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Abstract

This paper introduces a convex formulation
to the problem of impulsive station keep-
ing via a semi-infinite program with an infi-
nite number of constraints and a finite num-
ber of optimization variables. The latter is
achieved by fixing a grid of possible burn
dates and linearizing the effects of the ve-
locity discontinuities, which is a weaker as-
sumption than a linearization of the dif-
ferential equations. Furthermore, by rely-
ing on automatic differentiation, the pro-
posed implementation is able to emulate
all the usual orbital perturbations, mak-
ing for rather high-fidelity guidance trajec-
tories. The semi-infinite problem itself is
solved iteratively by considering a sequence
of linear programs, whose dimension re-
mains tractable. The overall approach is il-
lustrated on geosynchronous station-keeping
scenarios and several perspectives are pro-
posed for its extension.

I INTRODUCTION

In the context of a satellite mission, station keep-
ing, also known as orbit maintenance, consists in
actively remaining close to a reference trajectory,
considered as nominal for its operation. It is re-
quired as many external forces can make a space
object drift from its planned path, which is often

calculated with simplified or idealized models, and
maneuver plans must be regularly updated as new
orbit determinations come in. This paper focuses
on impulsive control, that is instantaneous changes
of the velocity vectors, a common idealization for
burns performed with high-thrust propulsion. Al-
though nowadays the latter tends to be replaced by
low-thrust, electric engines that consume less pro-
pellant, it is still widely utilized and thus remains
relevant when simulating the global orbital environ-
ment. Moreover, impulsive maneuvers can in many
cases be a good approximation or guess for their
finite counterpart, making their fast and accurate
computation a valuable tool in mission analysis and
design.

Generally speaking, station keeping falls into the
domain of optimal control [13]. The performance
index usually represents fuel consumption, for its
minimization maximizes the life expectancy of the
satellite. With impulsive control, it reads as the
sum of some norm of the velocity jumps, depending
on the thrusters’ configuration [11]. Station keep-
ing conditions themselves translate the proximity
to the nominal orbit and have multiple possible for-
mulations depending on the choice of coordinates,
typically in the form of inequalities. They ideally
apply continuously along the whole trajectory and
thus belong to the category of path constraints [2].
For local solving techniques, often the latter are
too complex to be approached via so-called indirect
methods, such as the ones based on the Pontrya-
gin Maximum Principle, and are instead tackled



directly, that is by discretization of both the vari-
ables and the time horizon before solving for op-
timality conditions [13]. This calls for a trade-off
between dimension of the problem and relaxation
of the original constraints. Moreover, in general,
this finite set of inequalities does not have any par-
ticular properties, meaning that the problem falls
into the generic realm of non-linear programming,
with no guarantee of convergence or even of global
optimality.

Historical approaches to station keeping, when
calculations were very limited on board and had
to be performed on the ground with not so power-
ful computers, often put aside numerical optimiza-
tion altogether and used instead heuristics [3, 12],
by nature simplified and lacking generality. More
recently, low-thrust propulsion has offered a new
paradigm for space trajectory design. As a conse-
quence, high-thrust maneuvers have been less re-
searched, especially for geostationary orbits, de-
spite the fact that even the so-called impulsive
model can still provide fast and insightful results.
This paper introduces a tracktable approach to
impulsive station keeping via convex Semi-Infinite
Programming [10], that to the best of the authors’
knowledge has not been previously explored in the
literature. The dynamics is very generic as it does
not make any particular assumption on the orbital
perturbations considered, as long as curvilinear co-
ordinates at any epoch can be linearized with re-
spect to previously performed velocity jumps. The
reference for linearization is important because un-
like some approaches dealing with several perturba-
tions [7, 5], it is not the equations of motion them-
selves that are approximated, but their solution
around the non-maintained trajectory, thanks to
automatic differentiation. In practise, with the SIP
approach and the choice of the 1-norm as delta-V
cost, the actual optimization is achieved by solving
a sequence of linear programs, whose dimensions
remain manageable. Moreover, the convex formu-
lation comes with convergence and global optimal-
ity properties. Following the present introduction,
Section II describes the methods involved. Section
III explains the practical implementation, leverag-
ing on open-source software such as the astrody-
namics library Orekit, and showcases geostationary
applications, before the conclusion.

II OPTIMIZATION

A Formulation with curvilinear co-
ordinates

Let [t0, tf ] be the time interval on which Station
Keeping (SK) maneuvers are to be computed. Let
N be the fixed number of possible, instantaneous
burns, at dates t0 ≤ t1 < t2 · · · < tN ≤ tf and with
jumps ∆v1, . . . ,∆vN ∈ R3 written in some local
frame, attached to the satellite. Considering six
thrusters all mounted orthogonally to each other
in this frame (rather than a single, gimbaled one),
the total Delta-V, chosen as the cost function, is∑

i ∥∆vi∥1 (the sum of their 1-norm rather than of
their 2-norm) [11]. Although this does not neces-
sarily represent truthfully every SK scenario, it still
offers the perspective of a relatively low

∑
i ∥∆vi∥p,

for any p as these norms are all equivalent from a
topological point of view. The mathematical ben-
efit of the choice p = 1 shall be made clearer later
on. To express the orbital proximity with respect
to (w.r.t.) the reference, let us use the so-called
curvilinear coordinates (δr, δθ, δϕ) [4], which are in-
terpretable as differences in spherical coordinates
defined around the nominal orbital plane. Because
the first two, in-plane components are strongly cou-
pled from a dynamical point of view, the radial
inequality can be dropped for near-circular refer-
ences, although nothing dictates it from a mathe-
matical point of view. In this case, the orbit main-
tenance conditions can be written as:

|δθ(t)| ≤ ∆̄θ, |δϕ(t)| ≤ ∆̄ϕ ∀t ∈ [t0, tf ], (1)

where ∆̄θ, ∆̄ϕ > 0 are the SK bounds. It is
worth noticing that in Geostationnary Earth Or-
bit (GEO), the nominal orbit is a purely Keple-
rian, idealized one which is basically equatorial and
circular, meaning that the aforementioned bounds
are the dimension of the so-called dead-band box in
longitude and latitude respectively [7]. That, and
the good behaviour with linearized motion, make
the curvilinear coordinates a very interesting choice
of coordinates. Let us now write a tentative formu-



lation of the SK problem:

min
ti,∆vi

N∑
i=1

∥∆vi∥1

s.t. ∀t ∈ [t0, tf ],

|δθ(t)| ≤ ∆̄θ,

|δϕ(t)| ≤ ∆̄ϕ,

(2)

where δθ and δϕ depend on the optimization vari-
ables through a coordinate transformation on the
result of the integrated equations of motion (that
can be different for the reference and actual tra-
jectories, in particular they can be idealized for
the former). Note that one can consider additional
constraints, such as a bound ∆̄Vi of each compo-
nent of a velocity jump i.e. ∥∆vi∥∞ ≤ ∆̄Vi for
all i = 1, . . . , N , or even a terminal constraint, for
example imposing a specific angular position at tf .
Let us now rework Problem (2) to make it more
tracktable.

B Towards convexity

Let us start by fixing the values of t1, . . . , tN , for
example uniformly on [t0, tf ]. If N is large enough,
it seems reasonable that this simplification does
not introduce much loss. If some operational con-
straints, such as working hours, weight on the pos-
sible dates of burn, they can be incorporated indi-
rectly in the design of this grid. As the next step,
let us perform a linearization of the constraints.
For that purpose, let us simply use the gradients

∇iθ(t) = ∂δθ(t)
∂∆vi

and ∇iϕ(t) = ∂δϕ(t)
∂∆vi

evaluated
at 03 = (0, 0, 0) for all i = 1, . . . , N . In other
words, the effects of the past velocity jumps on the
curvilinear coordinates are approximated at first-
order around the uncontrolled case of no disconti-
nuities. Note that it does not require linearizing the
equations of motion and more details will be given
on the actual computation in Section III. Let us
denote with a hat the curvilinear coordinates ob-
tained when ∥∆v1∥1 = · · · = ∥∆vN∥1 = 0. The

new SK problem writes as follows:

min
∆vi

N∑
i=1

∥∆vi∥1

s.t. ∀t ∈ [t0, tf ],∣∣∣∣∣δθ̂(t) +
N∑
i=1

∇iθ(t)(03)∆vi

∣∣∣∣∣ ≤ ∆̄θ,∣∣∣∣∣δϕ̂(t) +
N∑
i=1

∇iϕ(t)(03)∆vi

∣∣∣∣∣ ≤ ∆̄ϕ.

(3)

Problem (3) is a so-called Semi-Infinite Program
(SIP) as it has a discretely-defined cost function but
continuously-defined (on an interval) constraints.
Note that the latter can be rewritten as a single,
scalar inequality as ∥c(t,∆v1, . . . ,∆vN )∥∞ ≤ 1 for
all t ∈ [t0, tf ], where:

c =

(
1

∆̄θ

{
δθ̂(t) +

N∑
i=1

∇iθ(t)(03)∆vi

}
,

1

∆̄ϕ

{
δϕ̂(t) +

N∑
i=1

∇iϕ(t)(03)∆vi

})
.

(4)

Problem (3) is also convex, by virtue of the triangle
inequalities satisfied by ∥.∥∞ and ∥.∥1. The fact is
that such a convex SIP can be solved at arbitrary
precision via an iterative process described in [10]
and reported in Algorithm 1. It has been already
used in space trajectory optimization [1, 6], but
apparently only in indirect optimal control i.e. in-
volving the so-called adjoint variables. The theory
of SIP in general seems little known or used in this
domain.
In short, the principle of Algorithm 1 is that by
working with a dynamical, finite time grid Ω where
to impose the path constraints, it is possible to
get arbitrarily close to the optimal solution. The
rules defining the set update can vary: here, it
is a simple addition of the time where the con-
straints are the least respected. In practice, one
uses a thin grid to compute the argmax. As for the
minimization problems to be solved in each itera-
tion, they can be cast as Linear Programs (LPs)
after the introduction of so-called slack variables:
∆v±

i ≥ 0 (component-wise inequality) such that
∆vi = ∆v+

i − ∆v−
i . Each minimization problem



Algorithm 1 Iterative solving process of convex
SIP
Require: ε > 0
Require: jmax ∈ N

j ← 0
Ω← {t0, tf}
∆v∗

1, . . . ,∆v∗
N ← argmin∆vi

∑
i ∥∆vi∥1

s.t. c(t,∆v1, . . . ,∆vN ) ≤ 1 ∀t ∈ Ω
τ ← argmaxt∈[t0,tf ]

c(t,∆v∗
1, . . . ,∆v∗

N )
while c(τ) ≥ 1 + ε and j ≤ jmax do

j ← j + 1
Ω← Ω ∪ {τ}
∆v∗

1, . . . ,∆v∗
N ← argmin∆vi

∑
i ∥∆vi∥1

s.t. c(t,∆v1, . . . ,∆vN ) ≤ 1 ∀t ∈ Ω
τ ← argmaxt∈[t0,tf ]

c(t,∆v∗
1, . . . ,∆v∗

N )
end while

in Algorithm 1 is then equivalent to:

min
∆v+

i ,∆v−
i

N∑
i=1

(
∆v+

i,x +∆v−
i,x +∆v+

i,y+

∆v−
i,y +∆v+

i,z +∆v−
i,z

)
s.t.∆v±

i ≥ 0,

∀t ∈ Ω,

δθ̂(t) + Σ∇iθ(t)(03)(∆v+
i −∆v−

i ) ∈ [−∆̄θ, ∆̄θ],

δϕ̂(t) + Σ∇iϕ(t)(03)(∆v+
i −∆v−

i ) ∈ [−∆̄ϕ, ∆̄ϕ].
(5)

One of the practical advantages of the dynamical
grid is that is expected to remain sparse, meaning
that the LPs are relatively small in size and thus
efficiently solved via classical algorithms e.g. the
simplex. Note that using the 2-norm instead of the
1-norm would lead to a cone program inplace of a
linear one, via the introduction of different slack
variables, but that case is left out of the scope of
this paper.

C Extension without modelling gap

So far, the linearization of the constraints has been
done around vanishing impulses. Depending on
tf − t0, ∆̄θ, ∆̄ϕ as well as the initial conditions
of both actual and reference trajectories, the cor-
responding approximation can eventually become
poor. The discrepancy is expected to lower by per-
forming a sequence (indexed by k ∈ N) of lineariza-

tions, around the previously found values for the ve-

locity jumps ∆v
(k)
i , each time solving a SIP, until

the differences y
(k)
i = ∆v

(k+1)
i −∆v

(k)
i are deemed

small enough. More precisely, the problems consid-
ered are (before the introduction of slack variables):

min
y
(k)
i

N∑
i=1

∥y(k)
i ∥1

s.t. ∀t ∈ [t0, tf ],∣∣∣∣∣δθ̂(t) +
N∑
i=1

∇iθ(t)(∆v
(k)
i )y

(k)
i

∣∣∣∣∣ ≤ ∆̄θ,∣∣∣∣∣δϕ̂(t) +
N∑
i=1

∇iϕ(t)(∆v
(k)
i )y

(k)
i

∣∣∣∣∣ ≤ ∆̄ϕ.

(6)

Note that, as in general ∥∆v
(k+1)
i ∥1 ≤ ∥∆v

(k)
i ∥1 +

∥∆v
(k+1)
i −∆v

(k)
i ∥1, the cost function in Problem

(6) is sub-optimal regarding the total Delta-V, but
it is deemed satisfying as only small corrections are
expected at this stage. It is worth mentioning that
between the first and the second linearization, the
grid for possible maneuvers can be pruned by only
keeping the non-zero impulses obtained, thus mak-
ing for smaller dimension in the subsequent LPs.
As a matter of fact, the actual velocity increments
taken as input for the first occurrence of Problem
(6) could originate from any initial guess, not just
the output of Algorithm 1.

III STUDY CASES

A Implementation

As is apparent from Section II, the timely compu-
tation of some first-order partial derivatives w.r.t.
the control is paramount for the realization of the
approach. For a given impulse ∆vi at time ti, the
vector function to be differentiated is the composi-
tion of two sub-functions: first a propagation block
that maps the spacecraft position-velocity vector
x = (p,v) from initial conditions (p0,v0) at t0
to an epoch t and then a transformation module
computing from p(t) the angular part (δθ, δϕ)(t)
of the curvilinear coordinates w.r.t. the reference.
The latter is a rather simple coordinate conversion
and its Jacobian matrix can be obtained straight-
forwardly by hand. As for the former, its is iden-
tically null when t < ti as the maneuver has not



happened yet. When t ≥ ti, assuming that there
is no non-gravitational forces or simply neglecting
the decreasing mass in the dynamics, it comes from
the chain rule of derivation that:

∂x(t)

∂∆vi
=

∂x(t)

∂x(ti)
.
∂x

∂v
(x(ti)) (7)

On the right-hand side of Eq. (7), only the term
∂x(t)
∂x(ti)

is not trivial to evaluate. In order to calculate

it, let us do the following manipulation (still based
on the chain rule):

∂x(t)

∂x(ti)
=

∂x(t)

∂x0
.
∂x0

∂x(ti)

=
∂x(t)

∂x0
.

(
∂x(ti)

∂x0

)−1 (8)

Terms in the form of ∂x(.)
∂x0

are so-called state transi-
tion matrices associated to the propagation initial-
ized at t0. Here, they are computed via the combi-
nation of Automatic Differentiation (AD) and nu-
merical integration with dense output, as imple-
mented within the propagation routines of Orekit
12.0 [8], which also features a wide range of orbital
perturbations. Although this open-source library
offers via its dependency Hipparchus an LP solver,
it was preferred here to use for that purpose a faster
one, from Google’s OR-tools suite [9].
As mentioned in Section II, there is no need to lin-
earize the equations of motion themselves, as is of-
ten done (see for instance [7]). Although it would
de facto lead to a linear propagation map easy to
differentiate, it would also come with a dynamical
model discrepancy that is correlated on the choice
of dependant variables and that can potentially
grow large, especially as it starts diverging right
from t0. Linearizing w.r.t. the impulses does not
suffer these caveats and as such introduce fewer in-
trinsic errors. Note that the extension based on (6)
uses repeated linearizations (hence propagations)
to lift the modelling gap completely.

B Applications

In GEO, the in-plane disturbance essentially comes
from the tesseral part of the geopotential, domi-
nated by the C22 harmonics coefficient and moti-
vating so-called East-West (EW) maneuvers. On
the other hand, the main out-of-plane perturba-
tions are due to the Sun and Moon gravity, and

possibly the solar radiation pressure depending on
the area-to-mass ratio. They create the need for so-
called North-South (NS) SK. Note that in an op-
erational context, maneuvers are recomputed reg-
ularly as orbit determination results come (within
a timescale of a few days or so), while for mission
design or situational awareness purposes it is use-
ful to predict them over extended periods of time
(months or years).

B.1 Example without solar radiation pres-
sure

For this scenario, the assigned longitude is 50 deg
East in the Greenwich True Of Date (GTOD)
frame, with a dead-band of 0.1 deg. It is assumed
that the satellite starts exactly at the center. SK
is sought over 15 days, from 2021, March 3rd at
00:00:00.000 Coordinated Universal Time (UTC).
The possible burns are spread uniformly every 12
hours, while the size of the dense grid for path
constraint checks has 12 points per day. The or-
bital perturbations taken into account are purely
gravitational in nature, namely a 6x6 geopotential
and lunisolar effects. Propagation is fully numeri-
cal and performed with a Runge-Kutta 4 integra-
tion scheme, with a step of 864 seconds, using as
dependent variables Cartesian coordinates in the
Geocentric Celestial Reference Frame (GCRF).
A single LPs is enough to reach convergence with
ε = 0.1% of the dead-band. The angular trajec-
tory is depicted on Figure 1. The longitude and
latitude over time are shown on Figure 2. Table 1
gives the following information about the maneu-
vers: elapsed time since t0 and components in the
Radial Transverse Normal (RTN) frame. There is
a single, tangential burn: it is performed right at
the start and its effects are such that the satellite
is about to exit the box (by violating the upper
bound on longitude) at the final date. It is also
worth comparing the size of the LP solved here to
a brute-force approach that would incorporate in-
stead of just 2 dates the whole dense grid made of
15 × 12 = 180 points. As its size increases or the
number of possible maneuvers does, the brute-force
method becomes impractical well before Algorithm
1 does.



Figure 1: Angular trajectory within the constraint
box for Example 1

Figure 2: Longitude and latitude over time for Ex-
ample 1

Time (days) R (m/s) T (m/s) N (m/s)
0.0 0.000 0.130 0.000

Table 1: Burns’ details for Example 1

B.2 Example with solar radiation pressure

This scenario is identical to the previous one, ex-
cept for the consideration of Solar Radiation Pres-
sure (SRP) with the satellite assumed to be a
sphere, with an area-to-mass ratio of 0.04 m2/kg
and a reflectivity coefficient of 1.4.
Algorithm 1 requires 2 LPs and gives the impulse
reported in Table 2, very similar to Example 1, yet
with a slight improvement of almost 1 cm/s, show-
ing how the optimization is able to leverage on the
perturbations. The trajectory is depicted in Figure
3 and varies somewhat from the previous case, still
touching the box, but not at final time.

Time (days) R (m/s) T (m/s) N (m/s)
0.0 0.000 0.122 0.000

Table 2: Burns’ details for Example 2

Figure 3: Angular trajectory within the constraint
box for Example 2

B.3 Example over a month

This scenario is identical to the Example 1, except
for the control duration which is now 30 days.
Algorithm 1 requires 11 LPs to converge, but the
solution violates both the longitude and latitude
constraints due to the approximation from lineariz-
ing around zero-normed impulses. So the exten-
sion proposed in Section C is used here instead and
gives the control reported in Table 3 after the sec-
ond linearization. The results only differ on the
first Delta-V, by less than 1 mm/s. The overall
strategy is a mix of EW and NS burns, costing re-
spectively 0.190 and 0.148 m/s. Note that since
the last two maneuvers are separated by only half
a day and are in opposite, out-of-plane directions,
they basically have the same effect on the orbit and
could be merged into a single one.

Time (days) R (m/s) T (m/s) N (m/s)
0.0 0.000 0.107 0.000
5.0 0.000 0.016 0.000
8.5 0.000 0.067 0.000
29.0 0.000 0.000 0.054
29.5 0.000 0.000 -0.094

Table 3: Burns’ details for Example 3



Figure 4: Longitude and latitude over time (red
marks are burns’ dates) for Example 3

B.4 Extrapolation over a year

As illustrated by the previous example, a single lin-
earization can provide accurate estimation of fuel
consumption, even if its solution does not satisfy
the constraints anymore after a while. In this ex-
ample, it is used to predict the Delta-V budget
for 365 days. Initial conditions are taken from [7],
witht the satellite at the center of a 0.1 or 0.01 deg
dead-band box at longitude 60 deg East on January
1st, 2010. The object is assumed to have a mass
of 4500 kg with a reflective coefficient of 1.3 and a
cross section for SRP of 300 m2. Orbital perturba-
tions are the same as for Example 2, except for the
geopotential which is now 3x3. Possible dates for
maneuvers are evenly spread every 8 hours and the
dense grid for constraint checks has 12 points per
day. Algorithm 1 leads to extended computation
time as points are added one by one and many LPs
need to be solved. It has thus been adapted for
this particular case, following lines from [6]. The
modified version removes dates where constraints
are respected with some marging whilst adding at
once the ones where they are violated, decreasing
drastically the number of LPs.
The optimal cost is reported in Table 4, along with
values from [7]. The latter have been obtained for
finite-thrust control, with a magnitude of 0.1 N.
Moreover, the optimization is based on a quadratic
cost function rather than the total Delta-V and uses
a receding horizon approach, with the equations of
motion being linearized several times. The con-
sumptions only differ by a few meters per second,
with coherent individual budget for both NS and
EW station keeping.

Delta-V (m/s) Solution Reference [7]
EW 7.12 - 12.66 10.99 - 13.95
NS 49.53 - 57.64 58.40 - 63.42
Total 56.65 - 70.29 69.39 - 77.40

Table 4: Delta-V budget for Example 4 with dead-
band of 0.1 deg (left) versus 0.01 deg (right)

IV CONCLUSIONS

This paper has presented a novel approach to im-
pulsive station keeping, carefully choosing the for-
mulation of the mathematical constraints to bene-
fit from convexity properties via semi-infinite pro-
gramming and to limit model approximations. In
practise, it requires two main capabilities: lineariz-
ing the propagation map w.r.t. impulses, which is
done here with the open-source library Orekit, and
solving linear optimization problems. The method
has been applied to several scenarios of station
keeping in geostationary orbit with high-fidelity
propagation models.

Future work includes the addition of radial con-
straints, enabling direct control of altitude, prefer-
able for station keeping in Low Earth Orbit. An in-
teresting perspective would also be to adapt the for-
mulation to non-impulsive burns, in order to con-
sider low-thrust propulsion.
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