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Abstract – The study of Distant Retrograde Orbits 

has been a subject of interest from the proposal of the 

Asteroid Redirect Robotic Mission by NASA, but it 

has been the development of the Artemis Program 

and the fulfilment of its first mission what has led to 

new studies on the subject. The presented work 

explores the characteristics of DROs and their 

applications for their potential use in the 

development of future interplanetary missions. First, 

a complete characterisation of the DRO family and 

its bifurcations in the Earth-Moon system, modelized 

as a Circular Restricted 3-Body Problem, is 

presented. In this step, it was detected that period 

tripling DROs are unstable, thus presenting stable 

and unstable manifolds which offer low-cost 

connections with other regions of space.  

Then, the manifolds of these neighbouring orbits 

are evaluated as connection trajectories between the 

Earth and the Cislunar environment. Using this 

approach, the complete journey consists of a transfer 

arc from the Earth to a manifold, a coasting phase 

along the manifold and a final transfer from the 

manifold to the final orbit. The selection of the 

manifold and the injection and departure points 

from it, allows to optimise the DV while allowing for 

a certain control of the time of flight. The obtained 

results show that with a DV of 290,3 m/s it is possible 

to reach the target orbit in 15,5 days.  

Moreover, these natural trajectories, studied in a 

Patched-CR3BP model with the Sun-Earth system, 

offer the possibility to find cheap trajectories to 

escape the Lunar vicinity. By applying this approach, 

a trajectory to reach Mars has been designed using a 

transfer from the departure orbit to a manifold of a 

P3DRO in the Earth-Moon system, a transit phase 

through L2 of the Sun-Earth system, a coasting 

phase, and a final transfer towards Mars. It has been 

observed that the cost to escape the Earth-Moon 

vicinity is below 250 m/s, without having significant 

limitations on the choice of the departure date.  

In consequence, the use of manifolds has proved 

its effectiveness: while benefitting from the stability 

of DROs, connections with other parts of the Earth-

Moon system are easily designed with low transfer 

costs. These transfers between a DRO and a manifold 

were computed using a continuation method from a 

target point on the natural path, to one on the target 

trajectory. In addition, this method has been 

evaluated for the computation of transfers between a 

DRO and an NRHO, validating it with other results 

of the bibliography. This work is finally completed 

with a study of the station-keeping cost in a more 

realistic force model and the analysis of the 

trajectory followed by ARTEMIS I. 

 

I. INTRODUCTION 

With the evolution of computer sciences, the study of 

complex dynamical systems became a reality, and a new 

type of low-energy trajectories, which exploit the 

gravitational interactions between three or more bodies, 

were discovered. These discoveries are key for the 

reduction of the fuel consumption, allowing an increase 

of the payload and a consequent improvement in the 

scientific objectives of space missions. One of the first 

missions to use this new approach was the Genesis 

Discovery Mission, whose goal was to collect solar wind 

samples and return them back to Earth. To achieve this 

goal, a prove had to be placed in an orbit far away from 

the Earth for a period of about two years to collect 

samples and then return to the Earth. All this mission 

was completed without any deterministic manoeuvre, 

just some corrections along the path. Obviously, this 

success created great interest in the study of these 

complex dynamical systems, reaching up to the 

consideration of the trajectories conceived using this 

approach for the design of more ambitious missions, like 

the Distant Retrograde Orbit used for the Artemis 

missions to bring humanity back to the Moon. 

 

The interest woken up by these new missions has 

motivated the project which is presented in this paper. 

The goal of this study is to analyse the Distant 

Retrograde Orbit family in the Earth-Moon system to 

identify their characteristics and explore their feasibility 

for future missions. To do this, their accessibility from 

Earth, their stability, and their utility to serve as a hub 

for future interplanetary missions are evaluated. To 

maintain a complete view of the analysis, the research 

focuses on the features of interest for mission analysis in 

Phase 0/A. All these studies are framed in the Restricted 

Three-Body Problem, and to study this model, the 

SEMpy library, which is being developed by the Space 

Advanced Concept Laboratory (SaCLaB) in ISAE-
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SUPAERO, will be used. Moreover, it is intended to 

implement some of the developed solutions into the 

library to improve the catalogue of tools it provides. 

 

Before starting with the presentation of the work done 

here, some previous studies on this subject will be 

presented. Different works have been published in the 

conception of the Artemis mission like the ones in [1], 

[2] and [3]. Additionally, DROs have been deeply 

studied in the works of [4], [5] and [6]. Regarding 

mission design in the cis-lunar environment there are 

two groups of previous studies that are relevant for the 

presented subject: on one side, studies on Earth-Moon 

trajectories like the ones presented in [7], [8], [9], [10] 

and on cis-lunar transfers as in [11], [12] and [13]; and 

on the other, works devoted to interplanetary missions 

like [14] and [15]. 

 

II. THEORETICAL FRAMEWORK 

The studies presented in this project are framed, mainly, 

in the Circular Restricted Three-Body Problem, as it is 

an appropriate model to study the Earth-Moon 

environment because the orbit of the Moon is almost 

circular (mean eccentricity of 0.0549), and as at the first 

phases of mission design it allows to find results which 

do not exist in the commonly used Two-Body problem. 

It must also be said that for some parts of the project, 

other models will be used, as the patched-CR3BP model 

to study trajectories from the Earth-Moon system to the 

Sun-Earth one, and the ephemerides model to perform a 

more realistic study of some trajectories. In the CR3BP, 

the motion of the spacecraft is defined by the system of 

differential equations presented in (1), where the 

pseudo-potential is defined as 𝑈  =   − 1 2⁄ (𝑥2  +
 𝑦2)  − (1 − 𝜇) 𝑟1⁄ − 𝜇 𝑟2⁄ − 1 2⁄ 𝜇(1 −  𝜇): 
 

  

{
 
 

 
 𝑥̈ − 2𝑦̇ = −

𝜕𝑈

𝜕𝑥

𝑦̈ + 2𝑥̇ = −
𝜕𝑈

𝜕𝑦

𝑧̈ = −
𝜕𝑈

𝜕𝑧

   (1) 

 

This set of equations describe a non-integrable problem, 

so, to find the trajectory, from a given initial state, it is 

necessary to integrate the equations numerically. As 

these equations are Hamiltonian and independent of 

time, they have an energy integral of motion. This result 

is commonly redefined as the Jacobi integral or Jacobi 

constant [16]: 

 

  𝐶 = −(𝑥2̇ + 𝑦2̇ + 𝑧2̇) − 2𝑈(𝑥, 𝑦, 𝑧)  (2) 

 

It is also important to understand how the final state is 

modified due to a variation in the initial state. 

Considering only the linear terms of this variation, it is 

possible to define the state transition matrix as the 

matrix which gives the linear relationship between small 

initial and final displacements. The State transition 

matrix is computed solving the following differential 

equations with the initial conditions Φ(𝑡0, 𝑡0) = 𝐼𝑛 : 
 

  Φ̇(𝑡, 𝑡0) = 𝐷𝑓(𝑥(𝑡))Φ(𝑡, 𝑡0) (3) 

 

Among the different utilities of this matrix, one of the 

most important ones is to compute predefined 

trajectories. Providing an approximation of an initial 

state defining a desired trajectory, it is possible to use 

the STM to correct this approximation to get the initial 

state that after a certain time gets to a desired final state. 

An application of this method is for the computation of 

periodic orbits, starting from analytic result or using a 

continuation schema to generate a complete family. 

 

A. Periodic orbit analysis 

The study of the stability of an orbit is no more than the 

analysis of the effect of a small perturbation over time. 

The state transition matrix gives the linear relation 

between a small initial perturbation and the final 

displacement caused by it after a certain time. For an 

orbit, as this matrix is integrated over its period, it is 

renamed as the Monodromy matrix of the orbit. 

 

  𝑀 ≡ Φ(𝑇, 0) =
∂ϕ(𝑇;𝑥0)

∂𝑥0
 (4) 

 

To understand if a perturbation will decay or grow over 

time it is necessary to analyze the eigenvalues of this 

matrix. Due to its properties, these eigenvalues come in 

conjugated and reciprocal pairs, and at least one of these 

pairs has a value of one. As the remaining four will 

appear in two reciprocal pairs, every stable one implies 

an associated unstable one, implying that the linear 

instability in this system can be of order zero, one, or 

two, that is, the number of pairs of eigenvalues out of 

the unity circle. 

 

Although stability is a fixed parameter for an orbit, it can 

change along orbits of the same family. A family of 

periodic orbits is a group of periodic solutions which 

share a common hodograph, which is a continuous curve 

in the phase space (six dimensional in the CR3BP). By 

varying a parameter like the Jacobi constant and moving 

along the hodograph, the eigenvalues also change 

continuously, which can lead to variations of the order 

of linear instability. A point along the hodograph at 

which the stability changes is recognised as a bifurcation 

point. To find these bifurcations, Broucke introduced the 

stability diagram for the CR3BP in 1969, and Howard 

and Mackay generalised it in 1987 [17]. First, for each 

orbit of the family, the parameters α and β are 

calculated. 

 

  {
𝛼 = 2 − Tr(𝑀)

𝛽 =
1

2
[𝛼2 + 2 − Tr(𝑀2)] 

 (5) 
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Then, from the characteristic equation of the 

Monodromy matrix and the definition of the 

bifurcations, it is possible to define the curves, which 

when intersected indicate the existence of a bifurcation. 

 

Table 1. Formulas to find bifurcations. 

Type of bifurcation Formula 

Tangent β =  − 2 −  2α  

Secondary Hopf β =
α2

4
+ 2 𝑤𝑖𝑡ℎ − 4 < α < 4  

Period doubling β =  − 2 +  2α  

Period tripling β =  1 +  α 

Period quadrupling β =  2 

Period quintupling 

{
 
 

 
 𝛽 =

𝛼

2 cos(
4𝜋

5
)
−

cos(
8𝜋

5
)+1

cos(
4𝜋

5
)

𝛽 =
𝛼

2𝑐𝑜𝑠(
8𝜋

5
)
−

𝑐𝑜𝑠(
16𝜋

5
)+1

𝑐𝑜𝑠(
8𝜋

5
)

  

 

From these expressions it is possible to build the 

stability diagram, in which the white region indicates a 

linear instability of order zero, the grey, of order one, 

and the black, of order two. From this diagram it is also 

possible to observe which bifurcations cause a change in 

this linear instability. 

 

 
Fig. 1. Broucke stability diagram. 

Once the bifurcation points have been found, it is 

possible to start a new continuation schema, in a 

direction determined by the pair (or pairs for the 

secondary Hopf type) of eigenvalues causing the 

bifurcation, to obtain the new family originated. 

 

B. Invariant manifolds 

A manifold is a trajectory which tends/departs, 

asymptotically, towards/from a periodic orbit. In 

autonomous systems, e.g. in the CR3BP, these 

manifolds are invariant because their position in the 

phase space is fixed in time. These structures only exist 

for unstable orbits, as the asymptotic departure from a 

periodic orbit is associated with an eigenvalue of its 

Monodromy matrix with a modulus greater than one. In 

opposition, the asymptotic approach to a periodic orbit 

is associated with eigenvalue that has a modulus smaller 

than one. 

 

 
Fig. 2. Process to approximately compute invariant 

manifolds of a periodic orbit [16]. 

 

The approximate computation of a manifold is 

performed introducing a perturbation in a point 𝑋0 in the 

direction of the normalised eigenvector associated to the 

unstable eigenvalue, 𝑌𝑢(𝑋0), and in the direction of the 

normalised one associated to the stable eigenvalue, 

𝑌𝑠(𝑋0): 
 

  {
𝑋𝑢(𝑋0) = 𝑋0 ± ϵ𝑌𝑢(𝑋0)

𝑋𝑠(𝑋0) = 𝑋0 ± ϵ𝑌𝑠(𝑋0)
 (6) 

 

This asymptotic behaviour makes them interesting for 

the design of low-energy transfers, but they also make it 

possible to identify different types of motion in space, 

making it possible to predict the behaviour of 

trajectories without having to propagate them. 

 

III. ANALYSIS OF THE DRO FAMILY 

DROs are periodic orbits characterised for presenting a 

planar retrograde motion in the xy-plane around the 

second primary of the system. These orbits extend from 

Low Lunar Orbits up to larger orbits which have a 1:1 

resonance with the second primary, which are 

commonly known as Quasi-Satellite Orbits. 

 

 
Fig. 3. DRO family in the Earth-Moon system. 

Observing the DRO family, as the Jacobi constant 

decreases, the size of the orbits grows, which agrees 

with the fact that a lower value of this parameter means 

a higher level of energy. It is also possible to observe the 

evolution of the shape of the orbits in the synodic frame 

as they grow. In the closest region of the Moon, they 
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keep an almost circular shape. However, as they get 

further from it, they start to be more affected by the 

attraction of the Earth, giving them an elongated shape, 

reaching up to the equilateral equilibrium points for the 

Earth-Moon system. Finally, the theoretical orbit used 

for the Artemis I mission is also presented. This orbit 

has a Jacobi constant of 2,942, a period of 13,71 days 

and encloses both, L1 and L2. 

 

One of the most important properties of this family is 

that almost all the orbits are linearly stable. Only the 

ones with lowest values of Jacobi constant, after the 

appearance of the tangent bifurcation, are slightly 

unstable. Using the Broucke stability diagram it is 

possible to evaluate the stability of DROs and find the 9 

bifurcations of this family. 

 

 
Fig. 4. Broucke stability diagram. 

Studying the intersection of the hodograph of the DRO 

family and the different lines it is possible to find the 

points at which the different bifurcations occur (as its 

was done for the Jupiter-Ganymede system in [5]). 

 

Table 2. Bifurcations of the DRO family. 

Type of bifurcation Jacobi constant 

Tangent 2,38 

Perio quintupling 2,46 

Period quadrupling 2,73 

Period tripling 2,86 

Perio quintupling 2,91 

Period tripling 2,97 

Perio quintupling 3,00 

Period quadrupling 3,01 

Perio quintupling 3,04 

 

Among the different bifurcations, the most interesting 

one is the period tripling bifurcation which appears for 

a Jacobi constant of 2,97. The orbits of this bifurcating 

family are unstable, meaning that they have manifolds 

linking the DRO neighbourhood with other regions of 

space. 

 

 
Fig. 5. Period tripling bifurcating family. 

The manifolds of these orbits have trajectories much 

more chaotic than libration point orbits. To study the 

regimes of motion between realms it is much more 

recommendable to use these libration point orbits as it 

was done in the design of a low-energy transfer to the 

Moon in [16]. 

 

 
Fig. 6. Trajectories of the manifolds of a P3DRO 

with C = 3,0405. 

For the work being currently developed, manifolds of 

period tripling DROs will be used as pre-designed 

trajectories to transit between realms. 

 

IV. TRAJECTORY DESIGN AND APPLICATIONS 

The previous analysis provided the main characteristics 

of the DRO family and its bifurcations, making it now 

possible to focus on the main question of this work: "for 

which applications are DROs suitable?". To answer it, 

the first study consists of an exploration of the transfers 

between orbits in the neighbourhood of DROs. Later, 

the strategies to reach these orbits from the Earth 

environment and the opportunities they might offer for 

interplanetary journeys are explored. Finally, an 

estimation of the station-keeping costs for a vehicle 

placed in a DRO is carried out. In all these studies, the 

orbit selected from the DRO family is the one used for 

Artemis I (unless otherwise stated). 
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A. Transfers in cis-lunar region 

Although an analytical solution exists for the transfer 

problem in Keplerian dynamics, in the CR3BP this is not 

the case, so a Two Point Boundary Value Problem must 

be solved using a shooting algorithm. One requirement 

for this approach to work is to have a good initial guess 

to start the shooting algorithm. The most used method to 

generate this initial guess is based on the solution of 

Lambert's problem. This approach works well in the 

regions where the first primary dominates the 

gravitational attraction, but when the trajectories run 

through regions perturbed by the interaction of both 

primaries this strategy becomes less efficient. 

 

Here, a method based on the progressive perturbation of 

the natural trajectory until the desired point is attained 

has been implemented. If no manoeuvre is performed, 

the particle will follow its natural path, but if it is desired 

that it gets to a point slightly separated from that path, 

the natural trajectory will be a good initial guess for the 

targeting process. This differential correction can be 

integrated into a continuation scheme, using the 

previously corrected solution as an initial guess for the 

next step, until the final desired point is achieved. In the 

next figure it is possible to see the initial point (𝑥0) and 

the final point (𝑥𝑑), as well as the initial trajectory of the 

particle and the final one. To start the continuation 

schema, the closest point to the final one is found in the 

initial trajectory (𝑥𝑑,0). Then, segment connecting these 

two states is divided in n points (𝑥𝑑,𝑖). At each step, the 

initial velocity is corrected to reach 𝑥𝑑,𝑖  and with the 

results obtained, the initial guess for the next step is 

predicted. This is repeated until the final point is 

reached. 

 

The presented algorithm makes it possible to find a 

solution between two points for a given transfer 

duration, but to find the cheapest way to connect two 

orbits it is necessary to optimise the initial and final 

points, and the ToF. To achieve this goal, an optimiser 

(Nelder-Mead algorithm) of the SciPy library [18] has 

been implemented. 

 

 
Fig. 7. Continuation scheme used in the transfer 

problem. 

Once the method has been explained it is possible to 

introduce the different cases that have been studied. The 

first of the studied cases is the transfer between two 

trajectories in the DRO region in a given time of flight. 

The Artemis I orbit is chosen as the final trajectory, and 

as Period-tripling DROs have manifolds which provide 

a transport path between different regions of space, the 

transfer cost departing from one of these orbits is 

evaluated. To evaluate the worst-case scenario, the 

selected Period-tripling DRO is the one with the most 

different Jacobi constant (3,0405) with respect to the one 

of the target orbit (2,9420). As a reference case, a 

transfer between two DROs with the stated values of 

Jacobi constant is also presented. 

 

 
Fig. 8. Optimal transfer between DRO-DRO. 

 

 
Fig. 9. Optimal transfer between P3DRO-DRO. 

Comparing the costs in Table 3, for a transfer between 

two DROs, when going from one of lower altitude to a 

higher one, it is required to give a higher impulse at the 

depart point and a lower one at the arrival, which is 

logical as the energy must be raised to achieve the target 

orbit. On the other hand, for the transfer from the Period-

tripling DRO to a DRO, the first impulse is really low, 

which is justified by the fact that this orbit has an 

unstable manifold, meaning that a small perturbation 
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will make a particle leave it. However, the impulse at the 

arrival point is much higher to match the energy of the 

final orbit. In the end the total cost is almost the same. 

Also, the transfer takes less time when departing from a 

P3DRO, as this transfer arc is shorter. 

 

Table 3. Cost and time of flight for the two cases. 

Transfer 𝚫𝑽𝟏[m/s] 𝚫𝑽𝟐[m/s] 𝚫𝑽[m/s] ToF[h] 

DRO-DRO 76,7  27,9   104,6  200,8  

P3DRO-DRO 3,1   105,4  108,5   139,4  

 

For the development of operations near the Gateway, it 

is interesting to apply this same method to study 

transfers linking a 9:2 resonant NRHO to a DRO (in this 

case one with a period of 12,17 days). In this work only 

the transfer in one sense is presented, but the invers 

transfer presents an analogous behaviour. The cost of the 

optimised transfer is of 188,1 m/s at the departure point 

and of 265,9 m/s at the arrival. The total transfer has a 

cost of 454,0 m/s and a total duration of 149,0 h (6,2 

days). These results agree with the ones presented in 

[19]. Moreover, the obtained solution presents an 

analogous shape to some of the transfers between a 

northern NRHO and a DRO presented in [9]. 

 

 
Fig. 10. Optimal transfer between NRHO-DRO. 

B. Trans-lunar trajectories 

In this part, the analysis of strategies to reach a DRO 

orbit from the Earth is carried out. In this case, the goal 

is to reach the Artemis I orbit from a departure point at 

an altitude of 200 km above the Earth from which the 

Trans-Lunar Injection is performed. This is a subject of 

study that has been widely studied, with almost each 

paper mentioning this kind of orbits in the Earth-Moon 

system presenting a way to reach them from Earth. An 

extensive study of multiple strategies was presented in 

[8], and at the end, the chosen strategy was the close 

Lunar flyby because it allows for a considerable 

decrease in fuel consumption. 

 
Fig. 11. Implemented strategy to design an Earth-

DRO transfer. 

The approach followed in this work takes advantage of 

the existence of manifolds of P3DROs connecting the 

Earth neighbourhood with the Lunar vicinity. By the 

insertion of a vehicle in a stable manifold of an orbit, no 

manoeuvres other than minor corrections will be needed 

for it to be placed into that orbit. This trajectory is known 

as a low-energy transfer or ballistic capture. However, 

due to the inherent qualities of manifolds, this type of 

trajectories tends to take a considerable amount of time 

and are therefore too long for most applications. 

Nevertheless, as they approach a periodic orbit 

asymptotically, it is possible to perform a transfer arc to 

place the vehicle in the desired orbit when it is close 

enough. In fact, it was shown in [13] that there is a trade-

off between the manoeuvre cost and the coasting time in 

the manifold. 

 

 
Fig. 12. Complete trajectory in the synodic and in 

the inertial frames. 

The obtained results show that with a ΔV of 290,3 m/s it 

is possible to reach the target orbit in 15,5 days. These 

results are similar to the ones obtained with the proposed 

fly-by and agree with the costs of the already completed 

mission, Artemis I [20]. The advantage of working with 

the presented method is that by changing a reduced 

number of parameters (selected manifold, and insertion 

and departure points) which have a physical sense in the 

CR3BP it is possible to obtain a wide variety of solutions 

which should be suitable for a certain application. What 

is more, this same method can be applied to a wide 

number of destination orbits that have manifolds or that 

have neighboring orbits with manifolds. 
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C. Interplanetary trajectories 

There are various characteristics of DROs that make 

them a suitable emplacement for a space station which 

would serve as an outpost from where to leave to other 

planets or a site where large vehicles to perform long 

journeys could be assembled. Here, the goal is to show 

that it is possible to exploit the natural dynamics of the 

system to design trajectories that escape the Earth-Moon 

environment with a low transfer cost. Then, the 

interplanetary phase can be studied with the approach 

which is more attractive for the designed mission. 

 

Accordingly with the hypothesis that have been adopted 

along this work, some simplifications have been 

introduced. First, the orbit of the Moon around the Earth, 

as well as the orbits of the Earth and Mars around the 

Sun are considered to be in the same plane. Next, instead 

of taking into account the gravitational influence of all 

the bodies at the same time, the studied domain has been 

divided in three models: the Earth-Moon CR3BP, the 

Sun-Earth CR3BP and the Heliocentric 2BP. 

 

With these hypotheses, the method applied to study this 

kind of trajectories starts with the propagation of a 

certain number of unstable manifolds of a Period-

tripling DRO until they intersect with the U2 Poincaré 

section of the Sun-Earth system. On the other side, 

stable manifolds of a Planar Lyapunov orbit at L2 in the 

Sun-Earth system are propagated until the same 

Poincaré section. With these, it is possible to identify the 

trajectories that would pass through the neck section at 

L2 in the Sun-Earth system to leave the Earth-Moon 

system towards the outer solar system. Then it is 

possible to connect the manifold with the DRO, on one 

side, and on the other, the transit trajectory with Mars. 

 

 
Fig. 13. Scheme of a complete trajectory from a 

DRO to Mars. 

Having presented the process followed, the computed 

results for a set of trajectories with a defined departure 

date and time of flight can be evaluated. The reference 

departure date for the results in following figure is the 

01-08-2024 and the total duration of the journey is of 

350 days. 

 

 
Fig. 14. Escape trajectory from the Earth-Moon 

system. 

Additionally, the evolution of the cost for the dates 

between 01-02-2024 and 01-01-2025 and a journey 

duration between 250 and 350 days was evaluated. The 

obtained results show that the required ΔV to escape the 

Earth-Moon vicinity is in between 0 and 250 m/s, plus 

the amount to connect the departure orbit with the 

manifold which is below 100 m/s. It must be noted that 

the impulse to raise the transfer up to the orbit of Mars 

has still to be included, but what this study proves it is 

possible to leave a DRO towards an interplanetary 

journey without requiring a great impulse. 

 

D. Station-Keeping analysis 

To complete the study of the applications of DROs it is 

interesting to evaluate the costs of keeping a spacecraft 

in this orbit for an extended time. First, a theoretical 

orbit in the CR3BP is converted into a more realistic 

orbit in the Earth-Moon-Sun ephemerides model. Then, 

it is propagated for a certain time to check the corrective 

manoeuvres that should be carried out along time. 

 

The process to get the initial state of the realistic orbits 

consists in the adjustment of the initial state in the J2000 

frame using a Least-Squares minimisation. This 

computation, conducted for a certain number of orbits 

ensures that the orbit will stay near the reference one for 

some time. The adjustment was carried out starting from 

a duration of half of the period and increased up to four 

orbits. Then, the computed state was propagated for 100 

orbits (3,75 years), showing that the maximum 

separation during this time was of 10.0000 km. 

 

 
Fig. 15. DRO adjusted in a realistic Earth-Moon-Sun 

force model (synodic frame). 
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These results are consistent with the studies presented in 

[2] which show that the studied DRO can be maintained 

without any corrective manoeuvre for extended periods 

of time. However, further studies should be carried on 

this subject as it is provable that the initial state cannot 

be achieved with the required accuracy. 

 

V. CONCLUSIONS 

With the study of the DRO family and its bifurcations it 

is possible to state that almost all the orbits of the family 

are linearly stable. Also, although these orbits do not 

have manifolds, there are some of its bifurcating 

families in the same region which do, providing paths 

connecting DROs with other regions of space. Secondly, 

it has been proven that DROs are a suitable 

emplacement for a space outpost which might be useful 

for in-situ resource utilisation or to refuel a spacecraft 

leaving for distant destinations. This is justified by the 

following facts: these orbits can be easily accessed from 

the Earth, manoeuvring between orbits of the family is 

not expensive, they provide the possibility to escape the 

Earth-Moon vicinity at a low cost and do not require 

significant station-keeping manoeuvres. Finally, all 

these studies developed using SEMpy prove that is a 

convenient tool to study multi-body dynamics. 

 

VI. REFERENCES 

[1]  J. P. Gutkowski, T. F. Dawn and R. M. Jedrey, 

“Evolution of Orion Mission Design for 

Exploration Mission 1 and 2,” American 

Astronomical Society, 2016.  

[2]  T. F. Dawn, J. P. Gutkowski, A. L. Batcha, S. M. 

Pedrotty and J. Williams, “Trajectory Design 

Considerations for Exploration Mission 1,” 2018. 

[3]  A. Kshatriya and M. Kirasich, Artemis I-IV 

Mission Overview / Status, 2022.  

[4]  C. J. Scott and D. B. Spencer, “Stability Mapping 

of Distant Retrograde Orbits and Transport in the 

Circular Restricted Three-Body Problem,” 

AIAA/AAS Astrodynamics Specialist Conference 

and Exhibit, 2008.  

[5]  Q. Li, Y. Tao and F. Jiang, “Orbital Stability and 

Invariant Manifolds on Distant Retrograde Orbits 

around Ganymede and Nearby Higher-Period 

Orbits,” Aerospace, vol. 9, no. 8, August 2022.  

[6]  Y. Asano, S. Satoh and K. Yamada, “Analysis of 

period-multiplying bifurcations of distant 

retrograde orbits in the Hill three-body problem,” 

Advances in Space Research, vol. 70, no. 10, pp. 

3016-3033, November 2022.  

[7]  J. Demeyer and P. Gurfil, “Transfer to Distant 

Retrograde Orbits Using Manifold Theory,” 

Journal of Guidance, Control, and Dynamics, vol. 

30, no. 5, pp. 1261-1267, 2007.  

[8]  L. Capdevila, D. Guzzetti and K. C. Howell, 

“Various Transfer Options from Earth into Distant 

Retrograde Orbits in the Vicinity of the Moon,” 

American Astronautical Society, 2014.  

[9]  L. R. Capdevila and K. C. Howell, “A transfer 

network linking Earth, Moon, and the triangular 

libration point regions in the Earth-Moon system,” 

Advances in Space Research, vol. 62, no. 7, pp. 

1826-1852, October 2018.  

[10]  C. Peng, H. Zhang, C. Wen, Z. Zhu and Y. Gao, 

“Exploring more solutions for low-energy 

transfers to lunar distant retrograde orbits,” 

Celestial Mechanics and Dynamical Astronomy, 

vol. 134, no. 1, February 2021.  

[11]  E. Zimovan and K. Howell, “Dynamical 

Structures Nearby NRHOs with Applications in 

Cislunar Space,” American Astronomical Society, 

2019.  

[12]  R. Zhang, Y. Wang, H. Zhang and C. Zhang, 

“Transfers from distant retrograde orbits to low 

lunar orbits,” Celestial Mechanics and Dynamical 

Astronomy, vol. 132, no. 8, August 2020.  

[13]  L. Anoè, T. Caleb, R. Armellin, A. Martínez-

Cacho, C. Bombardelli and S. Lizy-Destrez, “Bi-

impulsive transfers linking ballistic captures to 

periodic orbits in the Earth-Moon system,” 

American Astronomical Society, 2023.  

[14]  D. Conte, M. D. Carlo, K. Ho, D. B. Spencer and 

M. Vasile, “Earth-Mars transfers through Moon 

Distant Retrograde Orbits,” Acta Astronautica, 

vol. 143, pp. 372-379, February 2017.  

[15]  D. Canales Garcia, “Transfer Design 

Methodology Between Neighborhoods of 

Planetary Moons in the Circular Restricted Three-

Body Problem,” 2021. 

[16]  W. S. Koon, M. W. Lo, J. E. Marsden and S. D. 

Ross, Dynamical Systems, the Three-Body 

Problem and Space Mission Design, Marsden 

Books, 2006.  

[17]  E. T. Campbell, “Bifurcations from Families of 

Periodic Solutions in the Circular Restricted 

Problem with Applications to Trajectory Design,” 

1999. 

[18]  SciPy contributors, SCiPy, 2023.  

[19]  L. Jannin, E. Aziz, P. Guardabasso and S. Lizy-

Destrez, “Using Distant Retrograde Orbits as 

Future Spacecraft Graveyards,” International 

Astmnautical Congress, 2022.  

[20]  ESA, “Artemis I short mission overview,” 2022. 

[Online]. Available: 

https://blogs.esa.int/orion/2022/11/15/artemis-i-

short-mission-overview/. [Accessed 1 September 

2023]. 

 

 


