, Jupiter (including J2), and the Galilean moons
as point masses. This is particularly important for Europa
Clipper, whose orbit regularly intersects the orbits of Eu-
ropa, Ganymede, and Callisto. While a complete Europa
Clipper tour in a patched-conics model can be designed
in just a few days (even less, using global optimization
tools), the same trajectory cannot be re-converged in
high fidelity model unless a large amount of AV is used to
correct for distant, untargeted flybys. For these reasons,
Jovian tours are designed in small batches of 2-6 flybys
(using the principles summarized in this section), which
are then optimized in high fidelity model, before another
batch of flybys is added.

A. Resonant and non-resonant transfer

This section uses a simplified patched conics model,
where Jupiter is the main body, and spacecraft flybys oc-
cur at one moon only. The spacecraft trajectory is then
composed by multiple elliptical transfer, which start and
end with a moon flyby. When the orbital period of the
spacecraft is commensurable to the orbital period of the
moon, the spacecraft transfer is called resonant and is
defined by the resonant ratio n: m. In this case, the
spacecraft transfer starts and ends with two flybys at the
same point of the moon’s orbit, separated in time by m
spacecraft revolutions and n moon revolutions.

If the orbital plane of the spacecraft is the same as
that of the moon, the spacecraft could also re-encounter
the moon at the other intersection between their orbits - in
this case, the spacecraft transfer is called non-resonant,
since the period is not anymore commensurable with the
period of the moon. A non-resonant transfer is typi-
cally labeled as m : n~ or m: n™, where the ~ denotes
and outbound-to-inbound transfer and a ™ denotes and
inbound-to-outbound transfer. Other than the special
case of a pi-transfer 3, the flybys of a non-resonant trans-
fer do not occur on a line with the central body and, there-
fore, constrain the orbit plane of the non-resonant transfer
to be the same as the moon[12].

B. Pump and Crank Angles

Right before a flyby, the spacecraft orbit is defined by
the approach velocity relative to the moon, or V.. vec-
tor, which is represented in spherical coordinates by its
magnitude, and by two angles: the pump and crank
angles[13]. The pump angle determines the period of the
spacecraft orbit, while the crank angle is mainly determin-
ing its inclination. After a flyby, the outgoing V.. vector is
rotated from the incoming V.. vector by the bending angle
of the flyby (in the flyby orbital plane around the moon),
and will correspond to a change in the outgoing pump,
crank or both angles .

3A pi-transfer is special case of a non-res where the time-of-flight is an
integer multiple of the gravity assist body period plus 1/2. Pi-transfers are
inclined over the orbit of the gravity assist body.
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C. Pump-downs, Petal rotations, COTs

In a pump-only flyby, the incoming and outgoing crank an-
gles are the same, and the bending angle from the flyby is
utilized to change only the pump angle, and hence, only
the spacecraft orbital period. In a crank-only flyby, the
incoming and outgoing pump angles are the same, cor-
responding to some resonant transfer, and the bending
angle from the flyby is utilized to change only the crank
angle, and thus only the spacecraft orbital inclination.

A pumpdown sequence is sequence of resonant
transfers connected by pump-only flybys. At each flyby,
the pump angle increases and the period of the orbit de-
creases. Pumpdown sequences are typically used at the
beginning of a moon tour to reduce the period of the cap-
ture orbit (i.e., the first orbit of the spacecraft in the Jovian
system), which is usually very large to limit the magnitude
of the orbit insertion maneuver. 4

Petal rotations are sequences non-resonant orbits of
alternating periods - longer and shorter - connected by
pump-only flybys, which result in a rotation of the line of
apsides. Petal rotations are used to change the orien-
tation of the spacecraft orbit and also the location of the
flyby on the moon’s orbit.

A Crank-Over-the-Top is a sequence of resonant or-
bits connected by crank-only flybys. The crank angle is
changed from its initial value (0° or 180°) to it complemen-
tary, so a COT sequence always starts and ends with a
central body planar orbit. The groundtracks of the flybys
of a COT are spread over one side of the moon, provid-
ing near global coverage over a hemisphere®, and for this
reason, COTs are also called pseudo-orbiters [14] and
are used to map a moon without having to orbit it. The V.,
and period determine the number of flybys needed for a
COT and therefore the groundtracks spread[15].

The crank direction (positive or negative) of the COT
sequence will dictate the direction the groundtracks build
up over a given hemisphere. For a COT sequence start-
ing with an inbound flyby, cranking in the negative direc-
tion will place the gravity assist at the descending node
of the spacecraft central body orbit, and the groundtracks
will build up coverage from north to south. Cranking in
the positive direction will place the gravity assist at the as-
cending node of the spacecraft central body orbit, and the
groundtracks for the COT sequence will build up cover-
age from south to north. In contrast, for a COT sequence
starting with an outbound flyby, the sign of the crank di-
rection has the inverse effect. A negative crank direction
places the gravity assist at the ascending node and yields
south to north coverage, while a positive crank direction
places it at the descending node and yields north to south
coverage. For further details, see [16].

A few more techniques are used for the design of
the Europa Clipper tours but are not summarized here.
These includes the Tisserand Graph, COTs parametric
analysis, techniques for leading-edge explorations, strat-
egy for low-eclipse COTs, averaging techniques for fast
TID computation, robust trajectory design and optimiza-
tion [16-25].

“Parker Solar Probe has used a Venus pumpdown sequence to reduce
the perihelion and get the spacecraft closer to the Sun

5The sub-Jovian hemisphere is covered if the COT starts with a crank
angle of 0°; the anti-Jovian is covered if the COT starts with a crank angle
180°

IV. EUROPA CLIPPER BASELINE TOUR 21F31_V6

The Europa Clipper baseline tour 21F31_V6 is a high-
fidelity, numerically integrated end-to-end trajectory that
obtains global-regional coverage of Europa via a complex
network of multiple flybys over the course of 4.3 years.
There are 53 Europa flybys, 49 of which are within the
Prime Mission and used to satisfy measurement require-
ments. In addition, 7 Ganymede and 9 Callisto flybys
are used to manipulate the trajectory relative to Europa
during the Prime Mission. The tour will reach a maxi-
mum Jupiter-centered inclination of 7.7° and has a total
ionizing dose (TID®) of 2.97 Mrad up to the last Europa
flyby. The entire tour can be broken into four distinct mis-
sion phases, with a number of the mission phases fur-
ther broken down into trajectory sub-phases. Each mis-
sion phase and trajectory sub-phase of 21F31_V6 will
be detailed in subsequent sections. Table 1 details the
21F31_V6 target flybys and Figure 10 illustrates the TID
build-up over the course of 21F31_V6. An overview of
the complete Jupiter tour trajectory is shown in Fig. 8.

A. Transition to Europa Campaign 1

Beginning with Ganymede-1 (G01), five Ganymede fly-
bys and two Europa flybys are used to reduce the space-
craft energy relative to Jupiter and orientate the space-
craft’s orbit to reach the correct Europa flyby conditions
to begin Europa science acquisition. This sequence of
Ganymede and Europa flybys (G01-G03,E01-E02,G04-
GO05) is referred to as the pumpdown sequence.

The first two Europa flybys will acquire Europa sci-
ence, calibrate the instruments, and provide the oper-
ations team months to respond to any findings prior to
the beginning of Europa Campaign 1 at E03. EO1 is a
631 km altitude, night-side flyby with closest approach
over the sub-Jovian hemisphere. E02 is a 278 km alti-
tude flyby over the sunlit anti-Jovian hemisphere. For all
instruments but PIMS, GS, and ECM, observations are
taken only above 2000 km in the inbound leg, and start-
ing 1.5 h past closest approach.

The pumpdown sequence has been intentionally
under-utilized from a gravity assist AV / energy perspec-
tive, such that in the event of a JOI under-burn (or over-
burn) of up to 20 m/s and a burn outage of up to 2 hours,
the mission can still reach the same Europa flyby EO1
across all scenarios, and hence, the early Europa flybys
and the entire Europa science tour can be executed with-
out redesign [24].

Table 2 shows the AV from GO0 to E04 for the pump-
down envelope, which encompasses the nominal JOI, to-
gether the with the 20 m/s underburn and overburn, and
the 2h delay, as required by RQ105.442 and RQ111.943
(see Table 4). The most expensive case is the overburn
case, which costs 45 m/s more than the nominal, and is
used to bound the JOI contingency AV in the AV budget.
Alternate pumpdowns reconnect to the Europa science
tour at E04, rather than EO01, and save up to 25 m/s in
AV.

6Total ionizing dose Si behind a100-mil Al, spherical shell.
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Fig. 8: 21F31_V6 Jupiter Tour overview.
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Fig. 10: 21F31_V6 TID profile (Si behind a 100-mil Al spherical shell, GRID3 radiation model). Markers indicate the
beginning of each trajectory sub-phase.
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Table 2: Envelope of pumpdowns. Alternate pumpdowns
converge to 21F31_V6 at E04, all other pumpdowns con-
verge to 21F31_V6 at EO1

Case AV to E04, m/s | A(AV), m/s
Nominal 964 0
Delay 984 20
Delay, alt. 976 12
Underburn 969 5
Overburn 1009 45
Underburn + Delay 1000 36
Underburn + Delay, alt. 975 11
Overburn + Delay 992 28

B. Europa Campaign 1: Anti-Jovian Hemisphere Cover-
age

Trajectory design for any Europa mission is a delicate bal-
ance of instrument coverage and time spent near Europa.
In the case of the Europa Clipper mission, the time near
Europa equates to Europa flybys. While scientists would
clearly prefer a very high number of flybys (absent other
constraints), these flybys come at the cost of additional
traversals through the harsh radiation environment near
Europa. Each periapsis passage incrementally increases
the mission TID, and beyond a certain point, significantly
drives up the flight system mass and complexity, mission
costs, and mission risk. On the other hand, if there are
too few flybys, the scientific objectives will not be met
nominally or will be brittle to any science acquisition out-
ages.

The first part of the 21F31_V6 Europa science tour
will focus primarily on Europa’s anti-Jovian hemisphere.
Given the interplanetary trajectory arrival conditions at
Jupiter, Europa’s anti-Jovian hemisphere is the most effi-
cient (in time, TID, and AV) to reach with the lighting con-
ditions required by the majority of the instrument payload.
Furthermore, the REASON instrument, which operates in
a portion of the electromagnetic spectrum near Jupiter’s
radio emission frequency, prefers coverage of Europa’s
anti-Jovian hemisphere first since measurements per-
formed over this hemisphere yield a much higher SNR
due to Europa shielding the flight system from the 9 MHz
emissions from Jupiter. The 21F31_V6 Europa Cam-
paign 1 consists of 24 Europa flybys over the course of
15 months.

COT-1and COT-2 The first COT sequence (COT-1) be-
gins with outbound Europa flybys, and consists of seven
6:1 resonant transfers with a V.. of approximately 4.4
km/s.

Based solely on minimizing the total mission duration
(and potentially operations costs), one would choose the
3:1 (or an even lower) resonance. However, operations
costs are a function of not only the mission duration but
also the frequency of events. Considering Cassini’s oper-
ational limit of numerous back-to-back transfers were 1:1
resonance transfers with Titan (TOF=T,.=15.9 days), and
having to execute up to three maneuvers (two that can be
deterministic, one that is only statistical) per Europa-to-
Europa transfer similar to Cassini, the Project put a lower
bound on the mean TOF between a number of back-to-
back Europa flybys to be 14 days. While 4:1 resonant
transfers would also meet the 14-day minimum transfer
between Europa flybys, and reduce the total TOF, the
project chose to utilize 6:1 resonant transfers for COT-1

and COT-2 to relax the operation schedule at the begin-
ning of the mission.

COT-1 traverses Europa’s anti-Jovian hemisphere
from south to north (negative crank direction), as shown
in Fig. 11(a-c). The direction of the crank is chosen to
minimize the amount and duration of Jupiter eclipses[16].
The last flyby of COT-1 is a 6:1% non-resonant Europa
transfer (E9 to E10) and is implemented to return to an
outbound Europa flyby (E10) such that the second COT
sequence (COT-2) can be initiated to again cover the anti-
Jovian hemisphere of Europa.

COT-2 again utilizes 6:1 resonant transfers, but
cranks in the positive direction to traverse the anti-Jovian
hemisphere from north to south (Fig. 11(d-f)). The result
of reversing the crank direction of COT-2 with respect to
COT-1 is the cumulative set of groundtracks have a high
number of intersections (instead of running nearly par-
allel) which is needed by the REASON instrument for a
number of their datasets. The E14 flyby of COT-2 has its
groundtrack over Thera. At the end of COT-2, two Europa
flybys (E16 and E17) are used to reduce the period from
a 6:1 resonant transfer to 5:1, and then to a 4:1* non-
resonant transfer to begin the next trajectory sub-phase
of Europa Campaign 1.

Petal Rotation and night-side, sub-Jovian Hemi-
sphere Coverage A series of six non-resonant trans-
fers are utilized to obtain substantial equatorial coverage
of panels 1, 2, and 3 (Fig. 13(a-c)). By repeatedly al-
ternating between increasing and decreasing the orbit
period (referred to as pumping up and pumping down
the orbit energy), and furthermore, by using outbound
flybys to pump up and inbound flybys to pump down,
three sets of two groundtracks each can be obtained over
the equatorial region of Europa’s anti-Jovian hemisphere.
Note the V.. needed to be decreased slightly with propul-
sive maneuvers (i..e, V.. leveraging) to a value near 4.0
km/s in order to enable the ability to alternate between
4:1~ and 5:1% non-resonant transfers, both of which are
fully reduced (i.e., not multi-rev transfers that have empty
orbits that increase TID without attaining additional Eu-
ropa data) to minimize TID build up during this portion of
21F31_Ve6.

These flybys are very useful for gravity measure-
ments since the flyby closest approaches are in view
of Earth and will occur at different Europa true anoma-
lies, and hence, sample the gravitational potential near
the same body fixed locations at different tidal phases.
An additional benefit of utilizing non-resonance trans-
fers in this manner is the line-of-apsides rotates counter-
clockwise (hence the name, “petal rotation”), which acts
to move the Europa flybys counter-clockwise, eventually
rendering Europa’s trailing hemisphere illuminated at the
time of the flybys — a feature highly sought after by a num-
ber of instruments.

Following the six non-resonant transfers of the petal
rotation, 5:1 and 4:1 resonant transfers are implemented
so that the flyby connecting them (E25) is an outbound,
pump-down flyby. As a result, E25 has a closest ap-
proach over the night-side, sub-Jovian hemisphere (Fig.
13(d-f)), at about 3 AM local solar time, which is needed
by both E-THEMIS high-resolution dual (sun-lit and unlit)
coverage (RQ110.669/ETH.113) and PIMS plasma local
time coverage (RQ106.136/PIM.011).
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Fig. 11: COT-1 and COT-2 groundtrack plots. COT-1 plots also include the early Europa flybys E01 and E02 from the pump
down. Color contoured with closest approach marked with an “x” and numbered in accordance with Table 1.
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C. Transition to Europa Campaign 2

Before sunlit observations over Europa’s sub-Jovian
hemisphere can be collected to complete the global-
regional coverage of Europa, the Europa flyby location
must be moved to near the Jupiter-anti-Sun line (i.e.,
the opposite side of Jupiter as the Europa Campaign 1),
while making sure to avoid flybys in Jupiter's shadow.
This can be accomplished in a number of ways, includ-
ing: petal rotation using Europa flybys (i.e., continu-
ing the previous trajectory sub-phase), Ganymede fly-
bys, or Callisto flybys; different types of cyclers; a Eu-
ropa m-transfer; or a “switch-flip” A switch-flip consists
of three non-resonant transfers (typically z-transfers) be-
tween two bodies that significantly change the LST of the
departure body flyby location. For 21F31_V6, a petal ro-
tation with Callisto flybys is utilized for it typically requires
less AV and TID, at the expense of more Jupiter eclipses
and sometimes an increased TOF[16].

The last flyby of Europa Campaign 1 (E26) reduces
the spacecraft period and targets a Callisto flyby (C01)
with a V., of 4.8 km/s. The Callisto flyby increases the
periapsis of the orbit around Jupiter so that the space-
craft is exposed to lower TID rates. A Ganymede flyby
(G06) is then utilized to leverage the V.. at Callisto down
to 3.6 km/s. A lower V., at Callisto is preferred, so that the
spacecraft orbits of the petal rotations have higher peri-
apsis, and fewer petals are needed to rotate the line of
apsis, yielding to further savings in TID and TOF. Starting
from C03, the sequence of non-resonant transfers 2:2—,
1:1%, 3:3 rotates the line of apsis. The 3:3~ is a 43 days
transfer during which a solar occultation occurs. Another
Ganymede flyby (G07) is then used to leverage up the V..
at Callisto to 5.1 km/s, and the final Callisto flybys set up
the C09 to E27 non-resonant transfer, which effectively
places the subsequent Europa flybys so that the leading
hemisphere is illuminated. In total, the transition phase
includes 9 Callisto flybys and 2 Ganymede flybys, using
10 m/s in 8 months.

D. Europa Campaign 2: sub-Jovian Hemisphere Cover-
age

Much like Europa Campaign 1, Europa Campaign 2 is
accomplished utilizing a number of COT sequences. Eu-
ropa Campaign 2 starts with a sequence of flybys to
cover the leading hemisphere, followed by two sun-lit
sub-Jovian COTs, and a final night-side, anti-Jovian COT.

The Leading Hemisphere coverage is achieved with
two pairs of Europa petals composed of 5:1% and 4:1~
non-resonant transfers. Of the four flybys connecting
them, two (E28 and E30) are low-altitude, outbound,
pump-down flybys with closest approaches at about 330°
east longitude, where the spacecraft will be under 1200
km while within 15° of the leading point (0° latitude and
270° longitude) and has LST between 9:00-15:00 for
MISE regional scale measurement (MIS.PG.019) (Fig.
14(a-c)).

Following the last 4:1~ transfer, COT-3 begins with in-
bound flybys, located at the descending node, and utilize
eight 4:1 resonant transfers (E31 to E38) to attain large
latitudinal coverage from north to south (Fig. 14(d-f)). A
7:27 non-resonant Europa transfer (E39 to E40) is imple-
mented to return to an inbound Europa flyby (E40) and
to change the location of the subsequent set of inbound
flybys by a sufficient amount in the clock-wise direction
so the flybys do not occur in Jupiter eclipse. Next, COT-4
utilizes seven 4:1 Europa resonant transfers (E40 to E46)

with latitudinal coverage from south to north (Fig. 15(a-
c)). A 7:2 resonant flyby was required between E44 and
E45 to avoid a flyby during solar conjunction.

The last COT sequence, COT-5, uses six 4:1 reso-
nant transfers (E47 to E52) to provide night-side cover-
age of the anti-Jovian hemisphere (Fig. 15(d-f)), which
allow dual (sun-lit and unlit) coverage of the same terrain
for E-THEMIS. A final Europa flyby (E53) is used to setup
the decommissioning of the spacecraft.

E. Spacecraft Decommissioning

Planetary protection requirements dictate that before
control of the spacecraft is lost, actions must be taken
to negate the probability of biological contamination of
Europa that could result from flight system impact. The
21F31_V6 trajectory implements flight system decom-
missioning via impact with Ganymede on September 3,
2034, 45 days after the last Europa flyby (E53). The im-
pact occurs at 14.1° S. latitude and 156.2° E. longitude,
at 13:20 LST, visible from the Earth (Fig. 12). Previous
targeted flybys of Ganymede are also shown, with the
traces color coded by altitude.

/ To the /

Sun

To

Jupity

Fig. 12: Spacecraft disposal with Ganymede impact, view
from above south pole.
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Fig. 13: Petal Rotation and night-side sub-Jovian Hemisphere Groundtrack Plots. Color contoured with closest approach
marked with an “x” and numbered in accordance with Table 1.
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F. AV Budget

The flight system’s minimum AV capability (1593 m/s) is
the case where the dry spacecraft mass is at its allo-
cation of 3241 kg and the propellant tanks are filled to
their 2750 kg capacity, which when combined with 10 kg
of pressurant, corresponds to the maximum wet mass of
6001 kg . As can be seen in Table 3, the baseline mission
MEV AV is 1507 m/s.

The encumbered margin of 50 m/s is intended to
provide the ability to make other trajectory adjustments
to achieve, for example, repeating a Crank-over-the-Top
(COT) trajectory sequence or perhaps recovering from a
single, anomalous flyby. The baseline trajectory has an
unencumbered MEV AV of 86 m/s.

In Table 3, the Planetary Flyby Biasing for MEGA
2024 is included in the interplanetary deterministic and
statistical AV budget. Additionally, the JOI Gravity Losses
are included in the interplanetary phase, since JOI is
modeled as a finite burn.

Table 3: AV Budget.

| 202ameca |

CBE AV MEV AV

(m/s) (m/s)
I.P. Det. AV +JOI Demo + JOI + PRM 1007 1007
Interplanetary Statistical (AV99) 25 25
Planetary Flyby Biasing
JOI Gravity Losses
JOI Statistical Component (AV99) 4 4
Contigency AV: Underburn/Overburn/Delayed JOI 0 45
JOI Clean-up Maneuver (AV99) 27 27
Contigency AV: launch on LP 22-23, COLA L-15s 0 3
Tour Deterministic 218 223
Tour Statistical (AV99) 51 53
Contingency AV: Post-Approach Maneuver Safing(s) 0 70
Encumbered Margin (Post-Launch Traj. Changes) 50 50
Sub-totals 1382 1507
AV Requirement (Interplanetary Traj. Specific) 1593 1593
AV Margin 211 86

G. Requirements Validation

Table 4 summarizes the requirements (with required
value(s)) on the trajectory analysis that do not include the
science measurement requirements, as well as an as-
sessment of 21F31_V6 against these requirements. Re-
quirements on the navigation are discussed in another
table. Most of the requirements are levied on Mission
Design, but a couple are levied on Flight System Engi-
neering, Project System Engineering, or Mission Opera-
tion Systems. Table 4 is color coded as such: green -
compliant, and red - non-compliant. The following non-
compliance is found in Table 4:
RQ102.140: Max eclipse duration after TEC2

The required value is 3.25 hrs, to protect battery Depth
of Discharge (DoD) in EC2 for worst case scenario of a
long eclipse just prior to, or subsequent, a high latitude
Europa flyby, where all instruments would be operating
but the solar arrays would not be illuminated. 21F31_V6
has eclipses of 3.8, 3.7 and 3.3 hrs. The eclipses are
24 to 16 hrs prior to the flyby closest approaches and
the flybys are all low latitude, so the arrays are well lit for
power generation, hence, DoD not significant. A waiver
for this requirement was approved by the project.

With respect to the science measurement require-
ments, 21F31_V6 meet all the requirements and the ma-
jority of the planning guidelines. Figure 16 shows in par-
ticular when the requirements are met. The figure only
shows requirements on the data sets - the others are im-
plicitly met by selecting the observations with the correct
geometry. For 23 requirements, compliance is met by the
entire tour and not at a specific encounter.

V. CONCLUSIONS

This paper presents the baseline tour 21F31_V6 for the
Europa Clipper, NASA’s next flagship mission that will
be launched in October 2024 to study the habitability
of the Jovian moon Europa. 21F31_V6 is the first se-
lected Europa Clipper tour to meet all the science re-
quirements levied on mission design, as well as the ma-
jority of the planning guidelines and non-science require-
ments. Since the project has no plan for further develop
tours, 21F31_V6 is the trajectory that Europa Clipper will
fly, unless contingencies occur. This tour is the product
of more than a decade of tour developments, which pro-
duced many dozens of candidate tours, including 31 Eu-
ropa Clipper officially-released tours, documented in sev-
eral publications.

The paper also describes the tour design process,
with seven design cycles over the span of a decade, in
which candidate tours were designed by the Mission De-
sign Team, and evaluated by the Project Science Group.
In each cycle, the Mission Design Team computed can-
didate tours and assessed their compliance to the re-
quirements. The tour design is complicated by the multi-
body dynamics governing the spacecraft motion in the
Jovian system, and by the fact that the science and nav-
igation requirements cannot be directly transcribed into
constraints on the trajectory. Navigation requirements
such as those on the probability of impacts, and on the
spacecraft predicted and reconstructed knowledge, are
assessed with a full navigation analysis. Compliance
to the science requirements and planning guidelines is
checked by simulating the instrument observations in a
process that includes the modeling of the flight system,
the definition of the mission plan, and the optimization of
the planned activities.
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Table 4: Set of requirements on the trajectory design excluding the science measurement requirements.

Requirement Subject Required/Constrained Value 21F31_V6 Value Allocated AFID ID
Prime Launch Opportunity QBSZ‘:"”E Launch Vehicle Launch Year: |, . period: Oct 10-30, 2024 MD RQ102.107 | 320223
Back Up Launch Opportunity Within 14 months of the prime 2025 EMEGA MD  |RQ104.453 | 320465
opportunity
c Launch Vehicle Falcon Heavy v MD RQ102.142 320250
S - — -
% |Mission duration Maximum Mission Duration < 11.3 9.9 years PSE RQ102.119 | 320233
s years
£ |Trajectory duration )’g‘r'sm“m Trajectory Duration < 11.3 g g \ears MD  |RQ102.123 | 320235
k=4
% I mission av <1593 m/s CBE AV: 1382 m/s, MEV: 1507 m/s MD, FSE |RQ112.144 i 1005866
Communication During Key Events - ° - Min SEP at flyby: 5.58° (E44), Min SEP
Mission Activities SEP angle >3°, Earth in view at mnvr: 3.36° (E44-CU) FSE, MOS | RQ102.129 320241
Max: 5.5 Al ~05-0OCT-2029 ET
Maximum Aphelion 5.6 AU ax: 5.5 AU on ~05-0CT-2029 MD RQ102.125 | 320237
(during initial capture orbit)
Launch Period Duration >21 days 21 days (10/10-10/30, 2024) MD RQ107.245 336496
Launch Window Duration 15s for COLA v MD RQ105.437 320671
E TCM-1 Timing for AV Computation AV necessary for TCM-1 at L + 30 days|Launch + 30 days MD RQ103.374 320346
°
2 — - -
s z;"s?:[:’]"'ty of Mars impact by Flight | ;15 5 (for 50 years post-launch) | Max value 0.25x104-4 MD RQ104.629 | 336358
=
o — -
E 5:;?;2"“3' of Mars impact by Launch | ;16 4 (for 50 years post-launch) | Max value 0.92x104-4 PSE RQ104.630 | 339731
k-]
c
: Minimum Earth Flyby Altitude 300 km Min Alt in launch period: 3138 km MD RQ100.966 320162
2 Minimum Mars Flyby Altitude 450 km 471.2 km MD RQ112.146 { 1005868
3
E - —
a . . " . < 0.01 probability when within 40,000
M Met ital D MMOD,
m:'co:d :izf'dS/orb' al Debris (MMOD) |\ "ot Earth Max value 1.8x10A-6 MD  |RQ104.478 | 320469
(objects =10 cm in diameter)
Minimum Perihelion 0.65 AU 0.82 AU MD RQ102.131 320243
° JOI_Assisting Jupiter Moon Flybys < 2 prior to JOI 1 prior (Ganymede) MD RQ103.342 320320
£ - -
-g_ § Sola'r Eclipses During JOI-Related Not permitted prior to JOI completion None MD RQ103.339 320317
S 3 Jupiter Moon Flybys
8 'g_ Maximum JOI AV <950 m/s 919.5 m/s (AV99 for LP23) MD, FSE | RQ111.941 902327
g g Jupiter Capture Orbit Period <260 days 202.1 days (nominal) MD RQ103.381 320350
P o _
& |Jor Sun-Earth-Probe (SEP) Angle jc3>| for [-15 days, +12 days] centered at| .. . 15 go 41 JOI-154 MD  |RQ105.435 | 320669
|«
E] il - i i .
S Purlnp. Down Resilience to JOI Europa-1 (E1) maintained for JOI +/-20 v MD RQ105.442 320676
Variations m/s
Minimum Jupiter Distance 8 RJ (no lo gravity assist) Min: 8.1 RJ (E02-G04) MD RQ102.097 320215
Maximum TID 8.0 Mrad(Si) behind spherical shell of |, g ;g MD RQ102.104 | 320221
100 mils Al
Jupiter Tour Duration <4.3 years 4.20 years MD RQ.112.147} 1005869
Probability of Jovian Moon Impact Post | _y,4g»_3 Max value is 0.325x10/-3 at E45-TRG MD RQ102.118] 320232
5 Targeting Maneuver
o m
- Probability of Europa Impact Due to o . N
Unplanned Delta-V After an Approach | <1x10/-4 PO given safing 49 at E49, with 30 MD  |RQ109.488 | 694669
attitude constraint
Maneuver
Probability of Impact per Transfer <1x107-3 Max Value is 8.8x10/-4 at PRM-CU-1 PSE RQ109.562 693482
. ) ) 9.2 hrs. (prior to EC2) Max: 7.8 hrs (C03-C04) MD RQ102.106 ; 320222
Maximum Eclipse Duration
3.25 hrs. (After TEC2) 3.9 hrs, 3.7 hrs, 3.3 hrs MD RQ102.140 ; 320249
ﬁ Disposal Impact Target Ganymede or Callisto Impacts Ganymede MD RQ102.130 320242
o
@ . . . >30 days (with SEP>3°) and <90 days,
[Z]
& Flight System Disposal Duration after the last Europa flyby 45 days MD RQ102.089 320210

29th International Symposium on Space Flight Dynamics
22 - 26 April 2024 at ESOC in Darmstadt, Germany




Prediction of When Measurement Req'ts are Met During Tour
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Fig. 16: Histogram of when each unique science requirement is met in the tour and the accumulation of the total number

of requirements met over all encounters.
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