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ABSTRACT

Heteroclinic connections represent unique opportunities for spacecraft to transfer between

isoenergetic libration point orbits for zero deterministic ∆V expenditure. However, methods

of detecting them can be limited, typically relying on human-in-the-loop or computationally

intensive processes. In this paper we present a rapid and fully systematic method of

detecting heteroclinic connections between quasi-periodic invariant tori by exploiting

topological invariants found in knot theory. The approach is applied to the Earth–Moon,

Sun–Earth, and Jupiter–Ganymede circular restricted three-body problems to demonstrate

the robustness of this method in detecting heteroclinic connections between various quasi-

periodic orbit families in restricted astrodynamical problems.
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1 Introduction

The past few decades have on many occasions

demonstrated the importance of multi-body dynamics in

the design of space mission trajectories, allowing us to

produce orbits and transfers that would be impossible

in lower-fidelity models such as patched conics. This is

incredibly important when designing trajectories in the

cislunar region, where many upcoming missions aim to

operate. One such class of trajectories unique to multi-

body dynamics are heteroclinic connections, which will

be the focus of this paper.

The Genesis mission famously made use of a

heteroclinic connection between Sun–Earth L1 and L2

libration orbits [19]; this transfer trajectory allowed the

spacecraft to travel between distant regions of space with

zero deterministic ∆V cost. As such, these methods offer

a unique opportunity to extend the life of missions when

an operational spacecraft has minimal remaining fuel

for large orbit changes; THEMIS-ARTEMIS was the

extension of the THEMIS mission, during which two

of the spacecraft were placed into Lissajous orbits and

performed heteroclinic connections between L1 and L2

libration point orbits at the Moon [4, 8]. Now attention

has returned to the Moon with the advent of NASA’s

Artemis program, the successor to the Apollo program,

which aims to land humans on the Moon before the

end of the decade [29]. In addition, the Lunar Gateway

promises to be an international collaboration to construct

a science and habitation module in lunar orbit. For these

reasons, new mission design techniques for fuel-minimal

trajectories in the vicinity of the Moon are of great

interest. Heteroclinic connections have been proven to

provide such opportunities.

Heteroclinic connections exist at the intersections of a

stable and an unstable manifold, each manifold belonging

to a different object such as an equilibrium point, or

periodic or quasi-periodic orbit. As the unstable manifold

naturally departs from one orbit and the stable manifold

naturally arrives at another, this allows a spacecraft

to traverse between them without the need for any

fuel expenditure. While heteroclinic connections between

periodic orbits exist, they can be shown to be rare due

to the low dimensionality of the intersecting manifolds.

The dimension of intersection of two manifolds is

found by subtracting the sum of the co-dimensions of the

two manifolds from the dimension of the phase space;

the co-dimension of the manifolds themselves are found

by subtracting the dimension of a manifold from the
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dimension of the phase space. Performing an analysis

of the dimension of intersection of invariant manifolds

emanating from both periodic and quasi-periodic orbits

(Tables 1 and 2), we find quasi-periodic orbit manifolds

to have a higher dimension of intersection. This suggests

heteroclinic connections are more common between quasi-

periodic orbits than periodic orbits, which is supported

by existing research [18]. For this reason quasi-periodic

orbits will be the focus of this work, as connections

between them are more prevalent.

While heteroclinic connections could prove incredibly

useful for future lunar missions and far beyond,

producing them is often difficult, time-consuming, or

computationally intensive with current methods, both

for periodic and quasi-periodic orbits.

Gómez et al. and Arona and Masdemont’s approach

to detecting heteroclinic connections was to expand the

Hamiltonian of Hill’s problem near libration points in

normal forms. However, this process fails to elegantly

tackle the dimension problem, instead relying heavily

on numerical procedures to search the design space for

heteroclinic connections [5, 13, 14]. In addition, this

method is limited in robustness as it fails to approximate

accurately the dynamics far from the libration points.

Barcelona, Haro, and Mondelo used parameterisation

methods to compute Taylor expansions of stable and

unstable manifolds of periodic orbits, generating large

“meshes”, making the structure of the manifolds explicit

[6]. However, when looking for connections between these

orbits, the Euclidean distance between points in two

sets of manifold states are calculated and minima are

extracted to find initial guess trajectories for further

correction. This is method of finding initial guesses for

connection has been common in several other studies of

the problem regardless of how the compared manifold sets

are generated; specifically, the past work of Masdemont,

Delshams, and Roldán [12, 23]. This approach can be

successful but does not guarantee a thorough search of

all possible connections.

Instead, a common approach is to choose to represent

one or more of the dimensions in novel ways. Anderson

and Lo have done much work on producing heteroclinic

connections in the Jupiter–Europa system [2, 3] using

Poincaré maps, however much of this work is completed

in the planar problem, reducing the dimensions by 2 but

limiting overall mission design opportunities. Kumar and

de la Llave take a similar approach, producing heteroclinic

connections in planar models of the Jovian system using

Poincaré maps [21]. Additionally, these works present

connections between periodic orbits, not quasi-periodic

orbits. Haapala and Howell tackled the problem by

selecting two of the dimensions to be represented as

vectors originating from data points in the other two

dimensions [16], as well as extracting and plotting the

perilune of manifold trajectories [15]. These are also

implemented to find connections between periodic orbits,

not quasi-periodic orbits; however, McCarthy and Howell

adapted the velocity vector representation method from

Ref. [16] to the manifolds of quasi-periodic orbits [24].

Bonasera and Bosanac made use of an algorithm known

as Uniform Manifold Approximation and Projection

(UMAP) to construct a lower-dimensional representation

of the intersection states, projecting high dimensional

data into lower dimension space [7]. These dimension

reduction techniques allowed them to find connections

between quasi-periodic orbits, but restrict the user to a

human-in-the-loop regime.

Another approach to detecting heteroclinic connections

between periodic orbits was taken by De Smet and

Scheeres, who implemented machine learning algorithms

Table 1 Dimensional analysis for periodic orbit manifolds

Stable manifold Unstable manifold

Dimension 2 2 5 Dimension, phase space
Co-dimension 3 3 6 Co-dimension, intersection

−1 Dimension, intersection

Table 2 Dimensional analysis for quasi-periodic orbit manifolds

Stable manifold Unstable manifold

Dimension 3 3 5 Dimension, phase space
Co-dimension 2 2 4 Co-dimension, intersection

1 Dimension, intersection
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to circumvent the restriction of a human-in-the-loop

regime [11]. However, while excellent at handling high-

dimensional data, machine learning algorithms offer little

insight into the dynamical properties of a solution. Care

must also be taken in tuning the parameters of a machine

learning algorithm, as well as discarding false positives.

In addition, large swathes of training data are required

to train such an algorithm to a useful level of accuracy.

Olikara made use of an “indirect” computation [25],

expanding the work of Calleja [9] from periodic to quasi-

periodic connections, wherein a binary search algorithm

and differential corrector are used to extend the time a

departing manifold spends in the region of the arrival

torus. However, the numerical procedures have been

shown to fail in certain situations, such as if the trajectory

being corrected arrives tangential to the stopping plane

which determines the region of the arrival torus.

Many of these methods will inevitably, due to numerical

errors or interpolation, provide trajectories that are close

to, but not exactly, heteroclinic connections, which we

will call “initial guess trajectories”. These initial guess

trajectories provide excellent approximate solutions for

refinement by differential correction methods. This has

been demonstrated notably by Henry and Scheeres [17]. In

their work, a system of boundary constraints are formed

for which the variables are defined by the location of

manifold trajectory initialisation on the surfaces of the

departure and arrival tori, parameterised by the four

torus angles, as well as the two propagation times of

the manifold trajectories. Assuring these trajectories

have equal states after propagation ensures a heteroclinic

connection. Henry and Scheeres approach the problem of

producing an initial guess for the differential correction by

first finding intersections between the stable and unstable

manifolds in position space. The norm of the difference

in velocity at each point in that intersection region is

then calculated. Points with a velocity difference below

some tolerance at taken as approximate solution. The

work demonstrates the benefit of a combined detection

and correction methodology, and a similar approach to

differential correction will be taken later in this work.

However, this process still relies on selecting initial

guesses based on near-zero differences in velocity in those

intersection regions, which could lead to false minima.

The method presented in this work aims to circumvent

all of the above issues by exploiting topological properties

of the invariant manifolds of two orbits to quickly

generate initial guess trajectories for later differential

correction. This allows for robust detection of heteroclinic

connections between quasi-periodic orbits.

2 Background

2.1 Linking number

The linking number is a topological invariant used in knot

theory to describe how many times two closed curves in

3-dimensional space wrap around one another [27, 28].

As a topological property, the linking number is equal

for any two pairs of closed curves for which one pair can

be made into the other pair via continuous deformation,

assuming the curves do not cross during this process.

Therefore, the only way the linking number can change is

if the curves pass through each other. A linking number

of 0 means that the curves can be continuously deformed

to become a pair of entirely separate circles without the

need to pass through each another. A pair of circles linked

like a section of chain would have a linking number of 1

or −1, depending on the orientation of the curves.

−2 −1 0 1 2

Linking number

Fig. 1 Simple curves which are isomorphic to all curves
with linking numbers between −2 and 2.

Linking number equivalents exist for dimensions

beyond 1-dimensional curves in 3-dimensional space

[28]. In general, a linking number can be calculated to

describe the relationship of any two closed manifolds of

dimensions m and n, so long as the dimension of the

space they are embedded within d satisfies the equation

d = m + n + 1. In this work, we will be considering

1-dimensional closed manifolds in 3-dimensional space

only. The linking number is calculated by constructing

a surface bounded by one of the curves and tracking

the number and direction of intersections between this

surface and the other curve, described in further detail

in Section 3.1.

2.2 Circular restricted three-body problem

The circular restricted three-body problem (CR3BP)

is a simplified model of the dynamics of three bodies,

where one of the bodies is a satellite and taken to be

much smaller than the other two, which in this work
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this will often be the Earth and Moon. We only consider

the influence of the primary and the secondary on a

spacecraft, denoted P1, P2, and P3 respectively. This

model is a good approximation of the dynamics in cislunar

space and allows for useful exploitation of dynamical

systems theory in mission design. Some assumptions are

made; the orbit of the Moon about the Earth is assumed

to be circular, and the mass of the spacecraft is assumed

to be zero [20].

We normalise the problem by selecting units of distance

and time such that both the distance between the Earth

and Moon and the reciprocal of the Moon’s angular

velocity are both 1. We additionally define a mass ratio

parameter µ, where

µ =
m

M +m
(1)

Here, m and M are the mass of the Moon and Earth

respectively. A rotating reference frame is selected with

an origin at the barycenter of the Earth and Moon. The

rotation rate of the frame is equal to the angular velocity

of the Moon’s orbit; this means that the Earth and Moon

appear stationary positioned on the x-axis, located at

coordinates [−µ, 0, 0] and [1 − µ, 0, 0] respectively. The

y-axis is parallel to the direction of the Moon’s velocity,

and the z-axis is perpendicular to the x–y plane.

y

x

1 − μ

−μ

P
1

P
2

P
3

r
1 r

2

Fig. 2 Circular restricted three-body problem.

The equations of motion of the system are given by

[10]:

ẍ− 2ẏ = x− 1− µ
r31

(x+ µ)− µ

r32
(x+ µ− 1) (2)

ÿ + 2ẋ = y − 1− µ
r31

y − µ

r32
y (3)

z̈ = −1− µ
r31

z − µ

r32
z (4)

where the spacecraft state X is described by [x, y, z, ẋ,

ẏ, ż] and r1 and r2 are the positions of the spacecraft

relative to the primary and secondary respectively.

The CR3BP admits a single integral of motion C,

known as the Jacobi integral [20]. A constant such as this

proves useful in mission design by narrowing the design

space, allowing us to define in advance the “energy” of a

state and thus reduces the number of variables that must

be known at a later state after propagation.

C = Ω− ẋ2 + ẏ2 + ż2

2
(5)

where

Ω =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
(6)

The Jacobi integral of a trajectory determines which

regions of space the spacecraft can access; additionally,

in the CR3BP, heteroclinic connections can only exist

between orbits that are of the same Jacobi integral, known

as isoenergetic orbits.

2.3 Quasi-periodic tori

The focus of this work is on quasi-periodic orbits,

specifically of dimension 2. As 2-dimensional objects

they can be parameterised by two torus angles, θ0

and θ1, or longitudinal and latitudinal respectively.

For any given torus in the CR3BP, the function that

maps its torus angles θ = [θ0, θ1] to state space

coordinates X = [x, y, z, ẋ, ẏ, ż] is achieved via the torus

function U(θ) = X [25]. For heteroclinic connections to

exist between orbits they must be isoenergetic; quasi-

periodic tori exist in 2-parameter families with variable

energy and ratio of fundamental frequencies. Setting

the Jacobi integral of the tori as constant, they then

exist in 1-parameter families defined by their unique

ratio of fundamental frequencies. For this work numerical

methods for generating quasi-periodic tori developed

by Gómez, Mondelo, Olikara, and Scheeres (GMOS)

[26] were implemented. This method has the benefit of

providing stability information via the Floquet matrix,

generated torus as a byproduct of the scheme, which can

be later used to produce the hyperbolic manifolds of the

torus.

The hyperbolic manifolds of a torus are of one

dimension higher than the torus itself. In the case of 2-

dimensional tori, the manifolds are 3-dimensional objects.

These manifolds can be found numerically by considering

the Floquet matrix of the torus and extracting the

eigenvectors associated with the stable and unstable

eigenvalues at a given location on the surface. These

stable and unstable eigenvectors δUs(θ) and δUu(θ) are

used to perturb states along the torus by some arbitrary

scaling factor, ε, set in this work to 1×10−6. This method
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allows us to generate two new tori associated with the

initial torus, which are defined by all points on the initial

torus surface after being perturbed onto the stable or

unstable manifold. The function that maps the torus

angles of the original torus to equivalent state space

coordinates that exist on the surface of these “perturbed

objects” will be referred to as the manifold functions

Ũs(θ) = U(θ) + εδUs(θ) and Ũu(θ) = U(θ) + εδUu(θ),

where the subscripts s and u refer to the stable and

unstable manifolds respectively.

Torus maps provide a unique way to understand the

manifolds of quasi-periodic orbits. A torus map is a

method of mapping the values of a continuous function

to the surface of a torus. Positions on the torus map

can be easily parameterised by the two torus angles, θ0
and θ1. For example, we can choose to map one of the

state variables of the stable manifold after initialisation

from the torus surface; that is, after it is perturbed onto

the manifold and propagated numerically. Figure 3 is an

example of such a map for the variable z, mapped to the

surface of a quasi-halo orbit perturbed onto the stable

manifold.
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Fig. 3 Example torus map of z-values of a perturbed quasi-
halo orbit at the Earth–Moon L2 point.

As this mapping is continuous, we can take level curves

of the torus map. These curves represent all points on the

map for which the height is equal to some selected value.

For example, selecting z = 0 as the level curve, we can

interpolate all values of θ0 and θ1 for which the height of

the map is zero. We can then interpolate the height of

the torus maps associated with x and y for those same

values of θ0 and θ1, and determine the position states

at which the torus intersects the z = 0 plane, as seen in

Fig. 4; the red curves in both plots represent the level

curves and the interpolated position states found using
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Fig. 4 Level curve of z = 0 extracted from the torus map
in Fig. 3 used to interpolate position states.

said level curves. Interpolation of state variables along

level curves in this way will be necessary later in this

work when describing the methodology of our approach.

2.4 Manifold generation

The GMOS method of generating quasi-periodic tori

provides a set of N 6 × 1 state vectors that lie on an

invariant circle of the torus, each with equal longitude and

with equally spaced latitude angles. We then produce M

additional invariant circle sets at equally spaced longitude

angles. Each of these invariant circles has an associated

Floquet matrix which is extracted in the generation

process and can be used to find δUs(θ) and δUu(θ) for

points in the set. The eigenvectors extracted are 6 N × 1

vectors, which are appropriately scaled and applied to

U(θ) to produce states which can be propagated to find

trajectories that exist within the manifold of the torus.

Performing this for each invariant circle, we have two sets

of N×M states for trajectories initialised onto the stable

manifold and unstable manifolds. Given these sets, it is

easy to initialise manifold trajectories from any point on

the tori surfaces by constructing torus maps using the

state variables and interpolating the states for any value

of the torus angles.
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When propagating these resulting states, the stable

manifold is propagated in backward time and the unstable

manifold is propagated in forward time. They are

propagated until they intersect the surface of section

x = 1−µ, the x position of the Moon. The resulting sets

of all trajectories in the stable and unstable manifolds

are referred to as Ws and Wu.

2.5 Regularisation

Heteroclinic connections may often pass within the

vicinity of a singularity, as is the case for connections

between L1 and L2 libration orbits in the Earth–Moon

system as the centre of the Moon is a singularity in

the CR3BP. This can negatively impact the accuracy

and computation time of common numerical methods

when propagating trajectories in the lunar vicinity. In

addition, this singularity can negatively affect the torus

maps which map invariant manifold states at the surface

of section to the point on the torus surface where the

manifold trajectory was initialised; velocity variables can

reach very high magnitudes when the manifolds pass

very close to the Moon, drastically skewing the height of

the torus maps in certain regions. These issues can be

avoided by the use of regularised equations of motion,

which introduce a fictitious time and removes one of the

two singularities in the system [10]; in this work, we select

the singularity at the Moon to be removed.

We define (q1, q2, q3) as the physical space and (Q1,

Q2, Q3) as the parametric space. Note that as we are

removing the singularity via the introduction of fictitious

time and position is not related to time in the same way as

velocity or acceleration, the physical variables (q1, q2, q3)

are equal to the equivalent standard coordinates (x, y, z),

but (q̇1, q̇2, q̇3) will vary from (ẋ, ẏ, ż). We will use the

Kustaanheimo–Stiefel transformation [22] to construct

our physical variables and equations of motion in

regularised form.

In order to regularise the system around the Moon, we

must define a matrix A(Q) such that
q1
q2
q3
q4

 = A(Q)


Q1

Q2

Q3

Q4

 +


1− µ

0
0
0

 (7)

The elements of A(Q) must be linear homogeneous

functions of Q, and A(Q) must be orthogonal. Hurwitz

showed such a matrix for this application is only possible

for spatial dimensions 1, 2, 4, and 8 [10, 30]. Therefore

we must expand the parametric space to 4 dimensions,

defining A(Q) to be

A(Q) =


Q1 −Q2 −Q3 Q4

Q2 Q1 −Q4 −Q3

Q3 Q4 Q1 Q2

Q4 −Q3 Q2 −Q1

 (8)

As our physical system is 3-dimensional, we can set Q4

to zero. From this we find

Q1 =

√
q1 + r2 + µ− 1

2
(9)

Q2 =
q2

2Q1
(10)

Q3 =
q3

2Q1
(11)

As the position states in regularised and non-regularised

coordinates are equal, r2 here is the same as described

in Section 2.2.

It is easily shown that the differential with respect to

time A(Q)′ = A(Q′) [10]. Therefore, we find the first and

second derivatives of q to be

q′ = 2A(Q)Q′ (12)

q′′ = 2A(Q)Q′′ + 2A(Q′)Q′ (13)

We introduce a fictitious time s, defined using the scaling

factor D.

dt = Dds (14)

D = 4r2 = 4(Q2
1 +Q2

2 +Q2
3 +Q2

4) (15)

From these equations we can calculate the equations of

motion of the CR3BP in this fictitious time to be

Dq′′1 −D′q′1 − 2D2q′2 = D3Ωq1 (16)

Dq′′2 −D′q′2 + 2D2q′1 = D3Ωq2 (17)

Dq′′3 = D3Ωq3 (18)

By converting our physical state variables to the

parametric state variables we can use ordinary differential

equation solvers along with the above equations to

numerically integrate the parametric state before

converting the integrated values back to physical state

variables where required. Figure 5 shows a numerically

integrated L2 southern near-rectilinear halo orbit in the

Earth–Moon system, produced via standard equations

of motion and via regularised equations of motion. Note

that the regularised propagation produces a lower density

of integrated states. Computation time is improved with

the regularised state formulation since less integration

steps are required to produce the same trajectory.

The removal of the singularity is easily shown to
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Fig. 5 Earth–Moon L2 NRHO propagated using standard
and regularised equations of motion

improve the representation of the torus map after

using the regularized coordinates instead of the non-

dimensional rotating coordinates defined in Section 2.2.

Propagating the invariant manifolds of a quasi-periodic

torus until they intersect the surface of section defined

by x = 1−µ, we can then map the manifold states at the

surface of section to the position of initialisation on the

torus surface via a torus map. The height of the maps

in Fig. 6 represent ẏ and q′2 at the surface of section

respectively. The torus map of ẏ variables contains clear

singularities. This makes interpolation of level curves on

the map challenging and ultimately inaccurate. However,

mapping instead the regularised q′2 variables, we find the

torus map much easier to interpret and the results of

interpolation from these maps behaves more consistently.

The surface of section x = 1 − µ was selected as

heteroclinic connections between libration orbits in the

vicinity of L1 and L2 are explored in this paper. However,

the choice of surface of section is arbitrary and dependent

on the mission design engineer’s needs.

While technically the torus maps used throughout the

paper therefore use values of q to define the map height,

we will be using x, y, z, ẋ, ẏ, and ż to refer to q1, q2, q3,

q̇1, q̇2, and q̇3 for the sake of ease of understanding when

using torus maps.

2.6 Heteroclinic connections

The stable manifold describes all the trajectories that will

approach an invariant object as time t tends towards +∞,

while the unstable manifold describes the trajectories that

will approach an invariant object as t tends towards −∞.
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Fig. 6 Torus maps of ẏ states at the surface of section before
and after regularisation.

If a trajectory belongs to both the stable manifold of

one object and the unstable manifold of another, that

trajectory would leave one invariant object and then

arrive at another in a ballistic fashion, albeit over an

infinite time. This type of trajectory is classified as a

heteroclinic connection. To find these connections, we

must find where stable and unstable manifolds of two

objects intersect. This is a non-trivial task for high-

dimensional manifolds such as those of quasi-periodic

orbits in the CR3BP.

In the CR3BP, spacecraft states are represented by six

variables given by the Cartesian position and velocity

coordinates as seen from the synodic frame of two

attracting masses, such as the Earth and the Moon.

The Jacobi integral allows mission designers to express

one of the variables as a function of the remaining five. As

heteroclinic connections must exist along the hyperbolic

manifolds of one or more quasi-periodic orbits, we can

reduce the problem to four dimensions by fixing the

Jacobi integral and taking a surface of section through

which both the stable and unstable manifolds of the

objects shall pass. In this work, this surface of section is
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placed at x = 1− µ (the position of the secondary body

on the x-axis). An intersection of the stable and unstable

manifolds at this surface of section would constitute a

heteroclinic connection. However, data sets of dimension

4 are still difficult to represent in a way that is intuitive

to humans.

To determine a heteroclinic connection, we will consider

the states of the manifold trajectories at the surface of

section, where the propagation ends. We can map the

values of y, z, ẋ, ẏ, and ż at the surface of section

to the surface of the torus by considering the value

of θ at which each manifold trajectory was initialised,

providing a torus map for each variable. The height of

the map describes the chosen state variable at the surface

of section, while the axes describe where on the torus

surface the trajectory departed from. Provided a large

number of initialised manifold trajectories, the torus map

allows us to interpolate the values of y, z, ẋ, ẏ, and ż at

the surface of section for manifold trajectories initialised

from anywhere on the torus surface. The function that

maps these state variables to the surface of the torus is

continuous. Therefore, by selecting one variable to be

equal to some arbitrary value we can produce a level curve

on the map constructed of all values of θ which describe

a position on the torus surface which would provide

that specific value at the surface of section if a manifold

trajectory was initialised there. Figure 7 demonstrates

this by finding the level curves defined by z = −0.005

at the surface of section and using those to interpolate

where on the perturbed tori manifold trajectories must

be propagated to arrive at the surface of section with a

z-value of −0.005 . The variable selected to be used to

find the level curves in this way (in this case z) is named

the scanning variable, D.

Consider the two sets of D variable values at the surface

of section, Ds and Du, associated with slices of Ws and

Wu respectively, and then consider the set Ds ∩ Du.

This set contains every value of D which a heteroclinic

connection could have as it passes the surface of section.

We then use this range of values to produce level curves

on the D variable torus maps. The values of θ0 and θ1 that

correspond to these curves can be used to interpolate the

values of three of the remaining state variables, referred to

as A, B, and C, for the same positions on their equivalent

torus maps. Due to the nature of continuous functions

mapped to compact, boundless manifolds, plotting the

interpolated values of A, B, and C provides one or more
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Fig. 7 Level curves of z = −0.005 at the surface of section
used to interpolate states on the tori’s manifolds.

closed curves in a 3-dimensional phase space. Performing

this process for both the stable and unstable manifolds

produces two sets of these closed curves, named the

stable curves and unstable curves, for which a linking

number can be calculated. Figure 8 demonstrates this

for A, B, C, and scanning variable D defined by y, ẏ,

ż, and z respectively, thus producing curves in a y–ẏ–ż

phase space. These curves were constructed using the

level curves found in Fig. 7. The linking number of these

curves is 1.

Note that for any given set of stable and unstable curves
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interpolated from the z = −0.005 level curves in Fig. 7.

we have accounted for x via the surface of section, and the

scanning variable D because the curves are interpolated

using a unique D value. That means an intersection in

stable and unstable curves would constitute a heteroclinic

connection, as five state variables would be found to

be equal, and the sixth could be calculated using the

Jacobi integral of the isoenergetic tori. The challenge then

becomes to find intersections of 1-dimensional curves in

3-dimensional space, which is itself challenging as such

an intersection would be dimension 0 and require infinite

precision to find numerically. However, as discussed

previously, the linking number of two closed curves (in

this case the stable and unstable curves) can only change

if the curves intersect. Therefore, by tracking the linking

number of the curves as we vary our D variable, we can

easily find with high precision at what value of D the

intersection occurs. This method is described in more

detail in Section 3.

It is worth noting that while the linking number is

typically strictly associated with only two closed curves,

we are using it here to describe how linked two sets

of closed curves are; while technically an inaccurate

definition of the linking number, this is irrelevant for

our purposes as the process still successfully informs us

of any intersections that occur between the stable and

unstable curves; any change in the linking number of

the set is still indicative of a heteroclinic connection.

We find the linking number of the sets by summing

the linking numbers of every combination of stable and

unstable curves. For the function K(a, b) which outputs

the linking number of the curves a and b, the linking

number equivalent invariant we will instead consider, L,

is therefore

L = K(a1, b1) +K(a1, b2) + · · ·
+K(an, b(m−1)) +K(an, bm) (19)

where n and m are the number of curves in sets a and

b respectively. It is worth noting that depending on the

shape of the manifolds at the crossing of the surface of

section, the values of n and m may vary and are not

necessarily equal.

3 Methodology

3.1 Calculating the linking number

To calculate the linking number of two closed curves, each

closed curve is discretised into line segments. Due to the

nature of numerical modelling, the curves are not truly

continuous, instead constructed of n points; when using

this method to find heteroclinic connections between

quasi-periodic orbits, the value of n is determined by

the precision of the torus maps, which depends on the

density of trajectories used to generate the hyperbolic

manifolds of the quasi-periodic orbits; a greater density

of trajectories allows us to interpolate more precise level

curves on the torus map, and therefore curves with larger

values of n.

One of the curves is arbitrarily selected to be converted

into a surface constructed of triangles, with the original

curve as the boundary of the surface. We choose the

stable curve for this. This curve is defined by n line

segments constructed of start and end points [pj ,pj+1]

for j = [1, 2, · · · , n − 1] and the additional line defined

by start and end points [pn,p1], while the unstable curve

is defined by m line segments constructed of start and

end points [qk, qk+1] for k = [1, 2, · · · ,m − 1] and the

additional line defined by start and end points [qm, q1].

We calculate the mid-point of the curve, P , given by

P =

n∑
a=1

pa
n

(20)

before constructing n triangles with the line segments of

the curve as the bases and P as one of the vertices. The

vertices of the triangles would therefore be [pj ,pj+1,P ].

Each triangle has an associated normal vector R, defined

as R = [pj+1 − pj ]× [P − pj+1].

For each line segment of the unstable curve we check

whether they intersect within any of the triangles that

make up the surface of triangles bounded by the stable

curve. For a given line segment qk+1−qk, this is achieved

by considering the plane the triangle resides in and the
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point Q where a vector defined by the line segment would

intersect this plane, assuming it is scaled to any length.

If the resulting distance between qk and Q exceeds the

length of the line segment, or the distance is negative

in the direction of qk+1 − qk, the line segment does

not intersect the plane. Otherwise, we take three dot

products; in each case one vector is a side of the triangle

and the other is the vector defined by the first vertices of

the side being considered and the point Q: [pj+1 − pj ] ·
[Q−pj ], [P −pj+1] · [Q−pj+1], and [pj+1−P ] · [Q−P ].

If all three resulting dot products are positive, the line

segment must intersect the interior of the triangle [1].

If an intersection between a line segment and a triangle

interior occurs, we use the dot product of the line segment

and R to determine the direction through which the line

is passing the triangle, where the positive direction is

defined as the direction of R. Figure 9 shows an example

of a positive passing, with an exaggerated scale. Each

time an intersection is found, the direction is stored. Once

all line segments have been checked against each triangle,

positive intersections are given a value of 1, and negative

intersections −1. The sum total of all intersections is

taken to be the linking number. This process is repeated

for each combination of stable and unstable curves, and

the combined linking number is taken to the be the linking

number of the sets, L.

P
R

Q

pj qk

pj+1

qk+1

Fig. 9 A positive passing of the unstable curve through the
constructed stable curve surface.

This method of calculating the linking number has

proven robust during our use, despite what form the

linking curves take. While large distortions in the

closed curves may result in triangles which appear

distant from the smallest surface closed by the curve,

ultimately the surface constructed from the triangles

will be homeomorphic to a disc and thus the topological

qualities that allow the method to work persist.

3.2 Tracking the linking number

In Section 2.4 it is mentioned that D variable level curves,

and therefore the stable and unstable curves in the A–

B–C phase space, are taken for all D values in Ds ∩
Du. In doing so, for each value of D, we now have the

tools to calculate the linking number of the associated

A–B–C stable and unstable curves. By repeating this

process over a dense range of D values, we can track

how the curves evolve and see how their linking number

changes as the scanning variable varies (Figs. 10 and 11).

Provided a dense enough search, we can infer at what

values of D changes in the linking number occur to a

high precision. Since a change in the linking number

is indicative of an intersection in the curves, we can

robustly and systematically identify at what values of

the scanning variable heteroclinic connections pass the

surface of section. Any time a change in the linking

number occurs, an average of the D values before and

after the change is calculated and taken to be an initial

guess for the D value of the heteroclinic connection.

Once these values of D are found, the stable and

unstable curves are interpolated for this value and a

simple nearest neighbour search is performed to find the

points in the curves which are most close to the other

set. The average of these points is then taken, providing

the A, B, and C values. The Jacobi integral is then used

to calculate the remaining coordinate, meaning all six

state variables are accounted for and an initial guess for

a state along the heteroclinic connection is found.

3.3 Interpolating θθθ values

We now have an initial guess for the spacecraft state at

the surface of section along the heteroclinic connection.

However, propagating this state forward and backward in

time it is clear that despite passing through the vicinity

of the tori, the resulting trajectories do not land on

the tori which were used in their generation (Fig. 12),

exemplifying the need for differential correction. Even

if the result is very close to a state along a connection,

confirming whether they arrive at the tori is a complicated

task; trajectories do not technically arrive at the torus,

only a trajectory on the version of the torus which

has been perturbed onto the stable manifold, and this

perturbation is selected arbitrarily. Therefore, differential

correction would be simpler if we were approaching from

another direction: initialising the trajectories on the tori

and minimising the difference in the states at the surface

of section. An additional step is therefore required to

convert our state at the surface of section to two sets of
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Fig. 11 Evolution of the linking number as z varies,
indicating 4 heteroclinic connections.

torus angles which will describe the points of initialisation

on the tori from which trajectories are propagated. In

short, given some initial guess state at the surface of

section Xi we must derive θs and θu, the torus angles

at which our trajectories along the stable and unstable

manifolds are initialised respectively. It is likely that no

manifold trajectory arrives at the surface of section with

an exact state value of Xi as some interpolation is used

in generating it, so we must calculate the values of θs and

θu which produce trajectories that arrive at the surface

of section most closely to Xi.

This is achieved by plotting level curves on the torus

0.1
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z
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y x
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Fig. 12 Four initial guess heteroclinic connections
propagated from the surface of section (see Fig. 14 for
corrected trajectories).

maps of the four state variables used in generating our

initial guess at the surface of section Xi, A, B, C, and

the scanning variable D, and seeing where they overlap

for each torus. The level curves extracted from their
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respective torus maps are defined by their values in Xi.

For a true map from states on a heteroclinic connection to

torus angles we would expect to find all the level curves

intersect at a single point. As Xi is not a true state

on the torus manifold, we instead find the level curves

tend to pass closely to each other in some region but

do not intersect at a single point. The goal then is to

interpolate a point on the map we deem the centre of

this near-passing region.

Given that the curves come together in a single small

region, intersections are likely to occur. We will define four

classes of intersection: AB intersections are intersections

between the A and B level curves, BC intersections are

between the B and C level curves, AC intersections are

between the and A and C level curves, andD intersections

are between D and any of the other three curves. Using

AB, BC, and AC, we construct every possible triangle

that has one vertex from each of these three sets of

intersections. We then compare each triangle with each

intersection point in D, calculating the distance from

each triangle vertex to the D intersection. These three

distances are summed. The triangle with the smallest

minimum summed distance is taken to be the best

candidate for interpolating the torus angles for the initial

guess; the mean of the positions of the triangle’s vertices

is calculated, providing a value of θ. This process is

completed for both the departure and arrival tori, yielding

θs and θu.

This method of interpolating the θ values of the initial

guess is limited. The level curves generated using the

variables of Xi do not necessarily have to intersect or

intersections hypothetically could occur far from the true

location of the heteroclinic connection on the torus map

depending on the intersection angle of the curves. While

these issues have not become apparent throughout our

investigation, for these reasons a more robust method of

interpolating these values is in development.

3.4 Differential correction

Given that we have generated initial guesses for θs and

θu, we can differentially correct these values to produce

a heteroclinic connection. This is achieved by initialising

trajectories on the stable and unstable manifolds of the

respective tori and propagating them to the surface of

section, then minimising the difference in the trajectory

states at that surface. Unlike Henry and Scheeres [17],

who included the propagation time to the surface of

section, we are choosing to end the propagation at the

surface of section, removing the need for these two

additional variables in the correction process.

We define a function Ψ that maps the torus angles

at which a manifold trajectory is initialised to the

trajectory’s state at the surface of section.

Ψ(θ) = Ψ(θ0, θ1) = X (21)

The initialised manifold trajectory is found via

interpolation of the torus maps. While this can lead

to issues with preservation of the Jacobi integral if the

scaling factor of the perturbation onto the manifold is

large, we have found a perturbation of magnitude 10−6 is

small enough to avoid any large discrepancies in Jacobi

integrals which may prevent the correction of heteroclinic

connections.

For a heteroclinic connection to be found, the following

equation must be satisfied:
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Fig. 14 Heteroclinic connections between quasi-halo orbits in the Earth–Moon system.

Ψs(θs)−Ψu(θu) = Xs −Xu = 0 (22)

This constraint allows us to construct a boundary value

problem which can be easily solved using freely available

nonlinear equation solvers from existing MATLAB

libraries, such as “fsolve”.

4 Applications

4.1 Earth–Moon

In this section we consider connections between quasi-

halo and Lissajous orbits within the vicinity of the Moon

in the Earth–Moon system. The mass ratio parameter µ

was defined as 0.012153643. All example connections in

the Earth–Moon system presented in this paper have a

Jacobi integral of 3.15.

4.1.1 Quasi-halo to quasi-halo

Quasi-halo to quasi-halo trajectories are the simplest

form of heteroclinic connections found in the Earth–

Moon system as they do not require multiple crossings

of the surface of section.

Four connections can be found for L1 orbit and L2 orbit

latitudinal frequencies of 0.2739 and 0.02163 respectively,

seen in Fig. 14, matching the number of linking number

changes in Fig. 15.

4.1.2 Lissajous to Lissajous

It is often the case that heteroclinic connections between

Lissajous orbits in the Earth–Moon system do not

exist for trajectories that pass the surface of section

x = 1 − µ only once [5] depending on the energy and

frequency of the orbits. Therefore, to demonstrate the
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Fig. 15 Evolution of the linking number associated with
the orbits in Fig. 14.

method’s robustness, torus maps are constructed using

state variables at the second passing of the surface of

section when interpolating the linking curves in this

example.

Eight connections can be found for L1 orbit and

L2 orbit latitudinal frequencies of 0.3226 and 0.3578

respectively, seen in Fig. 16, matching the number of

linking number changes in Fig. 17. Lissajous orbits have

symmetric properties through the x–y plane. As such,

we find that each heteroclinic connection between two

Lissajous orbits is part of a pair of trajectories, reflected

through the x–y plane (Fig. 16). This is also clear in

the evolution of the linking number when z is chosen

as the scanning variable D (Fig. 17), as we see changes

in the linking number occur twice at values of z with
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equal magnitude but opposite sign. This raises concerns

regarding the choice of scanning variable D; if any value

besides z or ż was chosen as the scanning variable, the

linking curves would experience two intersections at the

same value of D, and the process would likely fail to

detect both. This can be mitigated by assuring z or ż

are selected as the scanning variable when trying to find

connections between two orbits with symmetry through

the x–y plane, such as Lissajous orbits.

4.1.3 Quasi-halo to Lissajous

Like in the case of Lissajous to Lissajous heteroclinic

connections in the Earth–Moon system, quasi-halo to

Lissajous connections often require an additional passing

of the surface of section. However, while the invariant

manifolds of Lissajous orbits typically return fully to

the surface of section without leaving the vicinity of the

Moon, the manifolds of quasi-halo orbits in the Earth–

Moon system often separate after the initial passing into

groups of trajectories which either quickly intersect the

surface of section a second time or depart from the Moon

before intersecting the surface much later. While the

manifold itself always remains continuous even in this

case, a 2-dimensional section of such a manifold is not

continuous. This means we cannot properly interpolate

level curves using torus maps of these orbits. This problem

is discussed further in Section 5.

4.2 Sun–Earth

In this section we briefly consider two Lissajous orbits

within the vicinity of the Earth in the Sun–Earth system.

Transfers to, from, and between libration point orbits

in the Sun–Earth system have been demonstrated by

past missions [19]. The mass ratio parameter µ was

defined as 3.039548 × 10−6. All example connections

in the Sun–Earth system presented in this paper have a

Jacobi integral of 3.00065.

4.2.1 Lissajous to Lissajous

Eight connections can be found for L1 orbit and L2 orbit

latitudinal frequencies of 0.4573 and 0.4608 respectively,

seen in Fig. 18. Figure 19 seems to show only 6 discrete

changes in the linking number, though two of the changes

appear to be directly from −1 to 1. An increase in the

density of D-values reveals discrete changes between −1

and 0, and 0 and 1, in very close succession. This is
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Fig. 19 Evolution of the linking number associated with
the orbits in Fig. 18.

shown in Fig. 20, which is an enlarged image of the first

magnitude 2 change in Fig. 19.

A notable difference between these heteroclinic

connections and those of Lissajous orbits in the Earth–

Moon system is that the transfers do not require an

additional passing of the surface of section. As is the

case for the Earth–Moon system, Lissajous to Lissajous

connections in the Sun–Earth system belong to pairs of

symmetric trajectories mirrored through the x–y plane.

4.2.2 Quasi-halo to Lissajous

Unlike in the Earth–Moon system, quasi-halo to Lissajous

transfers in the Sun–Earth system do not require multiple

crossings of the surface of section for the selected energy

level and frequency. The issues encountered regarding
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Fig. 20 Enlarged image of Fig. 19.

discontinuities in the torus maps are alleviated and

transfers can be easily found.

Four connections can be found for for L1 orbit and

L2 orbit latitudinal frequencies of 0.3745 and 0.4224

respectively, seen in Fig. 21, matching the number of

linking number changes in Fig. 22.

4.3 Jupiter–Ganymede

In this section we briefly consider two quasi-halo orbits

within the vicinity of the Galilean moon Ganymede in the

Jupiter–Ganymede system. The mass ratio parameter µ

was defined as 7.807083 × 10−5. All example connections

in the Jupiter–Ganymede system presented in this paper

have a Jacobi integral of 3.0066.

Four connections can be found for for L1 orbit and
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Fig. 21 Heteroclinic connections between a quasi-halo orbit and a Lissajous orbit in the Sun–Earth system.
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L2 orbit latitudinal frequencies of 0.1787 and 0.0957

respectively, matching the number of linking number

changes in Fig. 24. The shape of the connections and the

number of them reflect closely those of the quasi-halo

orbits in the Earth–Moon system.

5 Discussion

Section 4 demonstrates the effectiveness of the linking

number method for detecting heteroclinic connections in

the CR3BP for various mass ratio parameters, energy

levels, and tori frequencies. By informed selection of an

appropriate scanning variable and surface of section, the

knot theory approach plainly provides the exact number

of connections available between a pair of isoenergetic

quasi-periodic orbits in the form of the evolution of the

linking number (Figs. 15, 17, 19, 24), from which initial

guesses can be extracted for differential correction. The

accuracy of these initial guesses is quantified by the

magnitude of the difference between the state vectors

of the initial guess trajectories from the stable and

unstable manifolds at the surface of section; this difference

typically has an order of magnitude between 10−6 and

10−4 in non-dimensional units.

One limitation of this method is the reliance on the

continuity of the torus maps to ensure the linking curves

are themselves both continuous and closed, which are

required for accurate calculation of the linking numbers.

The invariant manifolds of some orbits, particularly quasi-

halo orbits in the Earth–Moon system, tend to separate

after the initial passing of the surface of section x = 1−µ;

some trajectories return quickly to the surface of section,

while others first depart from the vicinity of the Moon

before eventually passing the surface again much later

(Fig. 25).

This results in torus maps which describe the state of

the manifold at the second surface passing to become

discontinuous, at which point the interpolated linking

curves are no longer continuous closed manifolds and the

concept of a linking number cannot be usefully applied.

This shortcoming is only relevant when attempting to

detect heteroclinic connections which pass the surface

of section multiple times, such as in the case of quasi-

halo to Lissajous transfers in the Earth–Moon system.
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This issue may be avoided by future consideration of

other surfaces of section, such as periapsis or apoapsis

maps. However, these have their own issues in use

with the approach presented in this work; in the case

of periapsis/apoapsis maps, manifold trajectories may

encounter a periapsis/apoapsis during its initial time

spent in the vicinity of the libration orbit before properly

departing depending on the size of the perturbation

onto the invariant manifold surface, resulting in sets

of periapses/apoapses which are non-continuous.

6 Conclusions

This work describes a method of robustly detecting

heteroclinic connections between isoenergetic quasi-

periodic tori in the circular restricted three-body problem

(CR3BP). Using previously established methods of

propagating the hyperbolic manifolds of said orbits to

a surface of section, states at this surface are then

mapped to the tori surfaces. From these surfaces, curves

associated with both the stable and unstable manifolds

are interpolated, for which we know an intersection of

the curves would constitute a heteroclinic transfer. By

tracking the topological property known as the linking

number as these curves evolve, we show that it is

possible to precisely predict at what states the manifolds

intersect at the surface of section, from which highly

accurate initial guesses for the heteroclinic connections

are deduced and differentially corrected. This knot

theory approach was shown to be effective for detecting

heteroclinic connections in the CR3BP for various mass
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ratio parameters, energy levels, and tori frequencies, in

the case of the Earth–Moon, Sun–Earth, and Jupiter–

Ganymede systems.

In this paper, we used 1-dimensional closed curves in a

3-dimensional phase space to calculate the linking number

for applications in the CR3BP. However, curves and phase

space of these dimensions would not be applicable to find

heteroclinic connections in non-autonomous Hamiltonian

systems such as the bicircular restricted four-body

problem due to the additional dimension of time and

the lack of an integral of motion. However, the linking

number has equivalents in higher dimensions which may

allow a similar method to be applied to aid in the

detection of heteroclinic connections in higher-fidelity

models. Expansion of this method to non-autonomous

Hamiltonian systems will be the focus of future work,

along with mitigation strategies for the shortcomings

highlighted in the case of torus maps for multiple surface

of section crossings.
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[14] Gómez, G., Masdemont, J. Some zero cost transfers

between libration point orbits. Advances in the

Astronautical Sciences, 2000, 105(2): 1199–1216.

[15] Haapala, A., Howell, K. C. Trajectory design using
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