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Abstract – Autonomous navigation is a key 

requirement to expand the scientific return of the 

future space exploration missions. Novel guidance, 

navigation, and control systems are currently under 

development to support a precise reconstruction of 

the spacecraft trajectory through a combined 

processing of multi-sensor datasets. A joint analysis 

of ground-based radio-tracking data and image-

based measurements, for example, can improve the 

estimation of the spacecraft trajectory by providing 

additional constraints based on the detection and 

tracking of relevant surface features (e.g., craters). 

Numerical simulations based on a lunar orbiter are 

presented in this work to investigate the attainable 

accuracies of the proposed data-fusion orbit 

determination approach. 

 

I. INTRODUCTION 

A precise reconstruction of the spacecraft trajectory is a 

key requirement to accomplish the challenging mission 

scientific tasks, and advanced data-fusion techniques are 

currently under development to enhance the orbit 

determination (OD) operations of the next-generation 

robotic probes. A combined processing of different data 

types, including radiometric [1], altimetric, and imaging 

data [2], can indeed enable an improved estimation of 

the spacecraft trajectory compared to solutions based on 

radio tracking data only. 

Imaging data provide crucial information to better 

constrain the spacecraft position in the along- and 

across-track directions through the detection and 

tracking of features displaced across the surface of the 

target body (e.g., craters). Since imaging data can be 

directly processed onboard (i.e., independently from the 

ground operators), they are well suited to support highly 

risky operations (e.g., pinpoint landing), as recently 

demonstrated by JAXA’s SLIM (Smart Lander for 

Investigating Moon) mission that landed on the Moon in 

January 2024. A key objective of the mission was to use 

a novel optical navigation (OpNav) technology to enable 

a pinpoint landing of the robot to a desired target 

location on the Moon [3]. An accurate localization of the 

lander was retrieved throughout the descent phase by 

establishing correspondences between the craters 

detected in the images acquired by the camera and 

reference crater maps stored on the onboard computer, 

leading to landing accuracies better 100 m. Craters are 

also key to provide a first-guess estimate of the 

spacecraft state in case of lost-in-space scenarios, by 

matching patterns of craters between the image and an 

onboard catalogue [4-5]. In case an accurate catalogue 

of surface features is not available, other surface features 

can be detected, and their locations estimated, to retrieve 

auxiliary image-based measurements to enable deep-

space navigation operations. As an example, a 

navigation scheme based on image data only has been 

proposed to enable autonomous approaching operations 

to unknown small bodies [6]. 

A joint analysis of optical and radiometric data has been 

used to support the orbit determination operations for 

spacecraft orbiting small bodies, such as the Dawn 

mission at Vesta, where an advanced feature extraction 

and matching process based on maplets was used to 

obtain auxiliary image-based measurements to constrain 

the spacecraft trajectory in the along- and across-track 

directions [7]. For missions devoted to the exploration 

of larger-sized bodies, such as moons or planets, 

however, a joint processing of imaging and radio-

tracking data has not been fully explored yet. 

Nevertheless, a refined reconstruction of the trajectory 

of a planetary orbiter could support an improved 

estimation of key geophysical parameters. Data-fusion 

approaches are then key to expand the scientific return 

of the future exploration missions. 

In this work, we preliminarily investigate an orbit 

determination approach based on the joint processing of 

radiometric and imaging data. To test and validate the 

data-combination scheme and the image processing 

algorithms, thorough numerical simulations were 

carried out based on a probe in a low-altitude orbit 

around the Moon. In the following sections, a detailed 

description of the algorithms used to tackle the 

automatic crater detection and matching is provided. 

After describing the orbit determination scheme and the 

synthetic environment used to carry out the numerical 

simulations, we present preliminary results of attainable 

trajectory reconstruction accuracies through the 

implemented multi-sensor orbit determination 

approach. 

 

II. DATA AND METHODS 

A. Precise Orbit Determination 

Precise orbit determination (POD) is the process of 

estimating the spacecraft motion relative to the orbited 
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body. The spacecraft dynamics and measurements 

models are described by highly nonlinear equations, 

which are affected by errors. An iterative least-squares 

estimation filter is then used to adjust the model 

parameters to minimize the discrepancies between the 

data collected by the spacecraft (i.e., observed data) and 

those predicted through the mathematical models (i.e., 

predicted data) [8]. At each iteration, the partial 

derivatives of the measurements with respect to the state 

estimation vector are computed to retrieve the 

corrections 𝛿𝒙 to the model parameters, as: 

 

  𝛿𝒙 = (HTWH + P̅−1)−1(HTW𝒚 + P̅−1𝒙0) (1) 

 

where 𝒙0 and  P̅ are the a priori state deviation vector 

and covariance matrix, respectively; H is the 

observation-state mapping matrix; 𝒚 is the observation 

residual vector; and W is the (diagonal) measurement 

weighting matrix. The multi-sensor orbit determination 

approach investigated in this study is based on a 

combined processing of radio tracking and optical data. 

To retrieve a minimum variance estimation of the state 

parameters, each measurement included in the 

estimation filter is weighted based on the expected 

measurement noise (Sec. III). At each iteration, the 

model parameters are updated according to the retrieved 

corrections. Once convergence is declared, the 

covariance matrix associated with the estimated state 

parameters (at the reference epoch 𝑡0) is retrieved as: 

 

 P(𝑡0) = (HTWH + P̅−1)−1 (2) 

 

By using the state transition matrix 𝛷(𝑡, 𝑡0), the 

covariance matrix can be mapped out to time t as: 

 

 P(𝑡) = 𝛷(𝑡, 𝑡0)P0𝛷T(𝑡, 𝑡0) (3) 

 

To model the optical measurements and the associated 

residuals, different approaches have been proposed in 

the literature. In this work, the following approach is 

used. First, craters are extracted from the collected 

images by using a machine learning-based approach 

(crater detection). For each detected crater, its diameter 

and center are estimated. Next, known craters from an 

onboard database are back projected onto the image 

plane according to the current estimate of the 

spacecraft’s position and attitude (crater re-projection). 

Correspondences between detected and catalogue-

projected craters are then established by using an 

approach based on the geometrical properties of crater 

patterns (crater identification or matching). For each 

pair of matched craters, row and column pixel 

displacements are computed between the centroid of the 

extracted crater and the projected centroid of the 

corresponding crater from the catalogue. In the 

following sections, an in-depth description of each step 

of the pipeline is provided. 

B. Observed optical measurements 

An accurate and autonomous detection of relevant 

surface features for navigation purposes is a key and 

challenging task. The increased maturity of machine 

learning techniques makes them suitable for space 

applications. To extract craters from the images 

collected by the camera, we adopted in this study a 

supervised transfer learning approach, where a pre-

trained object detector - based on the YOLO architecture 

- is re-trained on a custom dataset (that includes ground 

truth (GT) labels and images) to learn the new crater 

detection task. Once the training process is completed, 

given an image as input, the network generates 

rectangular bounding boxes around candidate crater 

locations in the image, and assigns a confidence value to 

each detection. A bounding box is defined by the four-

dimensional vector (𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ), where (𝑥𝑐 , 𝑦𝑐) are the 

column and row coordinates of the center of the box, and 

𝑤 and ℎ are its width and height, respectively. For each 

detection, an estimate of the crater diameter (in pixel) is 

retrieved as an average of the dimensions of the box, as 

𝑑 = (𝑤 + ℎ)/2. 

A supervised training approach requires the definition of 

a GT dataset that includes images and associated labels 

(Fig. 1). The image dataset is retrieved by extracting 

512×512 px image patches from a high-resolution (i.e., 

128 px/deg) global mosaic of the lunar surface that is 

reported in a cylindrical map projection [9]. For each 

extracted tile, we defined GT labels (i.e., bounding 

boxes) according to the information reported in the 

crater catalogue by Wang et al. [10] that, for each crater, 

defines the geographic coordinates of its center 

(𝑙𝑜𝑛, 𝑙𝑎𝑡), and the estimated crater diameter 𝐷 (in 

metric units). Given a specific crater, the bounding box 

parameters are retrieved based on the mosaic map-

projection as: 

 

 𝑥𝑐 = (𝑙𝑜𝑛 𝑅𝑀 − 𝑥𝑈𝐿)/ℎ𝑅𝐸𝑆 (4) 

 

 𝑦𝑐 = (𝑙𝑎𝑡 𝑅𝑀 − 𝑦𝑈𝐿)/𝑣𝑅𝐸𝑆 (5) 

 

 𝑤 = 𝐷/(ℎ𝑅𝐸𝑆 cos(𝑙𝑎𝑡)),   ℎ = 𝐷/𝑣𝑅𝐸𝑆 (6) 

 

where (𝑥𝑈𝐿 , 𝑦𝑈𝐿) are the map-coordinates of the top left 

corner of the mosaic; ℎ𝑅𝐸𝑆 and 𝑣𝑅𝐸𝑆 are the horizontal 

and vertical mosaic pixel resolution, respectively; and 

𝑅𝑀 is the reference Moon’s radius adopted in the mosaic 

map-projection. Note that the (𝑙𝑜𝑛, 𝑙𝑎𝑡) parameters 

 
Fig. 1. Image patches extracted from the global 
mosaic and associated ground truth labels (i.e., red 
bounding boxes). 
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should be expressed in radians. 

Due to map projection adopted for the mosaic, increased 

distortion effects are induced moving towards the poles. 

As a result, bounding boxes defined about craters at 

higher latitudes are characterized by large values of the 

aspect ratio that are not representative of the observation 

geometries accounted for in our numerical simulations, 

where a nadir-looking camera is considered. To enable 

a proper training of the network, we only extracted tiles 

from latitudes between −40° ≤ 𝑙𝑎𝑡 ≤ 40°. The entire 

dataset, which accounted for more than 1500 images, 

was then split into train and validation datasets by using  

a 75:25 split ratio. Moreover, because the mosaic is 

characterized by almost uniform “Sun-from-left” 

illumination conditions (see Fig. 1), a post-processing of 

the GT dataset was carried out by randomly horizontally 

flipping and/or rotating the images by ±90° (the labels 

were modified accordingly), making the network more 

robust to handle different illumination conditions. 

Although being trained on a dataset based on real 

images, the crater detector is also able to extract craters 

from synthetic images of the lunar surface (Fig. 2). The 

images are generated by using a software pipeline 

implemented in Blender, which allowed us to retrieve 

high-fidelity images that are consistent with the 

observation geometries accounted for in our numerical 

simulations. For each image acquisition, a mesh 

representing the observed lunar surface is created and 

loaded in Blender’s workspace. Next, the scene is 

rendered by using the built-in Blender’s path-tracing 

rendering engine according to the camera pose and the 

illumination conditions. Custom reflectance models 

have also been implemented to better represent the 

photometric behavior of the lunar regolith [11]. 

 

C. Predicted optical measurements  

Optical residuals are computed by establishing 

correspondences between the craters detected in the 

image and those listed in the onboard catalogue. In this 

work, a perspective distortion-free (pinhole) camera 

model is considered to compute the predicted image 

location of the catalogue-projected craters. Given the 3D 

coordinates of a point in the camera frame {C} (i.e., the 

center of the crater), 𝑷𝐶 = [𝑋, 𝑌, 𝑍]T, its 2D projection 

𝒑 = [𝑥, 𝑦]T on the image plane is retrieved as [12]: 

 

 𝒑 = K�̃�𝐶 ⟺ [
𝑥
𝑦] = K [

�̃�
�̃�
𝑍

] (7) 

 

where K is the intrinsic camera matrix, and �̃�𝐶 = 𝑷𝐶/𝑍. 

The point 𝑷𝐶  is retrieved as: 

 

 𝑷𝐶 = R𝐵𝐹
𝐶 [𝒓𝐶 − 𝒓𝑆𝐶] (8) 

 

where R𝐵𝐹
𝐶  is the rotation matrix from the Moon’s body-

fixed frame {BF} to the camera frame {C}, and 𝒓𝐶 and 

𝒓𝑆𝐶 are the crater centroid and the spacecraft position 

vectors referred to {BF}. The body-fixed Cartesian 

coordinates of the centroid of crater j are retrieved from 

the associated spherical coordinates (𝜌, 𝑙𝑜𝑛, 𝑙𝑎𝑡)𝑗, as: 

 

 𝒓𝐶,𝑗 = 𝜌𝑗 [

cos(𝑙𝑎𝑡) cos(𝑙𝑜𝑛)

cos(𝑙𝑎𝑡) sin(𝑙𝑜𝑛)

sin(𝑙𝑎𝑡)
]

𝑗

 (9) 

 

An accurate modeling of the radial distance of the crater 

with respect to the Moon’s center (𝜌𝑗) is key to correctly 

project its location onto the image plane. By assuming 

that the crater rim lies on a plane orthogonal to the vector 

𝒓𝐶, the parameter 𝜌 represents the radial distance of the 

center of the crater rim with respect to the Moon’s 

center, and can be expressed as: 

 

 𝜌 = �̅� + Δ𝜌 (10) 

 

where �̅� is the distance of the crater floor with respect to 

the Moon’s center, and Δ𝜌 is the crater’s depth. An 

estimate of the radial distance of the crater floor with 

respect to the Moon’s center was retrieved for each 

crater from a high-resolution Digital Terrain Model 

(DTM) of the Moon (i.e., 128 px/deg, which 

corresponds to a resolution of ∼237 m/px at the 

equator). As regards the crater depth, an estimated value 

for each crater was retrieved from the Wang’s crater 

catalogue [10]. 

 

D. Crater matching 

A fundamental operation to define the optical 

measurements is the crater matching task, which 

consists in establishing correspondences between the 

craters detected in the image and those listed in an 

onboard reference database (i.e., crater catalogue). In 

practice, the crater correspondence problem is 

characterized by unique challenges, because the two 

crater sets may be largely disjoint. As an example, the 

crater detector could detect unknown craters (i.e., not 

listed in the catalogue) in the image. Similarly, it may 

happen that catalogued craters are not detected due to 

harsh illumination conditions. A robust crater matching 

 
Fig. 2. Crater detection on a synthetic image of the 
lunar surface. The panels show the projected craters 
from the Wang’s catalogue (left), and those detected 
by using the YOLO-based crater detector (right). 
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technique is then required to tackle this challenging task. 

Different approaches have been proposed to retrieve 

crater correspondences, including machine learning-

based techniques [11], and methods based on 

mathematical invariants of geometric patterns of 

observed craters [4-5, 14] (e.g., crater triads). In this 

work, we employed a preliminary version of a matching 

scheme based on crater triads (i.e., each crater centroid 

coincides with a vertex of the triangle), which assumes 

that the craters are coplanar, and the camera is nadir-

pointed. As a first step, two distinct sets of crater triads 

are defined based on the craters detected by the network 

(i.e., observed craters) and the catalogue-projected 

craters (i.e., predicted craters). A descriptor 𝑑𝑖𝑗𝑘 is then 

computed for each crater triangle that includes the 

cosine of the smallest internal angle of the triangle, the 

cosine of the largest internal angle of the triangle, the 

normalized diameters of the three craters (i.e., divided 

by the longest triangle side), and the triad orientation 

(based on how the internal angles are displaced) [4]. For 

each triad based on the detected craters, a candidate 

correspondent triad is found among those based on the 

catalogue-projected craters according to the similarity of 

their descriptors (Fig. 3). In this study, we are assuming 

that a preliminary estimate of the spacecraft state is 

available (i.e., the spacecraft is not in a lost-in-orbit 

scenario), which allow us to carry out a downselection 

of the onboard crater catalogue based on the pose of the 

spacecraft camera. Craters that are expected to be 

outside the camera field of view (FOV) are filtered out. 

Because an initial orbit solution exists, a threshold on 

the maximum distance between the centroids of 

corresponding craters (i.e., 10 pixel) is also applied to 

discard mismatched crater triads. 

The output of the crater matching step is a list containing 

candidate pairs of corresponding craters between those 

detected by the network and those reported in the 

downsampled catalogue. Crater pairs that are ambiguous 

(i.e., an observed crater is matched with different 

database craters or vice-versa) or duplicate (i.e., a crater 

can belong to multiple successfully matched triads) are 

removed from the list. Next, the row and column pixel 

discrepancies between the centroids of matched 

observed and catalogue-projected craters are computed, 

leading to the calculation of the optical residuals. 

 

III. NUMERICAL SIMULATIONS 

A thorough set of numerical simulations was conducted 

to assess the attainable orbit determination accuracies 

with the proposed data-fusion approach by assuming a 

spacecraft in a low-altitude lunar orbit similarly to the 

NASA mission Lunar Reconnaissance Orbiter (LRO). A 

covariance analysis approach was considered, with 

synthetic optical and radio data generated based on the 

integrated spacecraft trajectory and by accounting for 

the expected noise level of the onboard instruments. As 

regards the conservative forces, the spacecraft 

dynamical model accounts for the gravity of the Moon 

(through the GRGM900C model [15] in spherical 

harmonics to degree and order 100), and the Sun and the 

Earth (that are modelled as point masses). A cannon-ball 

model was adopted for the spacecraft to compute the 

non-conservative accelerations due to the solar radiation 

pressure. For the radiometric range-rate data, a single 

ground station was accounted for, and S-band Doppler 

accuracies were considered with a conservative root-

mean-square (RMS) error of 1 mm/s at 10−s integration 

time [16]. A wide-angle nadir-looking camera was 

considered to generate the synthetic images (Table I), 

with an acquisition rate of 10 min and a detector size of 

512×512 px, which is consistent with the size of the tiles 

used for the neural network training. At each new image 

acquisition, a synthetic image is generated by using the 

Blender-based pipeline that is consistent with the 

observation geometry (i.e., acquisition epoch, 

spacecraft’s position and orientation with respect to the 

Moon body-fixed frame). 

The covariance analysis approach assumes that the same 

modeling is adopted for the dynamical forces and the 

onboard instruments properties between the simulation 

of the synthetic data and the orbit determination process, 

where the data are processed through a least-squares 

filter. The impact of each measurement type on the 

trajectory reconstruction is determined through the 

formal uncertainties of the spacecraft state. To account 

for unpredicted mismodeling of the dynamical 

 
Fig. 3. Examples of matched triads (left) and 
successfully matched craters (right) in a synthetic 
image of the lunar surface. Observed and catalogue-
projected craters are shown in blue and red, 
respectively. 

 

Table 1. Characteristics of the spacecraft camera 

 

Intrinsic camera properties 

Field of view (FOV) 90×90° 

iFOV 3.91 mrad 

Detector size 512×512 px 

Ground resolution 195 m (@ 50 km height) 

Framing mode (global shutter) 
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equations, the adjusted parameters in the estimation 

filter include the spacecraft state at the initial epoch of 

the orbit determination arc and a set of periodic 

accelerations in the radial, transverse and normal 

directions. The solve-for parameters are estimated 

through a weighted least-squares (WLS) batch filter that 

minimizes the measurement residuals, where data are 

weighted using the expected noise for each 

measurement type. For the optical data, a root-mean-

square error of 2 px was assumed in both the row and 

column image dimensions. This represents a 

conservative value, which was retrieved by analyzing 

the statistical distribution of the 2D pixel discrepancies 

between matched craters for a set of test images 

rendered at different illumination geometries. 

As a future activity, we are planning to carry out a 

further training of the crater detector on a custom dataset 

that also includes synthetic images. By including images 

characterized by custom illumination conditions (i.e., 

that cannot be reproduced through augmentation 

techniques applied on the GT dataset based on the global 

lunar mosaic), a more robust network would be 

retrieved, which is able to better cope with the great 

variety of observation geometries that characterize 

spaceborne imagery. 

 

IV. RESULTS 

The performances of the proposed data-fusion approach 

were evaluated by accounting for a variety of orbital 

configurations, including different orbit geometries 

(e.g., face-on, edge-on, etc.) and Moon’s phases. We 

present here the results obtained for an edge-on orbit 

geometry (i.e., the Earth-Moon line-of-sight direction is 

orthogonal to the normal to the orbit plane) during a new 

Moon lunar phase (i.e., the illuminating side is facing 

away from the Earth) (Fig. 4). This is a key test case to 

show the synergies between the radio and optical data. 

When the spacecraft flies over the shadowed Moon’s 

near side, it can establish telecommunications with the 

ground station leading to the acquisition of radio 

tracking data. However, no optical data are collected by 

the camera that operates in the visible-wavelength. On 

the contrary, when the spacecraft flies over the Moon’s 

far side, no radiometric data are available because of 

occultations, but the collected images can provide 

auxiliary crater-based measurements to support the 

reconstruction of the spacecraft trajectory. 

In Fig. 5, the 1−σ formal uncertainties of the 

reconstructed spacecraft trajectory are shown along the 

radial (top), transverse (center) and normal (bottom) 

directions retrieved by analyzing different datasets. By 

processing the optical dataset only (blue, left), higher 

uncertainties are retrieved compared to the solution 

based on radiometric data only (red, right). The 

shadowed magenta areas show the time periods where 

radio tracking data are available. The short gaps (i.e., 

~50 minutes) with no acquired range-rate measurements 

are due to occultations resulting from the edge-on 

spacecraft orbit geometry. The images acquired during 

these orbital phases thus provide auxiliary information 

to better constrain the spacecraft orbit. A combined 

analysis of radio tracking and optical data through the 

orbit determination filter results in enhanced 

uncertainties for all directions, with major 

improvements along the normal component (Table 2). In 

an edge-on geometry, the normal position component is 

indeed orthogonal to the line-of-sight direction, and is 

thus less constrained by the radiometric range-rate data. 

Improved orbit determination accuracies could be 

achieved by improving the accuracies of the optical data 

(i.e., by reducing the optical measurement noise) and by 

increasing the image acquisition rate (and, thus, the 

number of optical data processed in the filter). 

 

V. CONCLUSIONS 

Cutting-edge data-fusion techniques are current under 

development to support the navigation capabilities of the 

future space exploration probes. A multi-sensor orbit 

determination approach was described in this work to 

retrieve a refined reconstruction of the spacecraft 

trajectory that is based on the joint processing of deep-

space radio tracking measurements and image-based 

 
Fig. 4. Optical data coverage during a simulated 
orbit determination arc (i.e., edge-on geometry and 
new Moon phase). The darker area indicates that the 
Moon’s near side is in shadow. The projected camera 
field-of-view is shown, with green footprints 
indicating at least one matched crater, and red 
footprints indicating no observed craters. 

Table 2. RMS of the 1−σ formal uncertainties of the 

reconstructed spacecraft trajectory in the radial, 

transverse, and normal directions (values in meters) 

  

 Radial Transverse  Normal  

Optical only 61.6 64.6 54.3 

Radio only 12.0 12.8 33.3 

Radio + optical 8.7 9.2 19.2 
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data. The optical data are based on the matching of the 

observed craters in the image with those listed in an 

onboard catalogue. A neural network devoted to the 

crater detection task was then trained by using a transfer 

learning approach, and an automatic registration scheme 

was implemented to support the crater matching step. 

To investigate the benefits of the proposed data-fusion 

approach in a realistic mission scenario, a software 

pipeline was implemented in Blender to generate high-

fidelity synthetic images of the Moon’s surface. 

Numerical simulations were carried out by accounting 

for a lunar mission scenario. Simulated radio tracking 

data were combined in the least-squares orbit 

determination filter with optical measurements extracted 

from synthetic images of the lunar surface. A more 

accurate estimation of spacecraft trajectory is enabled by 

the combined processing of radiometric and optical 

measurements compared to the solution based on radio 

tracking data only. Improved accuracies are observed 

along all the components of the spacecraft position, with 

major improvements along the normal direction that, in 

case of an edge-on orbit geometry, is orthogonal to the 

line-of-sight direction. This suggests that a joint 

processing of the two datasets is well suited to support 

the orbit determination process for missions devoted to 

the exploration of celestial bodies for which a reference 

catalogue of surface features is available. Nevertheless, 

alternative strategies have been proposed to obtain 

image-based measurements even if a database of known 

surface features is not available, including techniques 

that, by processing multiple observations of the same 

surface area, enable a joint estimation of the spacecraft 

position and the body-fixed locations of the surface 

landmarks that are observed (i.e., a catalogue of surface 

features is created and updated during the mission). 

These methodologies will be investigated as a further 

development of this work. In addition to explore 

different neural network architectures (e.g., 

semantic/instance segmentation networks) to tackle the 

crater detection and matching tasks in case of complex 

off-nadir geometries, we will also investigate the use of 

the proposed orbit determination scheme for a refined 

estimation of key geophysical parameters of the orbited 

body (e.g., spin rate, pole orientation). 
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