

29th International Symposium on Space Flight Dynamics (ISSFD 2024)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

 Enabling NewSpace Innovation Thanks to Off-the-shelf Flight Dynamics Systems
Benoît P. REMY(1), Vincent AZZOPARDI(1), Thomas PHILIPPE(1) , Jesús ESTEBAN DONES(1) , Stéphanie

HOUDELIN(1) , Thierry WARROT(1) , Stéphanie MAREL(1) , Clément BÉAL(1) , Michel LACOTTE(1)

(1)Centre National d’Études Spatiales (CNES)

Toulouse, France

Email: benoit.remy@cnes.fr

Abstract – Space Flight Dynamics Systems (FDS)

development and operations are inherently and

inevitably complex. They require not only deep

expertise in diverse fields (space flight dynamics

itself, applied mathematics, computer science, front-

and back-end software development, configuration

management, IVV, etc.), but most importantly their

overall orchestration.

As such, FDS development may be a burden and

a threat to the success of NewSpace businesses who

ambition to become spacecraft operators.

Based on more than 40 years' legacy and best

practices in FDS development and operations, CNES

has developed and offers the fully generic and

scalable SIRIUS FDS product line, together with the

associated software factory. Thanks to their extreme

interoperability, they may be executed on virtually

any environment, architecture and OS, from laptops

to cloud infrastructures; for highly critical

applications, deep space missions, or large

constellations; now or 25 years from now.

While customized versions are in operations for

many years on highly demanding missions, the off-

the-shelf standard FDS is, for the first time, used

operationally in 2023 for a small satellite. Within the

coming months, the number of in-orbit satellites

operated with either generic or mission-specific

SIRIUS FDS will exceed 30.

SIRIUS thus enables disruptive space businesses

to focus on what they do best: innovation.

I. INTRODUCTION

The structure of the present article is as follows:

 Firstly the technical and programmatic enablers

of the FDS products and the FDS product line.

 Secondly the achievements and the feedback

from three ongoing or forthcoming NewSpace

missions.

 Thirdly, perspectives on the product line

roadmap and some new functionalities to be

expected.

II. TECHNICAL AND PROGRAMMATIC ENABLERS

A. Functionalities and requirements

The SIRIUS FDS products have an extensive list of

functionalities, derived from both mission-specific

requirements, and generic requirements, the latter

concentrating the union of the former over the years and

over the different missions using SIRIUS and its

predecessors [1].

As presented previously, the generic “standard” FDS is

an off-the-shelf product that fulfils the generic

requirements. These generic requirements are such that

they typically fulfil 90 to 100% of a given mission’s

requirements, even the most demanding.

NESS was the first mission to employ the standard FDS

as-is, proving the off-the-shelf concept for simple

missions, which is of particular interest for NewSpace

applications. For complex missions however, the typical

process is –and will continue to be– to develop a custom

product, largely based on the standard FDS.

Figure 1: SIRIUS development layers.

The Java programming language, development kit

(JDK) and virtual machine (JVM) powers all levels of

the FDS, providing firstly a high degree of abstraction

for use and development, and secondly a complete

interoperability.

UML or UML-like models consist a large basis of the

development, in particular for the definition of

datatypes, services, and GUI widgets. Auto-generated

code and available libraries (including CNES’s open-

source PATRIUS [4]) reduce significantly the

mailto:benoit.remy@cnes.fr

29th International Symposium on Space Flight Dynamics (ISSFD 2024)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

development and customisation effort [3].

A Python scripting API allows direct scripting and

orchestration in Python and Bash/Shell CLIs, through

Websockets (Websockets API also accessible directly).

Any SIRIUS FDS version is releasable as standalone,

RPMs, and/or containers package, allowing easy yet

robust configuration management, repeatability, and

reliability. It runs on virtually any environment, from

laptops to cloud servers. It is also a fully integrated

component of (yet completely independent from) the

CNES’s ISIS control centre product line.

Users have access to an extensive documentation:

 Developers: Javadoc and API documentation,

directly in the provided custom Eclipse-based

Integrated Development (IDE) and Modelling

Environments, and;

 Operators: standalone wikis, thematic

documentation, and data documentation,

interactively in the GUI itself.

Training and training material is readily available (15

different sessions with video training material).

Multiple layers of validation induce a very high

reliability of the products: unit, integration, system,

functional, and operational tests with level-C criticality

requirements as defined by CNES and ECSS standard.

Finally, the use of the best practices and tools enable

continuous integration/development (CI/CD) processes,

ensuring efficient project management, development,

deployment, integration, and validation.

Figure 2: SIRIUS CI/CD pipeline and main supporting tools.

B. Architecture and components

SIRIUS FDSs contain:

1. interfaces (input/output files, streams, or GUI)

a. CCSDS, ISIS, XML standards, etc.

2. data (a database):

a. object-oriented data

b. references between data

c. tree structure

d. persistence (history & exports)

3. processes:

a. interfaces operations (ingestion or

generation)

b. data processing algorithms

c. database operations

Data (objects with inheritance) is organized in a tree

structure, in a context that has branches. Objects may

reference each other.

Similarly, processes are also organized in a tree structure

where they can be configured and executed. Every

execution produces a process record that can be re-run.

Figure 3: Default GUI view.

Figure 4: Random GUI views: Context explorer (top left);

default data editor views (top right), a scenario editor view

(centre right), 3D view (bottom left), graphs (bottom right).

Stages run in sequence or in parallel to achieve the

required processing or generate the required interfaces.

Each stage is guaranteed to be coherent; the status of the

system is known; repeatable; and restorable.

These typically include:

1. Data ingestion;

2. Determination (orbit, attitude, and generally

the S/C state) of the past;

29th International Symposium on Space Flight Dynamics (ISSFD 2024)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

3. Prediction (idem) of the future;

4. Planning (and its translation into actuation) to

modify the future; closed loop with prediction;

5. Data generation.

Figure 5: Example of FDS processing stages sequence

Several independent components work together through

their own API. These are:

 the orchestrator (scripting API), for automatic

operations;

 the graphical user interface(s) (GUI) for

manual or semi-manual operations;

 the workers manager, to accommodate for

several users and parallel stages;

 the workers themselves, that run from coherent

(and reproducible) state to the next one;

Different machines may host different components.

The two most common installations are:

 In control centres, there is typically a central

server and one client (GUI) per operator.

 In standalone installations (e.g. laptop install),

all components run on the same machine.

Figure 6: SIRIUS FDS components.

Additional external tools can also be plugged in, for

instance for data expertise or visualization (such as

CNES’s VTS visualization tool for space data).

C. Configuration

Each component is fully configurable. Configuration

generally consists of key-value pairs stored in XML

files, which include (non-exhaustive list):

 environment & interface: IP, ports, files,

formats, standards, memory, timeouts;

 logging: level, processes, satellites, multi-

files, rollback, naming;

 GUI: colouring, satellites, pagination, profiles;

 locale: English and French are implemented

product-wide, custom time formats, units, etc.

All configuration related to the algorithms themselves is

stored in the database, to ensure its consistency.

D. Scripts

Scripts, which are executed via the scripting API, are

written in Groovy (which is an extension of the Java

language), and may take advantage of the whole

libraries and functionalities of the product: retrieve data,

execute a custom processing, execute a processing stage,

display results, generate files or synthesis, etc.

E. Graphs and Synthesis

Graphs are indifferently generated in the GUI or by the

server; and can be saved into various file formats.

Custom HTML synthesis may be created and tailored to

the mission needs. Available libraries, templates, and

default implementations include orbit determination,

prediction, manoeuvres, and planning syntheses.

F. Development Processes and How to Integrate Them

Any new FDS development will typically start by using

the latest available standard FDS (and the underlying

SIRIUS libraries) and identifying missing needs. The

mission may them decide to fork into a branch

corresponding to that standard FDS at any point in time,

and develop its own product.

It is also possible for any mission to upgrade itself to any

earlier version of the standard, to benefit from

improvements brought since. This process is usual, and

the SIRIUS product line provides the corresponding

tooling, in particular the migrators to migrate a database

from one version to another, should need be.

In the meantime, all missions interested in the progress

of the standard are:

 offered visibility on the SIRIUS issue tracking

system (problem reports, change requests,

activities) and collaborative edition system

(good practises, documentation, etc.);

 invited to participate to the definition of its

releases, which will namely include cherry-

picking evolutions from the other branches.

While each mission benefits to the others, it also benefits

from the others.

III. ACHIEVEMENTS AND FEEDBACK

On top of proving to be a key element in the success of

numerous critical missions, SIRIUS FDSs also proves

its adequacy for NewSpace missions, as demonstrated

by the following examples.

A. NƐSS, a 3U interference detection demonstrator

CubeSat, launched on 9 October 2023.

29th International Symposium on Space Flight Dynamics (ISSFD 2024)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

 NƐSS was the 1st satellite operated directly

using the off-the-shelf standard FDS;

o The only customisation consisted in

configuration and scripting.

o Already fully validated by other

missions, only system validation was

required.

o Benefited ‘bonus’ functionalities, not

anticipated nor strictly necessary, yet

very useful during operations, e.g.:

 History, graphs & synthesis

generation; on-the-fly

interface generation, etc.

 Accurate orbit determination

capability even during safe

mode or with GNSS off.

 NƐSS’s FDS became fully automated

immediately after LEOP, less than 36 hours

after separation. No human intervention is

required since.

These aspects implied large cost, time, and risk

reductions during all phases of the mission

(development, validation, and operation).

B. KINEIS, a 25-satellites Internet-of-Things global

coverage commercial constellation.

Planned for launch, in five batches of five over a period

of 10 months, the KINEIS mission shall require a high

degree of automation and operability.

Indeed, it will undergo multiple parallel operations on

an increasing number of satellites in different concurrent

phases: launch & early operations (LEOP),

commissioning, routine, and decommissioning.

To ensure both global coverage and availability

necessitating a significant amount of electric propulsion

(EP) periods for orbit maintenance, the KINEIS FDS is

key to the success of the mission.

Its ability to produce web syntheses autonomously for

the whole constellation provides easy monitoring for the

operators, allowing them to monitor, visualize, analyse,

and respond quickly to any situation.

C. YODA, a 2-satellite geostationary patrol

demonstrator for the French Space Command

Contrarily to its predecessors [2] that typically followed

a V-model development lifecycle at mission level,

YODA’s FDS –as well as the overall YODA mission–

is currently under development in an agile development

approach, allowing quick iterations between developers

& operators, and efficient development with evolving

requirements and constraints.

IV. PERSPECTIVES

On top of the ongoing missions, more and more

missions, both public and private, of all types, are

operated by SIRIUS FDSs. The coming years will also

see the first use of SIRIUS in interplanetary operations,

and hopefully the implementation of promising toolkit

features in the fields of UX design and thin clients,

performance, and cybersecurity, not to mention always-

expanding space flight dynamics libraries.

V. CONCLUSION

As a conclusion, a number of technological, technical,

and programmatic layers allow SIRIUS, CNES’s flight

dynamics systems product line, to offer a mature (TRL9)

off-the-shelf standard FDS, perfectly suited for

NewSpace applications requiring fast time-to-market,

agility, interoperability, and reusability.

VI. REFERENCES

[1] R. Houdroge, D. Claude, J. Anton, T. Sabatini, P.
Cardoso, G. Mercadier, T. Trapier, Y. Tanguy,
‘The SIRIUS Flight Dynamics Library for the Next
25 Years”, 5th ICATT, The Netherlands, 2012.

[2] GMV, Y. Tanguy, M. Lacotte, JJ. Wasbauer,
“SIRIUS-DV: The new Flight Dynamics
algorithms for the future CNES missions”, 6th
International Conference on Astrodynamics Tools
and Techniques (ICATT), Germany, March 2016.

[3] P. Annat, R. Bernard, J. Esteban Dones, “SIRIUS
Model-Driven Software Product Line for Flight
Dynamics Systems”, 31st ISTS, 26th ISSFD, 8th
NSAT, Japan, June 2017.

[4] JF. Goester, “Free Java CNES Flight Dynamics
Tools”, 7th ICATT, Oberpfaffenhofen, Germany,
Nov. 2018.

	I. Introduction
	II. Technical and Programmatic Enablers
	A. Functionalities and requirements
	B. Architecture and components
	C. Configuration
	D. Scripts
	E. Graphs and Synthesis
	F. Development Processes and How to Integrate Them

	III. Achievements and Feedback
	A. NƐSS, a 3U interference detection demonstrator CubeSat, launched on 9 October 2023.
	B. KINEIS, a 25-satellites Internet-of-Things global coverage commercial constellation.
	C. YODA, a 2-satellite geostationary patrol demonstrator for the French Space Command

	IV. Perspectives
	V. Conclusion
	VI. References

