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Abstract  

In the space industry, the idea of coordinating multiple 

satellites to work together in formation has emerged as 

a new strategy. This approach is changing the way 

mission design is approached and executed. One of the 

key benefits of this approach is that it can enhance Earth 

observation performance, thereby improving our ability 

to observe and study the planet. 

 

A new program has been developed to extend the 

functionality of GMV’s Focussuite flight dynamics 

software to compute multiple formations, between 

reference and follower satellites. The development 

algorithm is able to inject a user satellite into formation 

with others and perform accurate station-keeping.  The 

algorithm arranges the optimal precise manoeuvres 

required to achieve the relative target orbits and follow 

the leader by performing maintenance tasks. The 

algorithm also minimizes the total ∆V to conduct each 

operation. 

 

I. INTRODUCTION 

FAMA, Formation Analysis and Manoeuvres 

Computation, as part of the GMV Flight Dynamics 

product Focussuite, is the new program to support 

formation flying operations in Low Earth Orbits. Four 

different strategies can be achieved by the implemented 

algorithm: Pure Leader-Follower, Cartwheel, 

Pendulum, and Helix. The main purpose of the paper is 

to define the algorithms implemented to fulfil the 

acquisition and the maintenance of the formation.  

 

A. Applications 

 

This kind of the strategies potentially lies in Earth-

Observation missions. In these kinds of missions, the 

formation of satellites allows to take the same image 

from different points at the same time, which will 

improve the accuracy of the reconstruction of the object. 

In future, formation flying usefulness will increase 

exponentially in several applications like topography, 

surveillance, and environmental monitoring.  

 

The surveillance field will be enhanced also by 

formation strategies. The coordinated movement of 

several satellites will allow the expansion of the remote 

sensing coverage.  

 

Additionally, the spacecraft inspection and maintenance 

tend to be for the formation field. The problem of debris 

in space is one of the major topics right now and there 

are a lot of missions to catch up with objects that are not 

useful anymore for deorbiting; or to increase their 

operative life by refuelling.  

 

B. Types of formation 

 

Four different strategies have been analysed and 

implemented as part of the Focussuite product. 

 

Pure Leader-Follower: the more common strategy; one 

satellite is designated as the leader and the rest are the 

followers. The formation is defined by keeping 

constantly the same inter-satellite distance in the along-

track direction. This has a direct effect on the argument 

of latitude (1). That means that in the pure leader-

follower formation, the satellites will keep the same 

orbital parameters except for the argument of latitude, 

where there will be a delta depending on the distance 

that wants to be achieved.  

 

Cartwheel: this strategy can be applied by adding a 

delta in the argument of perigee and the true anomaly 

which basically is going to rotate the eccentricity vector 

keeping the same module (3). With this change, the 

satellites are going to rotate inside the orbital plane one 

around the other. 

 

Pendulum: in this case, the formation is obtained by 

changing the direction of the inclination vector. In this 

case, as the difference is in the out-of-plane direction 

(3), this formation is more difficult to maintain. 

 

Helix: if the last two formations are applied at the same 

time, Helix is the resulting strategy. In this formation, 

both the eccentricity and inclination vector of the 

different satellites are rotated keeping the same modulus 

(4). As a result, one of the satellites is making a helix 

around the leader one. 

 

II. ALGORITHM DEVELOPMENT 

We present here the core functionality algorithm, a 

program featured in GMV’s software product 

Focussuite, called FAMA, Formation Analysis and 

Manoeuvres computation.  
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A. Formation target definition 

 

The target orbit is based on the leader satellite orbit, 

aligned with the user-specified formation parameters, 

which oversees defining a perfect formation between the 

leader and follower (reference and user satellite). The 

orbital osculating elements set to use along the paper 

will be x(t) = (𝑎, 𝑒, 𝑖, Ω, 𝜔, θ). 

  
Fig. 1. Orbital target orbit definition calculated 

from Leader satellite.  

Argument of latitude is used instead (𝑢 = 𝜔 + 𝜃)  to 

make it more convenient for near-circular orbits. The 

target orbit will be based on the classic mean orbital 

element. To compute the mean elements, multiple 

theories are available [2]. One of the most common 

forms and the one used is the direct average along one 

orbit for every point in the arc to compute (1). 

 

 𝑥𝑛̅̅ ̅(𝑡𝑛) =
1

2𝜋
∫  
𝑢𝑛+𝜋

𝑢𝑛−𝜋
𝑥(t) du  (1) 

 

To define the formation target orbit, the orbital elements 

will be the same as the Leader orbit  �̅�𝑡(𝑡) =   �̅�𝑙  (𝑡 ) 
along the time in the first instance. Depending on the 

selected formation, the target acquires multiple 

configurations according to user selection (2-5). 𝛿𝑢, 𝛿𝜔, 

𝛿𝜃 and 𝛿Ω are the user input parameters which define 

each formation type, Fig 1. For every time step, the delta 

variation is defined as constant in mean elements.  

 
 𝐿𝑒𝑎𝑑𝑒𝑟 𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟  �̅�𝑡(𝑡) =  �̅�𝑙 (𝑡 ) + 𝛿𝑢  (2) 

 

 𝐶𝑎𝑟𝑡𝑤ℎ𝑒𝑒𝑙 ∶  {
𝑢𝑡(𝑡) =    𝑢̅̅ ̅𝑙 (𝑡 )  +  𝛿𝑢

𝜔𝑡(𝑡) =   �̅̅̅�𝑙 (𝑡 )  +  𝛿𝜔
  (3) 

 

 𝑃𝑒𝑛𝑑𝑢𝑙𝑢𝑚 ∶  {
𝑢𝑡(𝑡) =    𝑢̅̅ ̅𝑙 (𝑡 )  +  𝛿𝑢

 �̅�𝑡(𝑡) =   �̅�𝑙 (𝑡 )  +  𝛿𝛺
  (4) 

 

 𝐻𝑒𝑙𝑖𝑥 {

 �̅̅̅�𝑡(𝑡) =   �̅̅̅�𝑙 (𝑡 )  +  𝛿𝜔

𝑢𝑡(𝑡) =    𝑢̅̅ ̅𝑙 (𝑡 )  +  𝛿𝑢

 �̅�𝑡(𝑡) =   �̅�𝑙 (𝑡 )  +  𝛿𝛺

 (5) 

 

In the case of a simple leader-follower formation, the 

user could want to define the inter-satellite distance 

instead of orbital parameter differences (2). If the 

selected distance 𝑟  is much smaller than the semi-major 

axis (𝛿𝑟 << 𝑎), the ∆𝑢  to shape the formation could be 

expressed as (6). 

 

 ∆𝑢 = 2 𝑎𝑠𝑖𝑛 (
𝛿𝑟

𝑎
) (6) 

 

 
Fig. 2. Orbital tube threshold defined over 

formation target orbit.  

 

Threshold definition on the target orbit 

 

To maintain the orbit inside a correct threshold 

formation, an orbital “tube” around the computed target 

must be defined, Fig. 2.  

 

The threshold typically will be defined in relative 

cartesian elements. Considering a Radial-Transversal-

Normal (RTN) system from target satellite orbit. The 

Cartesian Hill frame coordinates are used in the 

following development. Defining semi-latus rectum 

parameter 𝑝 = 𝑎(1 − 𝑒2), and mean motion 𝑛2 = μ/𝑎3, 

the relative position vector components in smaller 

distances are given in terms of orbit element differences 

from the target orbit through [3] (7): 

 

 

∆𝑥 ≈
𝑟

𝑎
∆𝑎 +

𝑉𝑟

𝑉𝑡
𝑟∆𝜃 −

𝑟

𝑝
(2𝑎𝑒𝑥 + 𝑟 cos 𝜃)∆𝑒𝑥

−
𝑟

𝑝
(2𝑎𝑒𝑦 + 𝑟 sin 𝜃)∆𝑒𝑦

∆𝑦 ≈ 𝑟(∆𝜃 + cos(𝑖)∆Ω)

∆𝑧 ≈ 𝑟(sin(𝜃)∆𝑖 − cos(𝜃)sin(𝑖)∆Ω)

 (7) 

 

The radial and transverse velocity components 𝑉𝑟  and 𝑉𝑡 
respect to target position is defined as (8). 

 

 
𝑉𝑟 = �̇� =

ℎ

𝑝
(𝑒𝑥sin 𝜃 − 𝑒𝑦cos 𝜃)

𝑉𝑡 = 𝑟�̇� =
ℎ

𝑝
(1 + 𝑒𝑥cos 𝜃 + 𝑒𝑦sin 𝜃)

 (8) 

 

Where equinoctial eccentricity elements are used for 

simplicity in this case 𝑒𝑥 = 𝑒cos 𝜔, 𝑒𝑦 = 𝑒cos 𝜔.  
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B. Formation target acquisition 

 

After calculating the target orbit, our next step involves 

verifying whether the follower satellite is within the 

boundaries of the calculated trajectory. The most cases, 

the initial satellite position will be located outside the 

selected threshold.  

 

Therefore, the relocation injection algorithm starts to 

compute the multi-manoeuvre path. This step is the most 

complex, due to formation requires high precision in 

target acquisition. In addition, a minor amount of the 

total ΔV, to reduce to minimum mass consumption will 

be searched. Besides, the new modern LEO typically use 

low thrust propulsion, which implies an incredibly low 

ΔV per manoeuvre, so a multiple manoeuvre path will be 

performed in the process. The strategy proposed to fulfil 

the previous condition will consist of a set of successive 

manoeuvres to correct directly 𝑎, 𝑒, 𝑖 and 𝜔, but taking 

advantage of a drifting intermediate, well known as 

coasting orbit, to correct naturally Ω and u , Fig. 3.  

 

 
 

Fig. 3. Relocation steps in timeline schema.  

 

Coasting orbit drifting path 

 

The principal perturbations impacting satellites in LEO   

orbits are Earth’s oblateness, atmospheric drag, and 

solar radiation pressure. The direct satellite movement 

due to gravitational law, and the most important 

perturbation, Earth’s oblateness, affects the secular 

movement of Ω, 𝜔, and 𝑀 through the parameter J2 [1], 

so it is possible to get the drifting value respect from 

time (9) 

 

 
Ω̇𝑠𝑒𝑐 = −

3𝐽2𝑅⊕
2 𝑛cos (𝑖)

2𝑝2

�̇�𝑠𝑒𝑐 =  𝑛 +
3𝑛𝐽2𝑅⊕

2 (4 − 5 𝑠𝑖𝑛2𝑖)

4𝑝2
−
3𝑛𝑅⊕

2 𝐽2√1−𝑒
2(2 − 3 𝑠𝑖𝑛2𝑖)

4𝑝2

 (9) 

 

Considering setting a drifting intermediate orbit 

respected from the target, it is possible by taking 

increments from them, i.e. ∆Ω̇𝑖𝑛𝑡 = Ω̇𝑖𝑛𝑡 − Ω̇𝑡 and ∆u̇𝑖𝑛𝑡 = 

u̇𝑖𝑛𝑡 − u̇𝑡. For low eccentricity orbit, and neglecting other 

important effects, it is possible to take increments over 

the previous equation (10). 

 

 
∆Ω̇𝑖𝑛𝑡 ≈ 𝑓𝛺( ∆𝑖𝑖𝑛𝑡 )  +  𝑓𝛺(∆a𝑖𝑛𝑡 ) 

∆u̇𝑖𝑛𝑡 ≈ 𝑓𝑢(∆a𝑖𝑛𝑡 ) 
 (10) 

 

The expression proves that an incremental value from 

the target orbit induces a drift in Ω,  and 𝑢 . Establishing 

a precise ∆a𝑖𝑛𝑡 over the desired target orbit, the user 

satellite started 𝑢 position drift to the final one naturally, 

without any manoeuvres during this period. A positive  

∆a𝑖𝑛𝑡  generates a negative drift ∆u̇𝑖𝑛𝑡 drift, Fig. 4. 

Instead, a positive ∆a𝑖𝑛𝑡 and positive ∆i𝑖𝑛𝑡  as well, as 

generate a negative ∆Ω̇𝑖𝑛𝑡, Fig. 5, and vice versa. 

 

 
 

Fig. 4. Drifting ∆𝑢  user satellite by an induced 
∆𝑎𝑖𝑛𝑡 over target orbit. 

 

 
 

Fig. 5. Drifting ∆Ω  user satellite by an induced 
∆𝑖𝑖𝑛𝑡 over target orbit. 

 

The incremental value will be suited according to the 

user's total available time to perform the relocation. 

Measuring the total 𝑢𝑖𝑛𝑖 − 𝑢𝑡 to correctly relocate the 

user satellite, according to the total available time for 

formation acquisition relocation 𝑡𝑡𝑜𝑡𝑎𝑙, the ∆u̇𝑖𝑛𝑡 can be 

suited as (11). 
 

 𝑓𝑢(∆a𝑖𝑛𝑡 )  ≈ −
𝑢𝑖𝑛𝑖−𝑢𝑡

𝑡𝑡𝑜𝑡𝑎𝑙−
𝑡𝑚𝑎𝑛
2

 (11) 

 

The total number of orbit period manoeuvring times is 

not calculated yet but could be solved interactively as 

will be proposed later.  

 

Typically, Ω is a highly costly relocation parameter. To 

solve this problem, a similar approach as argument of 

latitude. In the incremental equation, ∆Ω̇𝑖𝑛𝑡 has an equal 

dependence of ∆𝑖 and ∆𝑎. Due to the ∆a𝑖𝑛𝑡 is imposed 

by u drifting,   ∆𝑖𝑖𝑛𝑡  from target orbit should be suited 

directly by excluding 𝑓𝛺(∆a𝑖𝑛𝑡 )  [4]. Therefore, the total 
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∆Ω̇𝑖𝑛𝑡 in a first iteration could approximately by (12). 

 

 𝑓𝛺(∆𝑖𝑖𝑛𝑡 )  ≈ −
Ω𝑖𝑛𝑖−Ω𝑡

𝑡𝑡𝑜𝑡𝑎𝑙−
𝑡𝑚𝑎𝑛
2

− 𝑓Ω(∆a𝑖𝑛𝑡)  (12) 

 

For later calculus, as though the total relocation time is 

imposed, 𝑓𝛺( ∆𝑖𝑖𝑛𝑡 )  and 𝑓𝑢( ∆𝑎𝑖𝑛𝑡 ) behave like 

unknown variables, which are imposed respectively 

 ∆𝑖𝑖𝑛𝑡   and  ∆𝑎𝑖𝑛𝑡   from target to by achieving by direct 

manoeuvring. 

 

 

Direct orbital manoeuvring path 

 

In addition to coasting relocation, it will be necessary 

two direct paths of manoeuvres. One for suit coasting 

drifting orbit from initial user satellite position, 

  ∆𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 → ∆𝑥𝑖𝑛𝑡 , and the last one from drifting orbit 

to the desired target   ∆𝑥𝑖𝑛𝑡 → ∆𝑥𝑡,.  This one should be 

the most accurate as possible if we want to set the 

defined formation with precision.  

 

In the first iteration, manoeuvres will be considered 

impulsive, which later should be converted to long low-

thrust manoeuvres. To fulfil this requisite, a maximum 

Δ𝑉 will be imposed per manoeuvre. This value must be 

set according to manoeuvre duration and propulsion 

power unit, which never gets over one semi-period 

duration. Because of this, two manoeuvres will be 

performed per orbit during manoeuvring time. 

 

To compute these manoeuvres, we first establish the 

mathematical foundation. Specifically, we turn to 

Gauss’s variational equations for classical orbital 

elements (GVEs). An impulsive manoeuvre comprises 

three components: the radial, transverse, and normal 

components.  

 

In impulsive manoeuvres, the GVEs establish a direct 

relationship between the orbital elements and the 

acceleration elements in the LVLH frame. To avoid 

multiple conflicts with the argument of latitude, 

equinoctial eccentricity will be used instead, as 

formulated in [5] (13). 

 

 

d𝑎

d𝑡
≈ 2𝑎

𝛾T

𝑛𝑎
d𝑢

d𝑡
≈ 𝑛 − 2

𝛾R

𝑛𝑎
−

sin 𝑢

tan 𝑖

𝛾N

𝑛𝑎

 
d𝑒𝑥

d𝑡
≈ 2cos 𝑢

𝛾T

𝑛𝑎
+ sin 𝑢

𝛾R

𝑛𝑎
d𝑒𝑦

d𝑡
≈ 2sin 𝑢

𝛾T

𝑛𝑎
− cos 𝑢

𝛾R

𝑛𝑎
d𝑖

d𝑡
≈ cos 𝑢

𝛾N

𝑛𝑎
dΩ

d𝑡
≈
sin 𝑢

sin 𝑖

𝛾N

𝑛𝑎

 (13) 

 

Due to 𝑢 and Ω will be corrected by coasting orbit 

drifting, these parameters and subsequently errors will 

be ignored in manoeuvring direct paths. Taking 

increments of previous equations, where acceleration 

converts into single impulses  ∆𝑉 = (∆𝑉𝑟 , ∆𝑉𝑡 , ∆𝑉𝑛)  
and orbital parameters differences to corrected from 

initial orbit and coasting orbit, and from coasting orbit 

to target Δ𝑎, Δ𝑒𝑥, Δ𝑒𝑦, and Δ𝑖, it is possible to combine 

them in (14). 

 

 

Δ𝑎 ≈ 2𝑎
∆𝑉𝑡

𝑛𝑎

 Δ𝑒𝑥 ≈ 2cos 𝑢
∆𝑉𝑡

𝑛𝑎
+ sin 𝑢

∆𝑉𝑟

𝑛𝑎

Δ𝑒𝑦 ≈ 2sin 𝑢
∆𝑉𝑡

𝑛𝑎
− cos 𝑢

∆𝑉𝑟

𝑛𝑎

Δ𝑖 ≈ cos 𝑢
∆𝑉𝑛

𝑛𝑎

 (14) 

 

They allow us to compute analytically directly the total 

∆𝑉 to perform by giving parameter variations to correct. 

This can be done by a pair-manoeuvre strategy, ∆𝑉1and 

∆𝑉2 setting a manoeuvre in a predefined 𝑢0, and 

opposite the other, in 𝑢0 + π, Fig. 6.  

 

 
Fig. 6. Pair of direct manoeuvre schema  

Applying this strategy, to achieve approximately the 

desired variation it is possible to reduce half part of the 

increment, ∆𝑎/2, ∆𝑖/2 and ∆𝑒/2 during the first 

manoeuvre and the remaining part during the second 

manoeuvre. This results in a sum of both terms in 

perigee and subtraction of the second term from the first 

in apogee. On the other hand, out-of-plane variations 

usually are highly expensive manoeuvres, so to increase 

the performance, the manoeuvre always will be done in 

the ascending/descending node, cantering the impulses 

in the argument of latitude value of u = 0 for manoeuvre 

∆𝑉1  and u = π for manoeuvre ∆𝑉2. With this approach, 

Δ𝑒𝑥 will be corrected with tangential manoeuvres, and 

Δ𝑒𝑦 with radial manoeuvres. Therefore, is possible to 

compute the total achieving variation of the parameters 

by combining (14) accurately in (15) for ∆𝑉1 and (16) 

for ∆𝑉2. 
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 Δ𝑉1̅̅ ̅̅ ̅(u = 0)

{
 
 

 
 ∆𝑉𝑟1 = −

n a Δe𝑦

2

∆𝑉𝑡1 =
n Δ𝑎

4
+

n a Δe𝑥

4

∆𝑉𝑛1 = 
n a Δi

2

 (15) 

 

 Δ𝑉2̅̅ ̅̅ ̅(u = π)

{
 
 

 
 ∆𝑉𝑟2 = 

n a Δe𝑦

2

∆𝑉𝑡2 =
n Δ𝑎

4
−

n a Δe𝑥

4

∆𝑉𝑛2 = − 
n a Δi

2

 (16) 

 

Most of the cases de total Δ𝑉1 or Δ𝑉2 modulus surpasses 

the maximum Δ𝑉𝑚𝑎𝑥 allowed per manoeuvre 

(propulsion time after conversion to continuous 

manoeuvre). Therefore, the total Δ𝑉 should be reduced 

proportionally (17) as calculated in (15) and (16), and 

the variations proportions are conserved. The 

manoeuvre is considered as saturated. 

 

 

𝐼𝑓 𝑚ax(‖Δ𝑉1‖, ‖Δ𝑉2‖) > Δ𝑉𝑚𝑎𝑥   𝑡ℎ𝑒𝑛

{
Δ𝑉1̅̅ ̅̅ ̅ 𝑠𝑎𝑡 = 

Δ𝑉1̅̅ ̅̅ ̅

max(‖Δ𝑉1‖,‖Δ𝑉2‖)
Δ𝑉𝑚𝑎𝑥

Δ𝑉2̅̅ ̅̅ ̅
𝑠𝑎𝑡
 =  

Δ𝑉2̅̅ ̅̅ ̅

max(‖Δ𝑉1‖,‖Δ𝑉2‖)
Δ𝑉𝑚𝑎𝑥

 (17) 

 

According to this condition Δ𝑎, Δ𝑒𝑥, Δ𝑒𝑦, and Δ𝑖 maybe 

will be lower as needed (18). So, to finally perform all 

parameters corrections proposed, a subsequence of pairs 

of manoeuvres will be performed, iteratively, until Δ𝑉 

are not saturated. Therefore, a multi-pair manoeuvre 

path is created. 

 

 

Δ𝑎𝑠𝑎𝑡 = 2
(∆𝑉𝑡1+∆𝑉𝑡2)

𝑛

 Δ𝑒𝑥𝑠𝑎𝑡 = 2
∆𝑉𝑡1−∆𝑉𝑡2

𝑛𝑎

Δ𝑒𝑦𝑠𝑎𝑡 = −
∆𝑉𝑟1 − ∆𝑉𝑟2  

𝑛𝑎

Δ𝑖𝑠𝑎𝑡 =
∆𝑉𝑛1+∆𝑉𝑛2

𝑛𝑎

 (18) 

 

Station Keeping optimization. 

 

Evaluating the performance of the formation after 

algorithm development, an extra point arises, the 

possibility of optimizing the formation’s station-keeping 

by slight modification in orbit target, to maximise the 

posterior time after relocation without Station-Keeping 

(SK) manoeuvring. This optimization leverages the 

drag-driven parabolic behaviour of the argument of 

latitude. Due to differences in atmospheric drag, when 

the follower semi-major axis decreases Δ𝑎𝑎𝑡𝑚, the 

argument of latitude u  drifts faster and exceeds the 

bounds of the leader-follower formation sooner, Fig 7. 

 

 
Fig. 7. Natural evolution of Δ𝑢 due to drag 

differences without an optimized induced target.  

 

   

Fig. 8. Evolution of Δ𝑢 due to drag differences with 
optimized Δ𝑎0 𝑜𝑝𝑡 and Δ𝑢0  𝑜𝑣𝑒𝑟  target.  

Shifting our focus to the Δ𝑢 evolution to minimize the 

increment along the time, Fig. 8, the equation for the 

secular linear drift of the argument of latitude caused by 

perturbations are previously expressed. We can assume 

in the first approximation that the perturbation of J2 is 

negligible concerning the orbital revolution rate, 

conclude that the argument of latitude’s evolution can 

be approximated as mean period �̇�𝑠𝑒𝑐 =  𝑛 . Now that we 

have an expression for the argument of latitude’s drift, 

the incremental variation of �̇� (19). 

 

 ∆�̇� = ∆𝑛  (19) 

 

Is possible to introduce incremental values by direct 

Taylor series expansion in mean motion 𝑛2 = μ/𝑎3, 

where only has 𝑎 dependence. The drifting evolution 

difference of the argument of latitude is presented in 

(20). 

 ∆�̇� = −
3 𝑛

2  𝑎 
 ∆𝑎(𝑡)  (20) 

 

Where ∆𝑎(𝑡) will be the evolution during the SK of the 

semi-major axis difference between real follower 

satellite orbit and target orbit, attached to leader satellite. 

Considering ∆𝑎(𝑡) independently from the rest of  

variables, ∆𝑎(𝑡) = ∆𝑎0 + ∆𝑎(𝑡), it is possible to 

integrate directly ∆�̇� (21), where ∆a(t) is the evolution 

of user satellite orbit due to drag differences. 

 

 ∆𝑢 = −
3 n

2  a
 ∫ [∆𝑎0 + ∆𝑎(𝑡)]𝑑𝑡
tf
0

  (21) 

 

∆𝑎(𝑡) evolution is known after a first iteration, when a 

direct relocation to the target orbit is performed, i.e. 

∆𝑎0 = 0. Mostly of LEO cases, ∆a(t) tends to be lineal 



 

 

29th International Symposium on Space Flight Dynamics (ISSFD) 

22- 26 April 2024 at ESA-ESOC in Darmstadt, Germany. 

due to the proportionality of ballistic coefficient 

differences. According to that, it is possible to make the 

hypothesis: the argument of latitude’s evolution follows 

a drag-driven pattern, experiencing a parabolic 

behaviour. So, the ∆𝑎0 could be different to null, being 

possible to maximize the time within formation 

boundaries. To achieve this, to condition can be 

established: the incremental value of u will be zero 

∆u(𝑡𝑓) = 0 at final time. The second condition implies 

∆u(t𝑓/2) = −∆u 0, i.e. at half of maximum time, ∆u 

will be opposed in the parabola. Substituting and re-

arranging, we obtain the system to solve (22). 

 

 
Δa0 = −

1

𝑡𝑓
∫ Δa(𝑡)𝑑𝑡
𝑡𝑓
0

∆u 0 = 
3 n

2  a
 (
tf

2
∆𝑎0 + ∫ ∆𝑎(𝑡)𝑑𝑡

tf/2

0
)
 (22) 

 

Setting ∆u 0 = ∆u 𝑚𝑎𝑥  as maximum threshold value 

distance, the previous integrals could be calculated 

numerically, maximizing the time without SK, tf. The 

result Δa0 will be directly applied to the target orbit of 

the follower.  

 

C. Algorithm implementation 

 

Once the main formulation is proposed, a numerical 

algorithm is implemented to compute the formation. 

 

The first step involves calculating the target orbit based 

on the leader references orbit. Subsequently, using the 

user-defined distance threshold, the program checks if 

the user's real position is aligned in the tube with the 

calculated target during the provided timespan. If the 

follower satellite is in the intended formation with the 

leader, the program ends successfully, providing the 

calculated target orbit file as output. Conversely, if the 

follower satellite gets out from the formation threshold 

at any moment, or it is located directly outside at first 

instance, the program starts a dedicated subroutine to 

compute the necessary SK/Injection. 

 

For Injection/SK manoeuvre computation, an optimized 

multi-step iterative methodology is implemented. As 

explained before, the delta parameters between the 

starting user orbit and the target orbit ∆𝑎, ∆𝑒𝑥, ∆𝑒𝑦 and 

∆𝑖 will be corrected directly with equivalent low-

impulsive manoeuvres. On the other hand, the 

parameters ∆Ω and ∆u will be corrected by coasting 

drifting orbit during the appropriate time. The total 

needed drift is obtained by using a coasting orbit defined 

by an ∆𝑎𝑖𝑛𝑡   and ∆𝑖𝑖𝑛𝑡   over a target orbit. Depending on 

these delta values, the orbital arc to follow and the 

number of manoeuvres will be different. As follows, the 

number of manoeuvres modifies the available total drift 

time.  

 

To deal with the problem, it has been solved by fixing a 

maximum time imposed by the user 𝑡𝑚𝑎𝑥  and 

considering ∆�̇�𝑖𝑛𝑡 and ∆Ω̇𝑖𝑛𝑡 the unknowns to solve the 

problem. By using a direct Newton-Raphson 

methodology and dealing adequately with time, is 

possible to get appropriate coasting orbit drifting values 

with higher precision, Fig. 9. The ultimate objective is 

approaching all delta orbital parameters to null at the end 

of the relocation time ∆𝑥(𝑡𝑓) → 0.  

 

During the previous algorithm, it is possible to 

distinguish two different manoeuvring arcs, where 

∆𝑎,  ∆𝑒𝑥, ∆𝑒𝑦 and ∆𝑖 parameters are corrected directly. 

From initial position to the coasting orbit  ∆𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 →
∆𝑥𝑖𝑛𝑡, another from coasting to the final one  ∆𝑥𝑖𝑛𝑡 →
∆𝑥𝑓𝑖𝑛𝑎𝑙 . An iterative algorithm is used for both. By 

setting a multiple pair-manoeuvre path strategy, they 

will be performed in ascending/descending nodes, and 

∆𝑉𝑖  = (∆𝑉𝑟  , ∆𝑉𝑡 , ∆𝑉𝑛) could be directly calculated by 

the proposed formulation in (15) and (16). It is worth 

noting that the calculated ∆𝑉𝑖   may sometimes exceed 

the maximum Δ𝑉𝑚𝑎𝑥 allowed requirement (17). If this 

happens, the proportional low-impulsive is settled (17).  

 

 
Fig. 9. Algorithm schema. Newton-Raphson to 

optimize drifting coasting orbit. 

 

Later, the optimization SK evolution after target 

injection entails conducting another new iteration and 

execution of the modified Newton-Raphson method, by 

approaching the satellite orbit to a new slightly modified 
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target ∆𝑎(𝑡𝑓) → ∆𝑎0 𝑜𝑝𝑡  and ∆𝑢(𝑡𝑓) → ∆𝑢0 𝑜𝑝𝑡, Fig. 10. 

Joining all subsequent processes, the final algorithm is 

developed.  

 

 

 
Fig. 10 Algorithm schema. Final SK optimization by 

target modification. 
 

 

III. RESULTS 

 

To validate the operability and prove the feasibility of 

our program, multiple analyses have been performed. 

First, pure leader-follower formation analysis was 

performed, by three different test cases in a pure leader-

follower strategy: the injection into formation from a 

launcher error, an SK maintaining operation. Later, 

other results will be presented about the rest of the 

formations. 

 

As previously mentioned, our scenario involves two 

satellites: the leader of the formation, the reference orbit, 

and its follower. To ensure a comprehensive evaluation 

of outcomes, it is essential to consider the different 

physical characteristics of these satellites.  

 

The main perturbing forces considered by the program 

for propagation, which mainly acts on a spacecraft in a 

sun-synchronous orbit are 32 Degrees and Orders of 

geopotential terms, aerodynamic drag (F10.7 = 127.4 for 

50 percentile), Gravitational effects of the Moon and the 

Sun, solar radiation pressure, solid tides and ocean tides. 

 

The ballistic coefficient 𝐶𝑏 is important to understand 

the interaction between both satellites. The higher the 

𝐶𝑏, the lower the atmospheric drag the satellite would 

experience. Comparing both satellites, the Follower 

satellite will present a higher drag force concerning 

Leader one. Consequently, this deviation will lead to a 

more pronounced deceleration of the Follower, 

prompting a reduction in the semi-major axis and 

subsequently its orbital period. This effect, compounded 

by the perturbations that affect the satellite in LEO, will 

contribute to a modification in the inter-satellite 

distance: approaching the two satellites if the Follower 

is behind the Leader, and vice-versa, moving away if the 

follower is ahead. 

 

To analyse the following formations, our focus is on 

analysing how is the evolution in radial (R), along-track 

(S), and cross-track (W) coordinates of the 

Synchronised Satellite Coordinate System. The origin of 

this reference system is the reference orbit of the leader.  

 

A. Pure Leader-Follower operational tests 

 

Using the initial conditions explained before, two 

scenarios are analysed for the Leader-Follower strategy: 

- Formation Injection. 

- Formation Station Keeping. 

Each one is explained in the following sections. 

 

Leader-Follower Formation injection 

 

The initial scenario involves establishing a simple 

leader-follower formation with an inter-satellite distance 

of 100 km in the along-track direction, following a 

steady trajectory set by the leader satellite. A 40-day 

maximum time was set to perform the complete 

relocation. A maximum of 1 m/s Δ𝑉 per manoeuvre was 

used. 

 

Table 1. Initial position in osculating elements after 

user satellite launcher deployment  

 

 Target  Follower  

Epoch 2023/01/01-00:00:00.000 

𝑎 (𝑘𝑚) 7006.8609 7003.8609 

𝑒 0.001185 0.0013 

𝑖 (𝑑𝑒𝑔) 97.863 97.83 

Ω (𝑑𝑒𝑔) 186.364 186.42 

ω (𝑑𝑒𝑔) 90.257 98.257 

 𝜃 (𝑑𝑒𝑔) 150.870 269.870 

 

 

Table 2. Final position in osculating elements after user 

satellite launcher deployment  

 

 Target  Follower  

Epoch 2023/02/10-00:00:00.000 

𝑎 (𝑘𝑚) 6997.63265 6997.63265 

𝑒    0.00025    0.00025 

𝑖 (𝑑𝑒𝑔)    0.00154    0.00154 

Ω (𝑑𝑒𝑔)   97.79200   97.79200 

ω (𝑑𝑒𝑔)  225.77262  225.77262 

 𝜃 (𝑑𝑒𝑔)  182.41651  182.41651 
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Fig. 11 Delta Keplerian mean elements between user 

satellite and settled target in a Leader-Follower 
 

 

 
 

Fig. 12 RTN plots cantered on leader satellite during 
user satellite injection.  

 

With input data settled in Table 1, the test was executed. 

First, the program calculates the target orbit from the 

Leader satellite. Later, it iterates Δ𝑢  and ΔΩ, thanks to 

a coasting transference orbit, converging in only six 

iterations, as seen clearly in Δ element, Fig. 11. The 

program launches the successive manoeuvre strategy to 

reach with higher precision the searched target. The 

satellite only needs to perform 20 manoeuvres, with a 

total ∆𝑉 = 14.452 m/s. Finally, the follower satellite 

orbit with manoeuvres is propagated and the results are 

generated, Table 2, showing the follower satellite 

accurately injected in a 100 km inter-distance position 

from the leader satellite as per Fig 12. 

 

 

Leader-Follower Formation SK 

 

Once the formation is established, it is needed to 

perform station-keeping manoeuvres from time to time. 

The algorithm of SK formation works similarly to 

injection one, but with an extra first step: It identifies 

when the follower satellite orbit goes outside the 

threshold “tube” around the target orbit that it is driven 

by the leader satellite. The initial condition of this test is 

the output of the previous injection test. The thresholds 

were set to 5 km in along-track, and 0.25 km maximum 

in radial and cross distances. 

 

At the initial moment, both satellites are in formation, 

where the Follower satellite is placed ahead of the 

Leader. To understand the results, as explained before, 

due to the differences in 𝐶𝑏, the Follower satellite 

experiences more drag than the Leader satellite. With a 

decrease of the semi-major axis, the Follower satellite 

started to get away from the Leader. At some point, the 

inter-satellite distance reaches the maximum allowed 

threshold (5km), so will be necessary to perform a SK 

manoeuvre, Fig. 13. For additional SK optimization, the 

target will not be the centre of the tube. The optimal 

point presented, Table 3, allows the satellite to 

maximize the time inside the SK window. The algorithm 

only needs 4 manoeuvres with a total ∆𝑉 = 0.1664 m/s. 

 

Table 3. Target relocation modification to optimize SK. 

 

 Target Modification 

Δ𝑎0 (𝑚) 10.79473 

Δu0(deg) 0.01643 

 

The results, Fig. 14, clearly demonstrate the successful 

SK cycle. More importantly, it illustrates how the 

follower satellite takes advantage of the difference in the 

natural drag, for inducing a parabolic evolution of the 

Argument of Latitude. The manoeuvre maximizes the 

time within the SK window without requiring extra 

manoeuvres. This approach significantly aids in 

minimising fuel consumption. 
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Fig. 13 Composed RTN plot, where SK is performing 

showing the evolution between components. 
 

 
Fig. 14 Along distance – Time plot, where SK is 

performing centred on 100 km with 5 km threshold. 
 

 

B. Other Formation strategies. Results. 

 

For the rest of the formations, the same properties and 

initial conditions as explained in Leader-Follower are 

assumed. First, an initial relocation for formation 

injection is performed. Later, multiple SK sequences can 

be done. First, could be similar to the pure Leader-

Follower formation, but with different manoeuvring 

results in order to inject according to the selected type 

and orbital parameters. But SK results are especially 

interesting because they show the formation behaviour 

and the “dance” between both satellites. 

 

Cartwheel Formation SK 

 

To establish a cartwheel formation, during the injection, 

a modification of the direction of the eccentricity vector 

was applied, a oppose perigee δ𝜔=180º is incorporated. 

After injection, the formation was achieved. 

 

The direct results show an interesting orbital trajectory 

from the Follower satellite over the leader reference 

satellite, Fig. 15. The cartwheel formation’s response to 

orbit perturbations presents consistent J2 secular effects 

across both satellites. This common influence involves 

the precession of ascending nodes, affecting each 

satellite uniformly. That throws an interesting 

cylindrical pattern. 

 
Fig. 15 Composed RTN plots, where SK is performing 

showing the evolution in Cartwheel strategy. 
 

However, after some days, the inter-satellite distance 

starts to oscillate and must be corrected. That happens 

because of incredible variations in the argument of 

latitude behaviour (out of frozen orbit) and drag 

differences. If the trajectory is not corrected, the paths 

of the satellites could intersect, raising the risk of 

potential collisions.  

 

Pendulum Formation SK 

 

The pendulum formation is generated by a difference in 

Ω to achieve a non-zero cross-track component as well 

as a difference in mean anomaly to avoid the risk of 

collision between the two satellites. For this test case, 

the variations applied are δ𝑢=-0.5º and δΩ=1º. 

 

 
Fig. 16 Composed RTN plots, where SK is performing 

showing the evolution in Pendulum strategy. 
 

The orbital simulated result between the two satellites, 

Fig. 16, exhibits a pendulum-like behaviour in the 

radial-cross plot comparative, while an eight-figure 

trajectory is drawn in the along-cross plot. Notably, the 

inter-satellite distance experiences an initial decrease in 

the first days followed by an increasing trend. Multiple 

SK manoeuvres must be performed to keep the 

formation. 
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Helix Formation SK 

 

The Helix formation strategy resembles a safety ellipse 

movement elaborated by two synchronized satellites. To 

effectively execute this strategy, we need precise 

adjustments between the follower and leader, with a 

δΩ=0.5º shift., a opposite perigee δ𝜔=180º, and δ𝑢=-

0.5º in the argument of latitude to avoid collision risk. 

 

 
 

Fig. 17 Composed RTN plots, where SK is performing 
showing the evolution in Helix strategy. 

 

The evolution of this formation closely parallels the 

pendulum mixed with cartwheel formation. The plot 

throws a notable distinction in the radial-along track 

plot, Fig. 17. The time evolution shows an inter-satellite 

oscillation-like cartwheel formation in different “radial” 

circumferences. Also, in the along-cross plot, an “eight-

figure” trajectory, is reminiscent of the helix strategy. In 

radial-cross, an inherited “pendulum” is visible from the 

last proposed strategy. 

 

IV. CONCLUSIONS 

A new operational algorithm has been successfully 

implemented and integrated inside GMV’s Flight 

Dynamics product Focussuite, called FAMA. GMV’s 

flight-proven solution is now able to compute the 

necessary manoeuvres to acquire and maintain different 

formation flying strategies such as pure leader-follower, 

cartwheel, pendulum, and helix. Each of them with 

successful results and for different applications. These 

strategies are useful for several future missions and 

increase the flexibility of Focussuite to be able to 

operate any kind of mission. 
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