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Abstract – This paper introduces a three-step 

pipeline for the automated design of moon tours 

within the Saturn system, responding to the 

challenges posed by their intricate trajectory design 

problem. The process involves establishing a time-

independent transfers' database, incorporating 

diverse transfer types such as full- and pseudo-

resonant transfers, v-infinity leveraging transfers, 

and body-change transfers. Subsequently, a tree-

exploration approach, guided by multi-objective 

dynamic programming (MODP), constructs moon 

tours, ensuring Pareto optimality for competing 

mission objectives like 𝚫𝒗 and time of flight. In 

contrast to existing approaches, MODP proves to be 

efficient and effective, yielding novel solutions and 

fronts that dominate current available ones. The 

presentation of wide Pareto fronts further 

emphasizes MODP's ability to navigate complex 

search spaces, providing valuable insights into 

mission configuration possibilities. Furthermore, the 

paper addresses the phasing problem between 

different moons, demonstrating that un-phased 

Pareto fronts remain structurally unchanged, 

providing representative solutions for the 

corresponding phased fronts. 

 

I. INTRODUCTION 

Since the discovery of Enceladus’ geysers made by 

the Cassini spacecraft [1], visiting Saturn moons has 

motivated numerous studies and missions’ designs [2–

5]. ESA’s Voyage 2050 programme [6] identifies the 

aim to explore the gas and ice giant systems by means 

of remote sensing, landing or, even, returning samples 

back to the Earth. The classic approach for remote 

sensing characterisation requires a spacecraft to orbit the 

specific target planet or moon. Given the high energy, 

and thus high relative velocity, of any spacecraft 

entering a gas or ice giant system, a long sequence of 

moon fly-bys will ultimately be necessary to achieve a 

sufficiently low relative velocity for a final capture to be 

implemented; either by a small Δ𝑣 manoeuvre or 

enabled by a low energy conduit [7]. 

The trajectory design of such missions is 

complicated by the fact that the sequence of moons to be 

visited is not known a priori; rather, it is an integral part 

of the mission design process. Moreover, the design of 

Saturn moon tours is different from a tour in Jupiter 

system, due to the low gravitational constant of the 

moons (except for Titan), thus leading to tours with tens 

of gravity assists. This results in a complex mixed-

integer non-linear programming (MINLP) problem 

[8,9]. In such problems, the performance of a specific 

mission, in terms of, e.g., propellant consumption and/or 

mission duration, depends both upon the visiting order 

of the celestial objects, and on sequence of decisions that 

include manoeuvres, gravity assists, transfer times, or 

initial tour epoch. Thus, MINLP problems require the 

solution of a combinatorial problem mixed with optimal 

control theory. Moreover, finding optimal trajectories 

that link any sequence of moons is a difficult task on its 

own, as a variation of even a single fly-by body will 

correspond to a significantly different trajectory path. In 

addition, the challenging multi-objective optimization 

needs to be tackled to appropriately inform the design 

with the full extent of mission opportunities. 

Several techniques have been developed to design 

long tours in the gas giants’ systems. For example, to 

build transfers between moons, Strange et al. [2] and 

Campagnola et al. [3,4] introduced the concept of v-

infinity leveraging transfers (VILTs) in the linked-

conics model to assess the effect of deep space 

manoeuvres (DSMs) on the spacecraft relative velocity 

at different moons’ encounters. Techniques to design 

such transfers in multi-body system are also available 

[5,10,11]. They extend the search space of possible 

tours, especially in the so-called endgame problem [5]. 

Landau [12] also presented a method based on primer 

vector theory [13] for optimal DSM placing on a known 

sequence of moons. 

To build tours with many transfers as above, 

typically graph-based algorithms are used [14], that add 

one transfer at a time and employ some pruning criteria 

or heuristics to prevent the exploration to grow 

enormously. For example, Strange et al. [2]; 

Campagnola et al. [3], Campagnola and Russell [4,5], 

Palma [15] and Takubo et al. [16] all employ tree-graph 

exploration based on beam search scheme [17] with 

pruning criteria (even with multi-objective nature [16]) 

to manage the search space. Usually, such approaches 
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are not guaranteed to find global optimal solutions, as 

these algorithms are known to be incomplete [17], plus 

they might require computational efforts rising sharply 

with the number of optimization variables (e.g., number 

of legs, resonant ratios, or infinite velocity bounds), 

especially in the complex multi-objective optimization. 

Thus, the present paper describes a pipeline to 

transcribe the mixed-integer nature of the trajectory 

design problem of Saturn moon tours into a discrete 

graph made by interconnected nodes. Such nodes 

correspond to fly-bys at Saturn moons, and the 

connection between them is ensured via either resonant 

or pseudo-resonant transfers, also considering small 

deep space manoeuvres at the apses to leverage the 

spacecraft velocity relative to the moons. The main 

novelty introduced by this paper is the application of 

multi-objective dynamic programming (MODP) to 

explore the graph, guaranteeing Pareto optimality of 

competing mission objectives with only moderate 

computational effort, compared to currently available 

approaches. Moreover, although the mentioned pipeline 

does not solve the phasing problem between different 

moons in preliminary design, an analysis is provided to 

show that this is unlikely to pose a significant challenge, 

given the short orbital periods of the Saturn moons, 

going beyond most of the literature on the topic. 

The paper is organized as follows: section II 

describes the problem of designing moon tours in the 

Saturn system, based on Tisserand graph representation; 

section III shows how to build moons’ tour on an 

automatic manner using MODP exploration; section IV 

finally presents numerical results for relevant test cases. 

 

II. MOON TOURS DESIGN 

The term tour indicates a mission that needs to pass-

by multiple moons to achieve its objective. For the 

purposes of the present paper, one wants to reach 

Enceladus making use of fly-by sequences at Saturn 

major moons, i.e., Titan, Rhea, Dione, Tethys, and 

Enceladus, and starting from an equatorial orbit crossing 

Titan at a given relative velocity, or infinite velocity �⃗�∞. 

Parameters used for Saturn moons are summarised in the 

Appendix. 

Planning moon tours corresponds to solving a 

MINLP, where the quality of a tour, e.g., in terms of 

overall Δ𝑣 consumption and/or Time of Flight (𝑇𝑜𝐹), 

depends both upon the visiting order of the celestial 

objects, encoded in a vector of integer variables 𝑋, and 

on the sequence of decisions that include 

manoeuvres/thrust arcs, fly-bys, transfer times, or initial 

tour epoch, encoded in a vector of continuous-varying 

variables 𝑦. 

A typical MINLP problem for moons’ tours design 

can thus be formulated as follows: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓1(𝑋, 𝑦), … , 𝑓𝑛𝑜𝑏𝑗(𝑋, 𝑦)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
𝑔𝑖(𝑋, 𝑦) ≤ 0 ∀ 𝑖 = 1,… , 𝑛𝑐𝑜𝑛𝑠

𝑋𝑙𝑏 ≤ 𝑋 ≤ 𝑋𝑢𝑏
𝑦𝑙𝑏 ≤ 𝑦 ≤ 𝑦𝑢𝑏

 (1) 

 

where: 𝑓1(𝑋, 𝑦), … , 𝑓𝑛𝑜𝑏𝑗(𝑋, 𝑦) are the objective 

functions, e.g., overall Δ𝑣 consumption and/or 𝑇𝑜𝐹, 

with 𝑛𝑜𝑏𝑗 being their cardinality; 𝑔𝑖(𝑋, 𝑦) are the 

constraint functions, e.g., on 𝑣∞ conditions at each 

moon, with 𝑛𝑐𝑜𝑛𝑠 being their cardinality; 𝑋𝑙𝑏 , 𝑋𝑢𝑏, 𝑦𝑙𝑏  

and 𝑦𝑢𝑏  represent lower and upper bounds for 𝑋 and 𝑦, 

respectively. 

Due to intrinsic complexities of the problem in Eq. 

(1), planning moons’ tours enters the logic of multi-

fidelity design [18], where the first level of fidelity 

usually corresponds to a Tisserand graph exploration 

[19].  This is a tool which makes uses of energetic 

consideration to quickly assess the feasibility of 

different gravity-assist sequences. Tisserand graphs 

have been firstly introduced via parametrization of the 

spacecraft orbital elements with respect to infinity 

velocity 𝑣∞ [20,21]. The underlying assumption is thus 

that the spacecraft trajectory and fly-by body orbit 

intersect. In other words, a linked conics dynamical 

framework (i.e., patched conics together with a zero-

radius sphere of influence) is the model ubiquitously 

present in most of the preliminary mission design 

studies [19,22]. 

Assuming circular-coplanar orbits for the moons and 

planar orbits for the spacecraft, Tisserand graph 

equations have the following structure: 

 

{
 
 

 
 
𝑟𝑚
𝑎
= 2 −

1

𝑣𝑚
2
(𝑣∞

2 + 𝑣𝑚
2 + 2𝑣∞𝑣𝑚 cos(𝛼))

3 − (
𝑣∞
𝑣𝑚
)
2

=
𝑟𝑚
𝑎
+ 2√

𝑎

𝑟𝑚
(1 − 𝑒2)

 (2) 

 

where: 𝛼 ∈ [0,180] degrees is the so-called pump angle 

[2], i.e., the angle between the �⃗�∞ and the moon velocity 

vector, positive counter-clockwise; 𝑟𝑚 and 𝑣𝑚 are the 

circular radius and velocity of the moon, respectively; 𝑎 

and 𝑒 are spacecraft semi-major axis and eccentricity, 

respectively. It is thus possible to plot the spacecraft 

orbital loci for different values of (𝑣∞, 𝛼) as in Fig. 1. 

To reproduce Fig. 1 one uses Eq. (2) alongside 𝑟𝑝 =

𝑎(1 − 𝑒) and 𝑟𝑎 = 𝑎(1 + 𝑒), where 𝑟𝑝 and 𝑟𝑎 are 

spacecraft periapsis and apoapsis, respectively. 
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Fig. 1. Tisserand graph for Saturn system. Contours are 

computed at constant 𝑣∞ with values 0.2, 0.25, 0.3... km/s 

increasing downwards.  The unit of length is the Saturn 

radius 𝑅𝑆. 

From Fig. 1, each line is a set of orbits that cross a 

given moon at a fixed 𝑣∞ for 𝛼 ∈ [0,180] degrees. Thus, 

a discrete set of infinite velocities at different moons 

needs to be provided, alongside a step size. The 

Appendix reports those employed in the present paper. 

Hence from Eq. (2), the minimum set of design variables 

needed to describe crossing orbits is (𝐼𝐷, 𝑣∞, 𝛼), where 

𝐼𝐷 represents a given moon and its orbital parameters. 

An MGA trajectory can thus be seen as a sequence 

of points (𝐼𝐷, 𝑣∞, 𝛼) on the Tisserand graph. To link 

different points, one has at least three possibilities: 

- Resonant or pseudo-resonant transfers. These are 

transfers on which the spacecraft encounters the 

same moon consecutively. In full-resonant 

transfers, the spacecraft and the fly-by body make 

an integer number of revolutions around the central 

body, thus the fly-by body is encountered at 

exactly the same position on its orbit. On such 

transfers, a ratio of integers exists between the 

moon and the spacecraft orbit periods. The ratio is 

expressed as N:M, where N and M are the number 

of moon and spacecraft revolutions, respectively. 

A list of N:M ratios used in this paper is presented 

in the Appendix. In pseudo-resonant transfers, the 

spacecraft does not encounter the fly-by body at 

the departure position, but on a different position 

on its orbit. In terms of design variables, the 𝑣∞ 

remains the same on such transfers, i.e., no Δ𝑣 is 

present, while the pump angle 𝛼 changes. The 𝑇𝑜𝐹 

on such transfers is derived from the resonant ratio 

N:M [2]. In pseudo-resonant transfers, for a given 

𝑣∞ and resonant ratio N:M, the full-resonant orbit 

period is slightly increased or decreased until the 

flight time to the next encounter matches the one 

of the fly-by body. 

- V-infinity Leveraging Transfers (VILTs) [2,3]. In 

such transfers, a Δ𝑣 is used to change the 

spacecraft-moon relative velocity on a pseudo-

resonant transfer. The manoeuvres are assumed to 

occur at one of the apses and parallel to the velocity 

direction. The Δ𝑣 depends upon the 𝑣∞ change, 

and the 𝑇𝑜𝐹 is derived such that the moon is 

encountered after the manoeuvre. VILTs are 

assumed to occur on pseudo-resonant orbits. 

Details can be found in [2,3]. In terms of design 

variables, both 𝑣∞ and 𝛼 change on VILTs due to 

the presence of the manoeuvre. 

- Intersections between different moon contours. 

These orbits cross two different moons with 

specified infinity velocities at the same time, and 

thus represent a possible transfer orbit between two 

moons. However, these opportunities exist only 

from an energetic point of view, as no information 

on the time of flight or moons’ phasing is explicitly 

sought from the Tisserand graphs. Similarly to 

other works [2,3], one considers Δ𝑣 = 0 m/s and 

𝑇𝑜𝐹 = 0 days as first approximation, and only 

successive refinement steps allow to reconstruct 

the actual trajectory, as shown in section IV.B.  

Fig. 2 shows an example of transfers between 

different points (𝐼𝐷, 𝑣∞, 𝛼) on a Tisserand graph. In 

particular, from an initial orbit crossing Titan, a transfer 

is performed close to a 4:1 resonance. Then a VILT 

reduces the 𝑣∞ at the next Titan encounter. A 1:1 

resonant transfer is then followed by another Titan fly-

by to reduce both 𝑟𝑝 and 𝑟𝑎, up until a successive 

encounter with Rhea. Full details on how to compute 

resonant transfers, VILTs and intersections are beyond 

the scope of the present paper, and the interested reader 

is referred to a vast literature on the topic [2,3]. 

 
Fig. 2. Representation of different transfers between 

nodes on Tisserand graph. Blue lines indicate fly-bys, while 

red line identifies a 𝛥𝑣. 

Ultimately, listing all the possible connections 

between different nodes (𝐼𝐷, 𝑣∞, 𝛼) allows to generate 

database of transfers. Every row of such database is 

made of 𝑁𝑠 = (𝐼𝐷𝑠 , 𝑣∞𝑠, 𝛼𝑠), 𝑁𝑒 = (𝐼𝐷𝑒 , 𝑣∞𝑒 , 𝛼𝑒), i.e., 

starting and end node, respectively, and a type of 

transfer. Such database is then explored using a multi-

objective dynamic programming (MODP) approach to 

find optimal solutions with respect to competing mission 

objectives, as shown in later section III. 
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III. EXPLORATION OF THE SEARCH SPACE VIA 

MULTI-OBJECTIVE DYNAMIC PROGRAMMING 

The search space of resonances, VILTs and 

intersections connecting different orbits (𝐼𝐷, 𝑣∞, 𝛼) on 

Tisserand graphs can be modelled as a graph 𝐺, defined 

by two finite sets 𝑉 and 𝐸, such that 𝐺 = (𝑉, 𝐸) [23]. 

Elements in 𝑉 are vertices (or nodes) of the graph, i.e., 

(𝐼𝐷, 𝑣∞, 𝛼), while the elements in 𝐸 are the edges, 

corresponding to the connection between a pair of 

vertices, as defined in section II. The graph is connected 

as every element in 𝑉 can be linked by an element in 𝐸, 

and it is 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 as no cycle can be formed (i.e., one 

vertex can not be visited twice). In this way, one can 

conveniently model the graph as a 𝑡𝑟𝑒𝑒 [24]. 

Fig. 3 shows an example of a tree-graph for a 

Tisserand graph exploration. In this case, the nodes 

encode (𝐼𝐷, 𝑣∞, 𝛼), a departure asymptote at a moon, 

while the edges, represented as arrows in the Figure, 

encode one of the transfers defined in section II. When 

expanding the tree-graph, two steps are necessary: 1) 

expansion, i.e., branching new nodes, 2) selection, i.e., 

identifying which of the branched nodes need to be 

further expanded. 

 
Fig. 3. Tree expansion of nodes representing orbits on 

Tisserand graphs. 

Such appropriate graph transcription, i.e., the 

identification of the minimum number of variables that 

are needed to describe a transfer 𝑁𝑠 → 𝑁𝑒, allows the 

exploitation of the optimal sub-structure property of the 

fly-by problem [18,19] and, therefore, the application of 

dynamic programming to the exploration of the search 

space. Specifically, dynamic programming is used on 

the selection step of graph exploration, allowing to 

automatically select nodes that eventually compose the 

optimal solution. This is possible due to the application 

of the Bellman's principle of optimality, that is stated 

here in its multi-objective version [25]: 

Regardless of the node at which the spacecraft 

currently is on the tree-graph, the Pareto-optimal set 

containing this specific node would include the Pareto-

optimal sub-set of nodes before and after the visited one. 

This can be seen intuitively from Fig. 4. In particular, 

from Fig. 4.a, different sequences of nodes (represented 

as capital letters) arriving to a common node I are 

mapped in the (𝑓1, 𝑓2)-plane, where 𝑓1 and 𝑓2 are the 

objective functions to be minimized as from Eq. (1), e.g., 

overall 𝑇𝑜𝐹 and Δ𝑣, respectively.  

 

 
(a) (b) 

Fig. 4. Representation of different paths arriving to the same 

node at a specific tree-depth in the (𝑓1, 𝑓2)-plane (a) and 

effect of adding a node to the same sequences (b). Dotted 

lines link nodes on the Pareto front. [19] 

A Pareto front of sequences ADI, BEI and BFI is 

identified, while ACI is the dominated sequence. Since 

the edges connecting two different nodes do not depend 

on previously visited nodes, adding another node K 

implies a variation in all the objectives Δ𝑓1 and Δ𝑓2 and 

in Fig. 4.b, that is the same for all the sequences. The 

Pareto front is thus preserved for the sequences ADIK, 

BEIK and BFIK, and any sequence dominated before 

adding K is still dominated after the addition of this 

node, and thus is not needed for further expansion. The 

resulting is thus an MODP [19] exploration that allows 

to identify in an automatic manner the optimal Pareto 

front with the lowest number of paths to be stored in 

memory. 

Algorithm 1. Pseudo-code for MODP exploration. 

1: 

Load the databases, select a starting node (or a pool 

𝑃 of nodes), a set of user-defined cost functions and 

constraints, and a termination criterion 

2: while the termination criterion is not met 

3:  for every node 𝑁𝑖 in 𝑃  

4:   Find all 𝑁𝑗 reachable from  𝑁𝑖 

5:   Save the transfer 𝑁𝑠𝑖 → 𝑁𝑒𝑗  

6:   Apply the constraints 

7:   Find set 𝑈 of terminal unique nodes 

8:   for each node in 𝑈 

9:    Find all the tours to it 

10:    Evaluate the cost functions 

11:    Identify the Pareto fronts 

12:    Save the tours on the front 

13:    Update 𝑃 with unique nodes 

14:   end  

15:  end  

16: end  

 

Algorithm 1 shows the main steps of the MODP 

exploration. One needs to select an initial node (or a pool 

of nodes), some cost functions and constraints. 

Examples of cost functions are Δ𝑣 and 𝑇𝑜𝐹 of the tours, 

and examples of constraints are provided in later list 1-

6. From the databases, one expands the tree of possible 

nodes reachable from a given starting node 𝑁𝑖 =
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(𝐼𝐷, 𝑣∞, 𝛼)𝑖, by checking the corresponding 

(𝐼𝐷, 𝑣∞)𝑖 = (𝐼𝐷𝑠, 𝑣∞,𝑠)𝑗 . This implies that a fly-by 

occurrs at the moon 𝐼𝐷𝑖 at the given 𝑣∞. However, such 

fly-by should be compatible with the constraints, e.g., 

the altitude should be greater than a given minimum (see 

also later list 1-6). One then identifies the set of tours 

that reach unique nodes. For every tour that reaches a 

unique node, the Pareto front is computed and only the 

tours on such front are kept for further expansion. This 

is repeated until a termination criterion is met, e.g., 

Enceladus is reached with an infinity velocity below a 

given tolerance. 

The set of constraints that are relevant for the present 

paper are listed below, that follow the rationale of 

similar literature [2,3,16]. The first 1.-3. are of the 

operational type and so related with feasibility of the 

mission, the other 4.-6. are heuristics to manage the 

search space more efficiently: 

1. The first constraint is on the maximum variation on 

the pump angle α during a fly-by. This is related to 

the minimum admissible fly-by altitude at each 

moon, that, for the present report, is 50 km at Rhea, 

Dione and Tethys, and 1600 km and 25 km at Titan 

and Enceladus, respectively [16]. 

2. Maximum Δ𝑣 between two fly-bys is limited to 50 

m/s, while maximum 𝑇𝑜𝐹 for the whole tour is 

limited to 1100 days, i.e., approximately 3 years. 

3. The tour is composed by different phases, each 

characterized by fly-bys with the same moon. The 

last transfer of each phase is an intersection on the 

Tisserand graph with the next closest moon, and it 

is used to initialise the phase with the next moon. 

4. If going inside the Saturn system, a fly-by can only 

increase the pump-angle, while a VILT can only 

decrease the infinity velocity. The opposite occurs 

if one wants to escape from the Saturn system. This 

is to avoid cycles in the Tisserand graph 

exploration, preventing nodes to be visited 

multiple times. 

5. Since many solutions nearly overlap in the Pareto 

front calculations of MODP, 𝑇𝑜𝐹 bins are used to 

reduce the memory load with sensitivity of 5 days. 

Thus, between two tours arriving to the same node 

that differ less than 5 days in 𝑇𝑜𝐹, only the one 

with lowest Δ𝑣 is kept for further expansion. This 

is similar to the approach in Takubo et al. [16]. 

6. On a VILT, the Δ𝑣 manoeuvre is assumed to occur 

on the first available revolution compatible with 

the constraints (see also section IV). This is similar 

to other works [3], where only the mid-revolution 

is kept. 

IV. RESULTS 

For the purposes of the present report, moon tours 

 
1 https://midas.io.esa.int/midas/, last accessed March 

2024. 
2 Linked-conics approximation is used in this case. 

around Saturn are considered, that start at Titan and fly-

by main Saturn moons, i.e., Rhea, Dione, Tethys, and 

Enceladus, although the presented algorithm can also be 

applied to any planetary system (e.g., Jupiter). 

Constraints and heuristic criteria employed during the 

search are already reported in list 1-6 and in the 

Appendix. Moreover, a simulation is run also 

considering two more operational constraints. These are: 

1) the minimum time between two fly-bys should be 

greater or equal than 8 days, i.e., 𝑇𝑜𝐹𝑓𝑏 ≥ 8 days; 2) the 

minimum time between a fly-by and a DSM should be 

greater or equal than 4 days, i.e., 𝑇𝑜𝐹𝐷𝑆𝑀 ≥ 4 days. 

Such values are derived from JUICE mission heritage 

and simulate flight dynamics constraints for telemetry 

download and commands upload delays. 

Results from the MODP exploration with and 

without operational constraints are thus presented in 

following section IV.A. In addition, going beyond most 

of the current literature, section IV.B  presents an 

approach to solve the phasing problem for some 

solutions from MODP exploration to assess the Δ𝑣 and 

𝑇𝑜𝐹 differences introduced by the assumption Δ𝑣 = 0 

m/s and 𝑇𝑜𝐹 = 0 days on the intersection between 

contours. The presented pipeline has been implemented 

in the ESA MIDAS package which is Community Open 

Source1. 

A. MODP exploration 

The MODP search is assumed to start from an initial 

Saturn equatorial orbit crossing Titan, that is (𝑣∞, 𝛼) =

(1460
𝑚

𝑠
, 50 𝑑𝑒𝑔) similarly to other works in literature 

[2,3,16]. This corresponds to an orbit with 𝑟𝑎  =
 2947611.309 km and 𝑟𝑝  =  1163229.952 km. The 

MODP exploration are stopped when Enceladus is 

reached with a 𝑣∞ ≤ 250 m/s. Alongside the cost of 

VILTs, the overall Δ𝑣 consumption of a moon tour 

considers an impulsive manoeuvre to capture the 

spacecraft around Enceladus with a circular orbit with 

altitude ℎ =  100 km2. 

Results from simulations both with and without 

operational constraints are represented in Fig. 5. This 

shows Pareto front solutions as from the MODP 

approach compared to approaches from literature, i.e., 

Strange et al. [2], Campagnola et al. [3] and Takubo et 

al. [16]3. Each point in the Pareto front represents a 

different moon tour, in terms of number of fly-bys, 

moons' encounter conditions, full-resonant transfer, 

pseudo-resonant transfers and VILTs configurations. 

3 The Pareto front shown from [16] shows only a few 
representative points hand-picked from a much more populated front. 

See original plot in [16]. 

https://midas.io.esa.int/midas/
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Fig. 5. Pareto fronts from MODP exploration compared 

to available literature. 

As a main result, the Pareto front obtained with 

MODP exploration without the operational constraints 

dominates currently available literature, both in quality 

of solutions and in wideness of the front. This is mainly 

because the suitable definition of the nodes allows to 

exploit appropriately the optimal sub-structure property 

and thus to obtain globally optimal trajectories using 

MODP. In particular, MODP exploration allows to 

capture new notable solutions such as tours with 

minimum overall Δ𝑣 of approximately 280.6 m/s and 

mission duration of 1098.78 days to reach Enceladus 

from the given initial Saturn equatorial orbit crossing 

Titan. As expected, the Pareto front degrades when 

operational constraints are included. Such degradation is 

more pronounced as the 𝑇𝑜𝐹 decreases, as the MODP 

exploration is forced to include transfers with higher 

𝑇𝑜𝐹  to be compliant with the constraints. In any case, 

the minimum Δ𝑣 solution is only slightly degraded when 

operational constraints are considered, and the tour 

showcases an overall consumption of 363.6 m/s with 

1099.8 days of time of flight. A summary of each phase 

of the moons' tours with and without the operational 

constraints are reported in Table 1. Infinite velocities at 

the start and at the end of each phase with the given 

moon are specified in the Table, namely 𝑣∞𝑠 and 𝑣∞𝑒, as 

well as the Δ𝑣, 𝑇𝑜𝐹 and number of legs. These solutions 

correspond to the minimum Δ𝑣 from the Pareto front of 

Fig. 5. 

Table 1. Summary of minimum 𝛥𝑣 solutions. On each 

phase, the first row is for solution without operational 

constraints (wo.), while the second row is for solution with 

constraints (w.). The 𝛥𝑣 at Enceladus also considers a 100-km 

circular orbit insertion. 𝑁𝐿 is the number of legs. 

Phase 
𝑣∞𝑠 
[m/s] 

𝑣∞𝑒 

[m/s] 

Δ𝑣 

[m/s] 

𝑇𝑜𝐹 

[days] 
𝑁𝐿 

Titan 
wo. 1460 1460 0 15.95 2 

w. 1460 1460 0 15.95 2 

Rhea 
wo. 1700 1350 47.0 420.64 17 

w. 1850 1300 89.7 394.91 15 

Dione 
wo. 1000 1000 0 167.53 12 

w. 950 900 24.4 195.93 10 

Tethys 
wo. 800 800 0 215.42 13 

w. 750 700 23.2 240.57 12 

Enceladus 
wo. 750 200 233.7 279.24 15 

w. 700 200 226.3 252.43 13 

 

Interestingly, all the phases have a lower number of 

fly-bys with operational constraints, with the only 

exception of Titan. This is mainly because phases at 

Rhea, Dione and Tethys with operational constraints 

employ higher resonant ratios as 3:3, 4:4 and 5:5, 

respectively, while faster full- and pseudo-resonant 1:1 

transfers are sufficient in the case without the 

constraints. Moreover, phases at Rhea and Enceladus 

showcase a smaller 𝑇𝑜𝐹 with the operational 

constraints, due to the lower number of legs, at the price 

of higher Δ𝑣 in the case of Rhea. The phase at Enceladus 

also has a lower Δ𝑣 in the case with operational 

constraints because the start 𝑣∞ is lower than the case 

without the constraints, while the end 𝑣∞ is the same. In 

addition, the (slightly) higher Δ𝑣 with operational 

constraints can be explained by looking at the 𝑣∞ along 

the tour. With operational constraints, the initial 𝑣∞ at 

Rhea is higher than the other case, and then remains 

lower in the rest of the tour. However, the arrival 𝑣∞ at 

Enceladus is the same. This suggests that DSMs are in 

fact needed to compensate the 𝑣∞ penalties in the case 

with operational constraints. 

B. Phasing problem solutions 

As from section II, intersections on Tisserand graphs 

have no explicit information about moons' phasing or 

transfer time between different moons. Thus, one is 

interested in assessing the effect of phasing on the 

overall Δ𝑣 and 𝑇𝑜𝐹 of a moon tour resulting from 

MODP exploration. 

In order to do so, an approach based on the authors' 

previous work is employed [19]. For the MIDAS 

implementation of the algorithm, the phasing problem is 

bases on SALTO [26]. Specifically, results from section 

IV.A are used to fix the set of integer values, i.e., moon 

encounters and resonant ratios. An MODP optimization 

is then used to find optimal trajectories between 

different moons in terms of Δ𝑣 and 𝑇𝑜𝐹, i.e., at the 

intersections on Tisserand graphs. Without too many 

details, the trajectories between two different moons are 

assumed to be Lambert arcs, that are solved over grids 

of initial tour dates and time of flights. The Δ𝑣 cost of 

the given leg is given by the velocity discontinuity 

occurring at the fly-by epoch between incoming and 

outgoing �⃗�∞, which are solutions of Lambert problem 

for the given leg. This Δ𝑣 is shown to well approximate 

real-world mid-course DSMs, especially when low 

defects occur, as in the case of Saturn moon tours. 

Further details are provided in [19]. 

The start date of the tours is discretized in the whole 

month of January 2035, with step size of 1 day. 

Minimum and maximum time of flight for the Lambert 

problems' solutions are 10 and 45 days for Titan-to-Rhea 

phase, respectively, and 5 and 25 for all the other phases, 

respectively. Step sizes are taken as 2% of the orbital 
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period of the arrival moon. The resulting Δ𝑣 and 𝑇𝑜𝐹 of 

the phased trajectories are shown in Fig. 6. From any 

point of the un-phased Pareto front, shown in grey in the 

Figure, a multitude of solutions appear in the phased set. 

This is because each phased solution differs in terms of 

initial tour date, time of flight on the Lambert arcs, 

defects manoeuvres, or VILTs parameters4. 

 
Fig. 6. Un-phased and corresponding phased solutions. 

The un-phased Pareto front is in grey. 

Notably, the phased solutions seem follow a new 

Pareto front that is scaled up with respect to the un-

phased one. This suggests that the phasing problem only 

moves the points towards the top-right part of the plot, 

without altering much the un-phased front. Phased 

solutions towards the bottom-right of the Pareto front 

experience even a lower Δ𝑣 with respect to the original 

un-phased solution, and this is because the VILTs’ 

parameters can vary during the whole tour, allowing 

some phased solutions to lower the Δ𝑣 and even 

performing the Enceladus orbit insertion manoeuvre at 

lower 𝑣∞. Moreover, solutions that do not belong to the 

un-phased front are likely not to contribute to the phased 

one, as shown by the phased solution of the tour from 

Campagnola et al. [3]. Ultimately, the phasing is 

unlikely to pose a significant challenge, given the short 

orbital periods of the Saturn moons. 

 

V. CONCLUSIONS 

A two-steps pipeline for the automatic design of 

moon tours within the Saturn system has been presented. 

This involves the establishment of a time-independent 

transfers’ database, and a subsequent tree-exploration to 

construct moon tours. By incorporating various transfer 

types, including full- and pseudo-resonant transfers, v-

infinity leveraging transfers, and intersections between 

infinity velocity contours on Tisserand graph, the 

pipeline captures the complexity of the mission planning 

problem. The tree exploration is based on a multi-

objective dynamic programming (MODP) scheme that 

allows to automatically find optimal Pareto fronts of 

competing mission objectives, namely Δ𝑣 and time of 

 
4 Only the resonant ratios and number of legs are fixed from the 

un-phased tour. 

flight, with respect to different set of constraints. 

The experimental results demonstrate the efficiency 

and effectiveness of the MODP approach over existing 

literature. Notably, the pipeline yields new and 

improved solutions, including tours with a remarkable 

minimum overall Δ𝑣 of approximately 280 m/s and a 

mission duration of 1100 days to reach Enceladus from 

a Saturn equatorial orbit crossing Titan at a given 

infinite velocity. The presentation of wide Pareto fronts 

further highlights the MODP’s ability to navigate 

complex search spaces, providing valuable insights into 

mission configuration possibilities. 

Furthermore, the paper addresses the so-called 

phasing problem at the inter-moon phases. The analysis 

shows that the structure of the un-phased Pareto front is 

not significantly altered, and solutions not on the un-

phased front are likely not appearing on the 

corresponding phased front. This suggests that solutions 

on the un-phased front are representative of those on the 

corresponding phased front. 

VI. APPENDIX 

Table 2 summarises the properties of Saturn moons 

relevant for this paper, as well as minimum and 

maximum infinity velocities. Step size for the database 

generation is 50 m/s. Circular coplanar orbits are 

assumed. Following  

Table 3 shows the list of resonances employed to 

generate the VILTs databases. 

Table 2. Saturn moons’ parameters. 

 Titan Rhea Dione Tethys Enceladus 
𝑎 [km] 1221870 527108 377396 294619 237948 
Radius [km] 2574.7 763.8 561.4 531.1 252.1 
Period [days] 15.945 4.152 2.737 1.89 1.370 
𝜇 [km3/s2] 8977.9 153.94 73.110 41.209 7.2094 
Min.𝑣∞ [m/s] 1350 850 750 650 200 

Max.𝑣∞[m/s] 1460 1850 1000 800 800 

 

Table 3. List of resonances for different moons. 

Moon Resonances 
Titan 3:1, 2:1, 1:1 

Rhea 

1:1, 13:7, 9:7, 4:5, 5:3, 3:1, 7:6, 3:2, 7:5, 43, 5:4, 

6:5, 15:14, 14:15, 2:2, 3:3, 4:4, 6:7, 2:1, 5:3, 8:5, 
7:4, 15:8, 17:8, 9:8, 8:9, 8:7, 7:8, 10:9, 9:10, 

11:10, 10:11, 12:11, 11:12, 13:12, 12:13 

Dione 

1:1, 4:3, 9:7, 5:4, 6:5, 7:6, 8:7, 9:8, 10:9, 11:10, 
12:11, 13:12, 19:18, 18:19, 14:15, 12:13, 11:12, 

10:11, 9:10, 8:9, 7:8, 6:7, 3:3, 4:4, 5:5, 27:26, 

26:27, 26:25, 25:26, 25:24, 24:25 

Tethys 

1:1, 11:9, 6:5, 7:6, 8:7, 9:8, 10:9, 11:10, 12:11, 

13:12, 14:13, 15:14, 19:18, 25:24, 35:34, 34:35, 

24:25, 18:19, 14:15, 13:14, 10:11, 9:10, 7:8, 
13:15, 4:4, 5:5, 6:6, 34:33, 33:32, 33:32, 32:33, 

32:31, 31:32, 31:30, 30:31, 30:29, 29:30, 29:28, 

28:29, 28:27, 27:28 

Enceladus 

1:1, 7:6, 20:17, 15:13, 8:7, 17:15, 9:8, 19:17, 10:9, 
21:19, 11:10, 12:11, 13:12, 14:13, 15:14, 16:15, 

19:18, 24:23, 17:16, 21:20, 13:11, 22:19, 15:13, 

25:22, 18:17 
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