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Abstract – There are several methods to express 

three-dimensional rotations of spacecraft and 

aircraft. In particular, quaternions are used for the 

representation of rotations because of having no 

gimbal lock and a low calculation cost. The 

quaternion representation of rotations has a 

different form than the other representations of 

rotations. For instance, a three-dimensional rotation 

of a vector is expressed as 𝑸(𝜽)𝒏𝒒𝑸
−𝟏(𝜽) , where 

𝑸(𝜽)  is a rotation quaternion and 𝒏𝒒  is a vector 

quaternion, respectively. However, the derivations of 

these representations are only superficially provided 

in most books. Therefore, in this study, we discuss 

the mathematical structures of the quaternion 

representation of rotations from the viewpoint of 

Group theory. As a result, it was found that a map of 

rotation for the vector quaternion in the Lie algebra 

can be obtained by an adjoint representation for the 

Lie group. This mapping is caused by Inner 

automorphism, leading to the expression 

𝑸(𝜽)𝒏𝒒𝑸
−𝟏(𝜽). 

 

I. INTRODUCTION 

There are several methods to represent three-

dimensional rotations of spacecraft and aircraft, such as 

Euler angles, rotation matrices, and quaternions. Among 

them, the rotation expression using Euler angles is 

commonly used to express three-dimensional rotations 

because of its advantages such as fewer parameters, and 

is easier to understand intuitively. Euler angle 

representation, however, has the disadvantage of the 

gimbal lock occurring when two of three axes are 

aligned. The gimbal lock, however, can be avoided by 

adding yet another axis. For this reason, rotation 

representation using quaternions, which uses four 

parameters, is also often used. Here, the equation 

expressing three-dimensional rotations using 

quaternions is as follows: 

 

 𝑛𝑞 = 𝑛𝑞1
𝑖 + 𝑛𝑞2

𝑗 + 𝑛𝑞3
𝑘,  (1.1) 

 𝑄(𝜃) = cos
𝜃

2
+ (𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘)sin

𝜃

2
,  (1.2) 

 𝑛′
𝑞 = 𝑄(𝜃)𝑛𝑞𝑄

−1(𝜃).  (1.3) 

 

Equation (1.1) is a point 𝑛𝑞 in three-dimensional space 

expressed using a vector quaternion, (1.2) is the rotation 

quaternion 𝑄(𝜃) related to the rotation of the angle 𝜃 

with the unit vector, �⃗⃗� = (𝑤1, 𝑤2, 𝑤3)  as a rotation 

axis, and (1.3) represents the point 𝑛′𝑞 after rotating 𝑛𝑞 

by an angle 𝜃  by the rotation quaternion 𝑄(𝜃). The 

quaternion representation of rotation has different forms 

from the other representations of rotations. However, 

the derivation of these representations is only 

superficially provided in most books. Hence, the reason 

for the equation is unclear why cos
𝜃

2
 and sin

𝜃

2
 are 

used instead of cos𝜃 and sin𝜃 in (1.2), and the reason 

why a vector quaternion 𝑛𝑞  is sandwiched between 

rotation quaternion 𝑄(𝜃) and 𝑄−1(𝜃) in (1.3) [1]. 

This study, therefore, considers the reasons why 

equations by quaternions expressing three-dimensional 

rotation are used and how to derive them.  

 

II. 
𝜃

2
 ROTATION 

Regarding (1.2) shown in the introduction, let us 

consider the reason for using cos
𝜃

2
 and sin

𝜃

2
 are used 

instead of cos𝜃 and sin𝜃. Equation (1.2) is a rotation 

quaternion related to the rotation of the angle 𝜃 around 

�⃗⃗� = (𝑤1, 𝑤2, 𝑤3)  and is also an element of the Lie 

group 𝑈(1)  in group theory. In addition, a general 

three-dimensional rotation matrix that represents a 

similar rotation uses 𝜃, and is also an element of the Lie 

group 𝑆𝑂(3). Therefore, consider the reason why 
𝜃

2
 is 

used in (1.2) by comparing the two rotation-related 

elements from the perspective of the group theory of 

𝑆𝑂(3)  and 𝑈(1). Here, we consider the Lie algebra 

𝑠𝑜(3) corresponding to the Lie group 𝑆𝑂(3) and the 

Lie algebra 𝑢(1) corresponding to Lie group 𝑈(1).  

First, using the alternation matrix 𝑅3 of the Lie algebra 

𝑠𝑜(3) the rotation axis unit vector �⃗⃗�  is expressed as 

follows: 

 

 𝑅3 = 𝑤1 ∙ 𝐼 + 𝑤2 ∙ 𝐽 + 𝑤3 ∙ 𝐾,  (2.1) 

 

where 𝐼, 𝐽 and 𝐾 are the bases of the Lie algebra 𝑠𝑜(3). 

Calculating the commonly seen three-dimensional 

rotation matrix, they can be expressed as follows: 

 



 𝐼 = (
0 0 0
0 0 −1
0 1 0

) , 𝐽 =  (
0 0 1
0 0 0

−1 0 0
),   

 𝐾 = (
0 −1 0
1 0 0
0 0 0

). (2.2) 

 

The commutator product between the bases of this Lie 

algebra 𝑠𝑜(3) is calculated as [2] 

 

 [𝐼, 𝐽] = 𝐾 ,  [𝐽, 𝐾] = 𝐼 ,  [𝐾, 𝐼] = 𝐽.  (2.3) 

 

Besides, when (2.1) is expressed as a matrix, it becomes 

 

𝑅3 = 𝑤1 ∙ 𝐼 + 𝑤2 ∙ 𝐽 + 𝑤3 ∙ 𝐾 

= 𝑤1 (
0 0 0
0 0 −1
0 1 0

) + 𝑤2 (
0 0 1
0 0 0

−1 0 0
)

+ 𝑤3 (
0 −1 0
1 0 0
0 0 0

) 

= 𝑤1 (
0 0 0
0 0 −1
0 1 0

) + 𝑤2 (
0 0 1
0 0 0

−1 0 0
)

+ 𝑤3 (
0 −1 0
1 0 0
0 0 0

) 

 = (

0 −𝑤3 𝑤2

𝑤3 0 −𝑤1

−𝑤2 𝑤1 0
) .          (2.4) 

 

𝑅3  is expressed as  (𝑅3)
∨ ≡ (𝑤1 , 𝑤2 , 𝑤3)  (from now 

on, the vector notation of Lie algebra will be expressed 

like this), the square of 𝑅3 is calculated as by the vector 

triple product, 

 

𝑅3
2 = (𝑅3)

∨{ (𝑅3)
∨}𝑇{ (𝑅3)

∨}𝑇 − { (𝑅3)
∨}𝑇(𝑅3)

∨𝐸 

 = (𝑅3)
∨{ (𝑅3)

∨}𝑇 − 𝐸,                                       (2.5) 

 

where the unit matrix 𝐸 is written as 𝐸 = (
1 0 0
0 1 0
0 0 1

). 

Furthermore, the third power, fourth power, and fifth 

power of 𝑅3 are each calculated as follows: 

 

 𝑅3
3 = 𝑅3

2𝑅3 = ((𝑅3)
∨{ (𝑅3)

∨}𝑇 − 𝐸)𝑅3 = −𝑅3,(2.6) 

 𝑅3
4 = 𝑅3

3𝑅3 = −𝑅3𝑅3 = −𝑅3
2,    (2.7) 

  𝑅3
5 = 𝑅3

4𝑅3 

= −𝑅3
2𝑅3 

= −((𝑅3)
∨{ (𝑅3)

∨}𝑇 − 𝐸)𝑅3 

 = 𝑅3.  (2.8) 

 

𝑅3  to the sixth power or higher can be similarly 

expressed by 𝑅3 and 𝑅3
2. Here, the elements of the Lie 

group 𝑆𝑂(3), which represent rotation of the angle 𝜃 

around the axis (𝑅3)
∨ = (𝑤1, 𝑤2, 𝑤3), can be obtained 

by exponential mapping of (2.1), which is a Lie algebra 

[3]. Therefore, the elements of the Lie group 𝑆𝑂(3) are 

calculated from (2.4) to (2.8) as 

 

exp(𝜃 ∙ 𝑅3) = 𝐸 + (𝜃𝑅3) +
1

2!
(𝜃𝑅3)

2 +
1

3!
(𝜃𝑅3)

3

+
1

4!
(𝜃𝑅3)

4 +
1

5!
(𝜃𝑅3)

5 + ⋯ 

 = 𝐸 + (𝜃 −
1

3!
(𝜃)3 +

1

5!
(𝜃)5 − ⋯)𝑅3 

                         + (
1

2!
(𝜃)2 −         

1

4!
(𝜃)4 + ⋯)𝑅3

2.                    

(2.9) 

 

In addition, 

 

 𝑐𝑜𝑠𝜃 = 1 −
1

2!
∙ 𝜃2 +

1

4!
∙ 𝜃4 − ⋯ , 

                     𝑠𝑖𝑛𝜃 = 𝜃 −
1

3!
∙ 𝜃3 +

1

5!
∙ 𝜃5 − ⋯.  (2.10) 

 

Equation (2.9) becomes as follows: 

 

 (𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑛𝑑 𝑠𝑖𝑑𝑒) = 𝐸 + 𝑅3𝑠𝑖𝑛𝜃 + 𝑅3
2(1 − 𝑐𝑜𝑠𝜃). 

                                                 (2.11) 

 

For simplicity, cos𝜃  is written as c𝜃 , and sin𝜃  is 

written as s𝜃. The element of the Lie group 𝑆𝑂(3) is 

calculated from (2.4), (2.5), and (2.11) as 

 

exp(𝜃 ∙ 𝑅3)  

 = (

𝑐𝜃 + 𝑤1
2(1 − 𝑐𝜃) 𝑤1𝑤2(1 − 𝑐𝜃) − 𝑤3𝑠𝜃 𝑤2𝑠𝜃 + 𝑤3𝑤1(1 − 𝑐𝜃)

𝑤3𝑠𝜃 + 𝑤1𝑤2(1 − 𝑐𝜃) 𝑐𝜃 + 𝑤2
2(1 − 𝑐𝜃) −𝑤1𝑠𝜃 + 𝑤2𝑤3(1 − 𝑐𝜃)

−𝑤2𝑠𝜃 + 𝑤3𝑤1(1 − 𝑐𝑐𝜃) 𝑤1𝑠𝜃 + 𝑤2𝑤3(1 − 𝑐𝜃) 𝑐𝜃 + 𝑤3
2(1 − 𝑐𝜃)

), 

                                             (2.12) 

 

where (2.12) is a commonly seen rotation matrix. For 

example, the rotation of the angle 𝜃 around the z-axis 

(𝑅3𝑧)
∨ = (0,0,1) in (2.12) can be written as 

 

  𝑒𝑥𝑝(𝜃 ∙ 𝑅3𝑧) = (
𝑐𝜃 −𝑠𝜃 0
𝑠𝜃 𝑐𝜃 0
0 0 1

). (2.13) 

 

Thus, it is evident that 𝜃  is used in the rotation 

representation by the Lie group 𝑆𝑂(3) , which is 

attached to the Lie algebra using the basis of (2.2). 

Next, let us consider the rotation representation using 

quaternions. Exponential mapping of the Lie algebra 

𝑠𝑜(3)  gives the Lie group 𝑆𝑂(3) . From this 

relationship, it is expected that the Lie group 𝑈(1) , 

which is an exponential mapping of the Lie algebra 

𝑢(1), is also related to rotation. Therefore, consider the 

Lie group 𝑈(1)  from the Lie algebra 𝑢(1) 

corresponding to the Lie algebra 𝑠𝑜(3)  mentioned 

above. The rotation axis vector �⃗⃗�  is written by the 

vector quaternion of the Lie algebra 𝑢(1)  in a form 

similar to (2.1) as 

 

 𝑟𝑞 = 𝑤1 ∙ 𝑖 + 𝑤2 ∙ 𝑗 + 𝑤3 ∙ 𝑘.  (2.14) 

 

However, the commutator products using these bases 

𝑖, 𝑗 and 𝑘 are calculated as 



 

 [𝑖, 𝑗] = 2𝑘 ,  [𝑗, 𝑘] = 2𝑖 ,  [𝑘, 𝑖] = 2𝑗.  (2.15) 

 

This (2.15) does not correspond to (2.3). Thus, assuming 

that the bases of 𝑢(1) are 
𝑖

2
,
𝑗

2
 and 

𝑘

2
 the commutator 

products are calculated as 

 

 [
𝑖

2
,
𝑗

2
] =

𝑘

2
 ,  [

𝑗

2
,
𝑘

2
] =

𝑖

2
 ,  [

𝑘

2
,
𝑖

2
] =

𝑗

2
. (2.16) 

 

This (2.16) corresponds to (2.3). Therefore, using these 

bases and the vector quaternion of the Lie algebra 𝑢(1), 

the rotation axis vector �⃗⃗� = (𝑤1, 𝑤2, 𝑤3)  can be 

expressed as 

 

 𝑟𝑞 = 𝑤1 ∙
𝑖

2
+ 𝑤2 ∙

𝑗

2
+ 𝑤3 ∙

𝑘

2
.  (2.17) 

 

Furthermore, the square, cube, fourth, and fifth power of 

𝑟𝑞  are calculated as follows: 

 

 𝑟𝑞
2 = (𝑤1

𝑖

2
+ 𝑤2

𝑗

2
+ 𝑤3

𝑘

2
)
2

= −
1

4
, (2.18) 

 𝑟𝑞
3 = 𝑟𝑞

2𝑟𝑞 = −
1

8
(𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘), (2.19) 

 𝑟𝑞
4 = 𝑟𝑞

3𝑟𝑞 = 𝑟𝑞
2𝑟𝑞

2 =
1

16
, (2.20) 

  𝑟𝑞
5 = 𝑟𝑞

4𝑟𝑞 = 𝑟𝑞
2𝑟𝑞

2𝑟𝑞 =
1

32
(𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘).   

(2.21) 

 

When (2.17) is exponentially mapped, the rotation 

quaternion of the Lie group 𝑈(1)  is obtained from 

(2.10) and (2.17) to (2.21) as follows: 

 

exp(𝜃 ∙ 𝑟𝑞)   

= 1 + (𝜃 ∙ 𝑟𝑞) +
1

2!
(𝜃 ∙ 𝑟𝑞)

2
+

1

3!
(𝜃 ∙ 𝑟𝑞)

3
  

        +
1

4!
(𝜃 ∙ 𝑟𝑞)

4
+

1

5!
(𝜃 ∙ 𝑟𝑞)

5
+ ⋯  

= 1 + (𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘) ∙
𝜃

2
−

1

2!
∙ (

𝜃

2
)
2

  

−(𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘) ∙
1

3!
∙ (

𝜃

2
)
3

+
1

4!
∙ (

𝜃

2
)
4

            

+(𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘) ∙
1

5!
∙ (

𝜃

2
)
5

− ⋯                         

= (1 −
1

2!
∙ (

𝜃

2
)
2

+
1

4!
∙ (

𝜃

2
)
4

− ⋯)                                     

+(𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘) (
𝜃

2
−

1

3!
∙ (

𝜃

2
)
3

+
1

5!
∙ (

𝜃

2
)
5

− ⋯)  

= 𝑐𝑜𝑠
𝜃

2
+ (𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘)𝑠𝑖𝑛

𝜃

2
.  (2.22) 

 

Here, (2.22) corresponds to (1.2) expressed in terms of 

𝑄(𝜃) and can be rewritten as 

 

 𝑄(𝜃) ≡ 𝑒𝜃𝑟𝑞 . (2.23) 

 

Consequently, the unit quaternion 𝑈(1)  related to 

rotation obtained from the Lie algebra 𝑢(1)  which 

corresponds to the Lie algebra 𝑠𝑜(3)  of the rotation 

matrix, has terms of cos
𝜃

2
 and sin

𝜃

2
, so that 

𝜃

2
 is used 

in (1.2), which expresses rotation using the quaternions 

shown in the introduction. 

 

III. FORM SANDWICHED BY QUATERNIONS IN 

THREE-DIMENSIONAL ROTATION 

REPRESENTATION 

 

A. Representation method based on two-dimensional 

rotation representation 

In two dimensions, a vector after rotation can be 

represented by the product of a complex number 

representing rotation (𝑒𝜃𝑟𝑐 = 𝑐𝑜𝑠𝜃 +
𝑝𝑠𝑖𝑛𝜃(𝑝: imaginary unit))  and a complex number 

representing vector (𝑒𝜃𝑛𝑐 = 𝑥 +
𝑝𝑦 (𝑥, 𝑦: real number)) . In this chapter, we see 

whether a three-dimensional rotation, like a two-

dimensional rotation, can be expressed as a simple 

multiplication of the quaternion associated with the 

rotation and the quaternion representing the vector.  

The rotated vector (𝑥, 𝑦, 𝑧)  in Euclidean space is 

expressed using a pure imaginary quaternion as 

 

 𝑛𝑞 = 𝑥
𝑖

2
+ 𝑦

𝑗

2
+ 𝑧

𝑘

2
. (3.1) 

 

Here, let us calculate it as a simple multiplication with 

the rotation quaternion 𝑒𝜃𝑟𝑞  related to the rotation of 

the angle 𝜃 around the unit vector �⃗⃗� = (𝑤1 , 𝑤2, 𝑤3). 

From (2.22) and (3.1), it can be calculated as follows  

 

𝑒𝜃𝑟𝑞𝑛𝑞  

= (cos
𝜃

2
+ (𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘)sin

𝜃

2
) (𝑥

𝑖

2
+ 𝑦

𝑗

2
+ 𝑧

𝑘

2
)  

=
𝑖

2
(𝑥cos

𝜃

2
− 𝑤3𝑦sin

𝜃

2
+ 𝑤2𝑧sin

𝜃

2
)   

+
𝑗

2
(𝑤3𝑥sin

𝜃

2
+ 𝑦cos

𝜃

2
− 𝑤1𝑧sin

𝜃

2
) 

+
𝑘

2
(−𝑤2𝑥𝑠𝑖𝑛

𝜃

2
+ 𝑤1𝑦𝑠𝑖𝑛

𝜃

2
+ 𝑧𝑐𝑜𝑠

𝜃

2
) 

−
1

2
(𝑤1𝑥𝑠𝑖𝑛

𝜃

2
+ 𝑤2𝑦𝑠𝑖𝑛

𝜃

2
+ 𝑤3𝑧𝑠𝑖𝑛

𝜃

2
). (3.2) 

 

Next, let us verify the vector rotation using a general 

rotation matrix. Furthermore, when the point in the 

Euclidean space corresponding to (3.1) is expressed as a 

vector, it can be expressed as follows: 

 

 (𝑛𝑞)
∨
≡ (

𝑥
𝑦
𝑧
)  (𝑥, 𝑦, 𝑧: 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟). (3.3) 

 

Thereby, the vector after rotation of (𝑛𝑞)
∨
 by the three-

dimensional rotation orthogonal matrix 𝑒𝜃𝑅3  

representing the rotation of the angle 𝜃  around the 

above-mentioned axis �⃗⃗� = (𝑤1, 𝑤2, 𝑤3)  is given by 

(2.12) and (3.1) and can be calculated as follows: 

 



𝑒𝜃𝑅3(𝑛𝑞)
∨
  

= (

𝑐𝜃 + 𝑤1
2(1 − 𝑐𝜃) 𝑤1𝑤2(1 − 𝑐𝜃) − 𝑤3𝑠𝜃 𝑤2𝑠𝜃 + 𝑤3𝑤1(1 − 𝑐𝜃)

𝑤3𝑠𝜃 + 𝑤1𝑤2(1 − 𝑐𝜃) 𝑐𝜃 + 𝑤2
2(1 − 𝑐𝜃) −𝑤1𝑠𝑖𝑛𝜃 + 𝑤2𝑤3(1 − 𝑐𝜃)

−𝑤2𝑠𝜃 + 𝑤3𝑤1(1 − 𝑐𝜃) 𝑤1𝑠𝜃 + 𝑤2𝑤3(1 − 𝑐𝜃) 𝑐𝜃 + 𝑤3
2(1 − 𝑐𝜃)

)(
𝑥
𝑦
𝑧
) 

 = (

𝑥(𝑐𝜃 + 𝑤1
2(1 − 𝑐𝜃)) + 𝑦(𝑤1𝑤2(1 − 𝑐𝜃) − 𝑤3𝑠𝜃) + 𝑧(𝑤2𝑠𝜃 + 𝑤3𝑤1(1 − 𝑐𝜃))

𝑥(𝑤3𝑠𝜃 + 𝑤1𝑤2(1 − 𝑐𝜃)) + 𝑦(𝑐𝜃 + 𝑤2
2(1 − 𝑐𝜃)) + 𝑧(−𝑤1𝑠𝜃 + 𝑤2𝑤3(1 − 𝑐𝜃))

𝑥(−𝑤2𝑠𝜃 + 𝑤3𝑤1(1 − 𝑐𝜃)) + 𝑦(𝑤1𝑠𝜃 + 𝑤2𝑤3(1 − 𝑐𝜃)) + 𝑧(𝑐𝜃 + 𝑤3
2(1 − 𝑐𝜃))

),

                                                   (3.4) 

 

where cos𝜃  is written as c𝜃  and sin𝜃  is written as 

s𝜃. Equations (3.2) and (3.4) are not isomorphic. 

 

 𝑒𝜃𝑟𝑞𝑛𝑞 ≇ 𝑒𝜃𝑅3(𝑛𝑞)
∨
. (3.5) 

 

This shows that in three-dimensional rotation, rotation 

cannot be expressed by a simple multiplication of the 

quaternion representing the rotation and the quaternion 

representing the vector. 

 

B. Representation method based on the representation 

of group theory 

In this section, we will discuss why rotation can be 

expressed in the form of (1.3) in three-dimensional 

rotation expressions using quaternions, which cannot be 

expressed by simple multiplications. In the first place, 

an element 𝑛𝑞 of Lie algebra 𝑢(1) is different from an 

element 𝑄(𝜃) of the Lie group 𝑈(1) in both structure 

and definition. For that reason, the result of these simple 

multiplications are not necessarily an element of the Lie 

algebra 𝑢(1) ((3.2) contains terms other than the basis 

of the Lie algebra 𝑢(1)  so it should not become an 

element of 𝑢(1)). In a three-dimensional rotation using 

quaternions, the quaternion representing the rotation is a 

Lie group, and the quaternion representing the vector 

mapped by the automorphism is a Lie algebra. In general, 

to generate an automorphism of a vector space from a 

group, a homomorphism using a group representation is 

used. Thereby, we will discuss this based on the group 

representation. In general, the adjoint representations of 

groups can be applied to the group representation that 

generates an origin-invariant automorphism. For that 

reason, a rotation by a quaternion is also a rotation that 

does not change the origin. Therefore, the adjoint 

representation of the group is used to generate an 

automorphism, which acts on a quaternion which is an 

element of the Lie algebra 𝑢(1) representing the vector 

to be rotated, using a quaternion which is an element of 

the Lie group 𝑈(1)  representing the rotation. From 

here, use Fig.1 below to see how the automorphism of 

the Lie algebra based on the adjoint representation of the 

Lie group represents a rotation by focusing on the 

relationships between the groups.    

 

 

Fig. 1. Diagram of the Relationship between 

Adjoint representations, Automorphisms, and 

Rotation groups.  

 

First, look at the elements in the route of 𝑢(1) →
𝑠𝑜(3) → 𝑆𝑂(3). The element 𝑟𝑞  of the pure imaginary 

quaternion related to the rotation of the Lie algebra 

𝑢(1) defined by (2.17) in the upper left of Fig. 1 is 

mapped by the adjoint representation 𝑎𝑑  of the Lie 

algebra [3]. This becomes an element of the Lie algebra 

𝑠𝑜(3) at the center of the diagram and is written as 𝑎𝑑𝑟𝑞. 

Here, the bases of 𝑢(1) can be calculated as 

 

 𝑎𝑑 𝑖

2

= 𝐼, 𝑎𝑑𝑗

2

= 𝐽, 𝑎𝑑𝑘

2

= 𝐾  . (3.6) 

 

Furthermore, since both 𝑢(1)  and 𝑠𝑜(3)  are vector 

spaces, they can be written in the form of a linear 

combination of bases. Thereby, we know that 𝑎𝑑𝑟𝑞  is 

an element of the Lie algebra 𝑠𝑜(3)  (diagram top 

center). Incidentally, the unit vector written as 𝑅3  in 

(2.1) corresponds to this 𝑎𝑑𝑟𝑞
 and can be rewritten as 

 

 𝑅3 ≡ 𝑎𝑑𝑟𝑞   . (3.7) 

 

When this 𝑎𝑑𝑟𝑞
∈ 𝑠𝑜(3)  is exponentially mapped, it 

can be written as 𝑒
𝜃𝑎𝑑𝑟𝑞 , and this is the element of the 

Lie group 𝑆𝑂(3). In addition, this 𝑒
𝜃𝑎𝑑𝑟𝑞  corresponds 

to the rotation matrix 𝑒𝜃𝑅3  in (2.12). 

Next, consider the elements generated by the route of  

𝑢(1) → 𝑈(1) → 𝑆𝑂(3) . When the element 𝑟𝑞  of the 

Lie algebra 𝑢(1) in the upper left of the diagram is 

exponentially mapped, it becomes the element 𝑒𝜃𝑟𝑞 of 

the Lie group 𝑈(1) in the lower left of the diagram. 

When 𝑒𝜃𝑟𝑞  is mapped by the group adjoint 

representation 𝐴𝑑 , it becomes an element of the Lie 

group 𝑆𝑂(3) (center of the diagram), and we write it as 

𝐴𝑑
𝑒𝜃𝑟𝑞  [1]~[3]. This 𝐴𝑑

𝑒𝜃𝑟𝑞 ∈ 𝑆𝑂(3) is equal to the 



rotation matrix 𝑒
𝜃𝑎𝑑𝑟𝑞 ∈ 𝑆𝑂(3) generated by the route 

of 𝑢(1) → 𝑠𝑜(3) → 𝑆𝑂(3)  that we illustrated 

previously. 

 

 𝑒
𝜃𝑎𝑑𝑟𝑞 = 𝐴𝑑

𝑒𝜃𝑟𝑞 ∈ 𝑆𝑂(3) . (3.8) 

 

It, therefore, can be seen that the mapping 𝐴𝑑
𝑒𝜃𝑟𝑞  

generated from the adjoint expression 𝐴𝑑 represents a 

rotation. 

In addition, from the definition of the adjoint 

representation of a group, the mapping 𝐴𝑑
𝑒𝜃𝑟𝑞  is a 

mapping onto itself on the Lie algebra, and it acts on the 

element 𝑛𝑞 of the Lie algebra 𝑢(1) in the upper left as 

follows: 

 

 𝐴𝑑
𝑒𝜃𝑟𝑞(𝑛𝑞) ≡ 𝑒𝜃𝑟𝑞𝑛𝑞(𝑒

𝜃𝑟𝑞)−1 . (3.9) 

 

Thus, the reason that 𝑛𝑞 in (1.3) is sandwiched between 

𝑒𝜃𝑟𝑞  and (𝑒𝜃𝑟𝑞)−1  is due to the mapping 𝐴𝑑
𝑒𝜃𝑟𝑞  

generated by the adjoint representation. 

Here, we check why the action (3.9) using the adjoint 

representation of the group is defined in such a way that 

𝑛𝑞  is sandwiched between 𝑒𝜃𝑟𝑞  and (𝑒𝜃𝑟𝑞)−1 . First, 

the automorphism that acts from the Lie group 𝑈(1) at 

the bottom left of the diagram to the Lie group 𝑈(1) at 

the bottom right is inner automorphism in group theory. 

Let the inner automorphism be 𝐼
𝑒𝜃𝑟𝑞 ∈ 𝐼𝑛𝑛(𝑈(1)), is 

generated by the mapping 𝐼  that generates an inner 

automorphism from the element 𝑛𝑞  of the Lie group 

𝑈(1)  at the bottom left of the diagram. Then, the 

element 𝑒𝑡𝑛𝑞 of the same lower left Lie group 𝑈(1) is 

defined as follows [3]: 

 

 𝐼
𝑒𝜃𝑟𝑞(𝑒

𝑡𝑛𝑞) ≡ 𝑒𝜃𝑟𝑞𝑒𝑡𝑛𝑞(𝑒𝜃𝑟𝑞)−1 . (3.10) 

 

As a result, the Lie group 𝑈(1) on the lower right has a 

sandwiching form, and when it is differentiated 

concerning the identity element, it becomes an element 

of the Lie algebra on the upper right, which can be 

written as 

 

 
𝑑

𝑑𝑡
(𝑒𝜃𝑟𝑞𝑒𝑡𝑛𝑞(𝑒𝜃𝑟𝑞)−1)|𝑡=0 = 𝑒𝜃𝑟𝑞𝑛𝑞(𝑒

𝜃𝑟𝑞)−1 . (3.11) 

 

It, therefore, can be seen that the form in which 𝑛𝑞 

defined in (3.9) is sandwiched between 𝑒𝜃𝑟𝑞  and 

(𝑒𝜃𝑟𝑞)−1  is due to an inner automorphism on the Lie 

group. Actually, when calculated by substituting (3.1) 

and (2.22) into the right-hand side of (3.11) as 

 

𝑒𝜃𝑟𝑞𝑛𝑞(𝑒
𝜃𝑟𝑞)−1  

= (cos
𝜃

2
+ (𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘)sin

𝜃

2
)  

 (𝑥
𝑖

2
+ 𝑦

𝑗

2
+ 𝑧

𝑘

2
) (cos

𝜃

2
+ (𝑤1𝑖 + 𝑤2𝑗 + 𝑤3𝑘)sin

𝜃

2
)
−1

  

=
𝑖

2
{𝑥(cos𝜃 + 𝑤1

2(1 − cos𝜃))  

   +y(𝑤1𝑤2(1 − cos𝜃) − 𝑤3sin𝜃)  

   +𝑧(𝑤2sin𝜃 + 𝑤3𝑤1(1 − cosθ)}    

   +
𝑗

2
{𝑥(𝑤3sin𝜃 + 𝑤2𝑤1(1 − cosθ))  

   +y(cos𝜃 + 𝑤2
2(1 − cos𝜃))  

   +𝑧(𝑤2𝑤3(1 − cosθ) − 𝑤1sin𝜃)}  

 +
𝑘

2
{𝑥(𝑤3𝑤1(1 − 𝑐𝑜𝑠𝜃) − 𝑤2𝑠𝑖𝑛𝜃) + 𝑦(𝑤1𝑠𝑖𝑛𝜃 +

𝑤2𝑤3(1 − 𝑐𝑜𝑠𝜃)) + 𝑧(𝑐𝑜𝑠𝜃 + 𝑤3
2(1 − 𝑐𝑜𝑠))}, (3.12) 

 

𝑒
𝜃𝑎𝑑𝑟𝑞(𝑛𝑞)

∨
 and (3.12) are isomorphic. 

 

 𝑒
𝜃𝑎𝑑𝑟𝑞(𝑛𝑞)

∨
 ≅ 𝑒𝜃𝑟𝑞𝑛𝑞(𝑒

𝜃𝑟𝑞)−1. (3.13) 

 

Therefore, the equation for expressing three-

dimensional rotations using quaternions cannot be 

expressed by a simple multiplication since (1.3) has the 

form where 𝑛𝑞  is sandwiched between quaternions 

𝑒𝜃𝑟𝑞  and (𝑒𝜃𝑟𝑞)−1. 

Incidentally, 𝑎𝑑𝑟𝑞
 generated from 𝑟𝑞 , which is an 

element of Lie algebra 𝑢(1) , by the adjoint 

representation 𝑎𝑑  of the Lie algebra becomes an 

element of the Lie algebra 𝑠𝑜(3) . When this is 

exponentially mapped, it becomes an element of the 

rotation group 𝑆𝑂(3). In addition, 𝐴𝑑
𝑒𝜃𝑟𝑞  is generated 

by the adjoint representation 𝐴𝑑 from 𝑒𝜃𝑟𝑞 , which is 

obtained by exponentially mapping the element 𝑟𝑞  of 

Lie algebra 𝑢(1) to the Lie group 𝑈(1) and becomes 

an element of the rotation group 𝑆𝑂(3). Hence, it is 

equal to 𝑒
𝜃𝑎𝑑𝑟𝑞  obtained by the exponential mapping of 

𝑎𝑑𝑟𝑞. Thus, since 𝑒
𝜃𝑎𝑑𝑟𝑞  is a rotation matrix, it can be 

said that 𝐴𝑑
𝑒𝜃𝑟𝑞 , which is an element of the same group, 

also represents rotation. Furthermore, the reason that 

𝐴𝑑
𝑒𝜃𝑟𝑞  is defined as a form in which an element 𝑛𝑞 of 

the Lie algebra is sandwiched between quaternions 𝑒𝜃𝑟𝑞  

and (𝑒𝜃𝑟𝑞)−1 is due to an inner automorphism 𝐼
𝑒𝜃𝑟𝑞  on 

the Lie group. It is defined that the elements after 

mapping of 𝐼
𝑒𝜃𝑟𝑞  are mapped between quaternions. 

Furthermore, by differentiating this concerning the 

identity element, it becomes equal to the element after 

mapping 𝐴𝑑
𝑒𝜃𝑟𝑞  that acts on the Lie algebra generated 

by the adjoint representation 𝐴𝑑. These actions lead to 

the rotation representation (1.3) using quaternions in the 

Lie algebra. 

 

IV. SUMMARY 

 

This study examined the reason why the angle 
𝜃

2
 is used 

instead of the angle 𝜃 in the formula expressing three-

dimensional rotation by quaternions, the reason why the 

formula is sandwiched between quaternions, and the 

method for deriving the three-dimensional rotation by 

quaternions. Firstly, we gave the reason why 
𝜃

2
 is used 

instead of 𝜃 when expressing rotation using a rotation 



quaternion. Equation (1.2) where 
𝜃

2
 is used is an 

element of the Lie group 𝑈(1), and the rotation matrix 

where 𝜃 is used is an element of the Lie group 𝑆𝑂(3). 

Therefore, if we compare the commutator product of the 

bases of the Lie algebra 𝑠𝑜(3) corresponding to 𝑆𝑂(3) 

and the Lie algebra 𝑢(1) corresponding to 𝑈(1), the 

bases of 𝑢(1)  need to be 
𝑖

2
,
𝑗

2
,
𝑘

2
  instead of 𝑖, 𝑗, 𝑘. 

When mapping the Lie algebra 𝑢(1) expressed by these 

bases to the Lie group 𝑈(1) by exponential mapping, 
𝜃

2
 

appears in cos and sin. Accordingly, we found that 
𝜃

2
 

is used to express rotation in the rotation quaternion. 

Next, the reason why (1.3) is sandwiched between 

quaternions was investigated. In three-dimensional 

rotation representation using quaternions, the quaternion 

representing the rotation is a Lie group, while the 

quaternion representing the vector to be rotated is a Lie 

algebra. Based on this, we considered the group 

representation and used the adjoint representation of the 

group. From the relationship between the groups, we can 

see that the element of 𝑆𝑂(3) which is an exponential 

mapping generated from the element of the Lie algebra 

𝑢(1)  by the adjoint representation of the algebra, is 

equal to the element of 𝑆𝑂(3) created by exponentially 

mapping the elements of Lie algebra 𝑢(1)  to the 

element of the Lie group 𝑈(1) and using the Lie group 

adjoint representation. It, therefore, can be said that the 

mapping generated from the element of the Lie group 

𝑈(1)  by adjoint representation can represent three-

dimensional rotation. The reason why this mapping is 

defined in such a way that the elements of the Lie 

algebra are sandwiched between the quaternions 𝑒𝜃𝑟𝑞 

and (𝑒𝜃𝑟𝑞)−1 is that the inner automorphism on the Lie 

algebra has a form in which the element of the Lie group 

𝑈(1) is sandwiched between the quaternions 𝑒𝜃𝑟𝑞  and 

(𝑒𝜃𝑟𝑞)−1, and it is differentiated concerning the identity 

element. Thus, the reason why (1.3) is sandwiched 

between the quaternions is due to the mapping generated 

by the adjoint representation, and this can be said to be 

attributed to the action of inner automorphism on the Lie 

group. 

 Based on the results of this study, in the future we 

would like to apply the group theory approaches to 

understanding of rotational representations in other 

dimensions and reveal their mathematical structures. 
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