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Abstract—Proximity operations around Phobos are critical
for the Martian Moons eXploration (MMX) mission, and ac-
curate knowledge of the spacecraft’s trajectory is required to
perform scientific observations and maximise the chances of
understanding the moon’s internal structure. Possible solutions to
implement autonomous navigation around Phobos while orbiting
at lower altitudes are presented in this paper and compared
with standard navigation techniques. For this purpose, our
analyses will compare the level of knowledge achievable once the
connection with the Deep Space Network is cut off, showing what
can be achieved without ground support, using only information
that can be collected and processed onboard, mainly lidar and
optical data. Different strategies to build a map of the moon’s
surface’s landmarks are also discussed, demonstrating how this
operation can be performed autonomously by the spacecraft and
how landmark-based navigation is paramount in estimating the
spacecraft’s state. Finally, the capability of this setup to observe
the moon’s gravity field will be assessed, returning precious
information for the future geodetic investigations of the Martian
Moons eXploration mission around Phobos.

I. INTRODUCTION

The origin of the two Martian moons, Phobos and Deimos,
remains unknown to the astronomical community. One of the
most accredited theories is that they may be asteroids captured
by Mars’s gravity field, as suggested by their small and irregu-
lar shape, and could therefore provide a unique insight into the
history of the early solar system material’s migration towards
the inner planets. Nevertheless, their surprisingly circular and
equatorial orbits clash with this hypothesis, suggesting that
they may have formed in situ, following a giant impact on
Mars, similar to what happened to the Earth-Moon system, or
during the planet’s accretion period [1].

The Martian Moons eXploration (MMX) mission, planned
for launch in 2026, aims to shed light on the origin of the
two moons by performing a prolonged observation of Phobos.
The spacecraft will be placed on periodic and quasi-periodic
quasi-satellite orbits (QSOs), with different geometries around
the moon, moving between different heights from the surface
and collecting samples. It will also perform several flybys of
Deimos before finally returning to Earth with the collected
samples. During this proximity phase around Phobos, accu-
rate knowledge of the spacecraft’s trajectory is required to
perform scientific observations and reconstruct the moon’s
internal structure. Strong perturbations govern the spacecraft’s

dynamics at low altitudes owing to the strong influence of
the nearby Mars and the moon’s irregular shape, but while
this can be a challenge for the spacecraft’s flight, it can also
be exploited to extract precious information about the moon’s
internal structure.

We present in this paper solutions to navigate around Phobos
during the MMX proximity phase, either autonomously or with
ground support. Our analysis exploits lidar and optical data to
navigate the spacecraft, extracting and exploiting the limb of
the red planet, features on the moon’s surface, and line of sight
direction vectors towards Deimos when in the field of view.
With this aim, we will also suggest strategies to autonomously
identify points of interest on the moon’s surface that could
then be used for landmarks-based relative navigation. For this
purpose, synthetic images have been generated in Blender
using the Orochi camera’s specifications, to simulate the in-
orbit spacecraft’s point of view and quantify the amount
of landmarks that can be mapped from the pictures. The
effects of cutting off the connection with the Deep Space
Network (DSN) will be investigated, highlighting how the
navigation performances deteriorate without ground support.
The extracted observables at the epoch are then processed
with a Kalman filter to estimate the spacecraft’s and Phobos’s
state vectors’ uncertainties and the moon’s spherical harmonics
coefficients. The results of this covariance analysis will support
the geodetic investigations of the Martian Moons eXploration
mission around Phobos.

II. DYNAMICAL MODEL

The dynamics that describe the system’s motion are defined
in the Phobos-fixed reference frame, whose axes are aligned
with the moon’s principal axes of inertia and the origin in its
centre of mass, as represented in Fig. 1 [2].

In this system, Mars appears to move in the sky oscillating
back and forth along the radial direction, and Phobos’ libration
motion is reflected as a motion of Mars around the system’s x
axis. High interest is given to the libration motion of Phobos
in this analysis since, as reported in [2], its amplitude is
a function of the moon’s moments of inertia and the mass
ratio between the two bodies, and it could therefore be used
to gather information about the moon’s internal structure.
This libration amplitude can be observed by tracking the
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Fig. 1: Schematic representation of the problem’s geometry.

spacecraft’s motion, around the moon, for which a harmonic
expansion of Phobos’s gravitational field is also considered,
and the effect of Mars’ oblateness is taken into account.

The complete state vector of the system for the analysis is
therefore composed of the spacecraft’s position and velocity
XMMX = [r,v], the states describing Mars’s apparent motion
in the sky XM , the harmonics coefficients of the moon’s
gravitational field (C0,0, C1,0, C1,1, etc.), and some biases
affecting the spacecraft’s sensors (ϵρ, ϵvcamera

, etc.). The state
vector is then defined as:

X =
[
XMMX , XM , C0,0, . . . , ϵvcamera

]
(1)

The dynamics of the system can be described by a system
of first-order differential equations of this state vector. The
different dynamics within this system are described in the
following sections, starting from the characterization of how
Phobos’ motion around Mars can be reflected in the apparent
motion of the red planet in the sky.

A. Phobos’s motion

The potential describing the roto-translational coupling of
an oblate primary body and a smaller ellipsoidal secondary
body was derived in [2]. In the case of the Mars-Phobos
system, adopting the subscripts ”M” and ”Ph” to indicate
respectively Mars’s and Phobos’s quantities, this potential can
be written as:

V (rPh,ΦM ,ΦPh) = −GMMMPh

rPh

{
1 +

1

2r2Ph

[
Tr(Ī1)+

+ Tr(Ī2)−
3

2
(I1x + I1y − cos (2ΦM )(I1y − I1x)+

+ I2x + I2y − cos (2ΦPh)(I2y − I2x))

]}
(2)

with ΦM and ΦPh being Mars’s and Phobos’s libration angles
respectively, Ī1 and Ī2 the inertia tensors of the two bodies,
Tr(·) the trace operator of a matrix, and I1x, I1y , I2x, and
I2y being the inertia tensor’s components.

The authors in [2], out of some considerations on the
system’s integrals of motion and the small entity of the main

body’s libration amplitude, derived the equations of motion in
the rotating frame centred on the smaller body, as:
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with K being the free angular momentum of the system and ν
the mass ratio between the two bodies. Their definition and the
partial derivatives of the potential required by these equations
of motion are described in [2] and here recalled:
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(4)

θ is the Phobos’s true anomaly in the moon’s perifocal
reference frame which can be included in the state vector,
propagated and observed as a state of the system due to its
direct relation with the moon’s free angular momentum and
libration rate.

θ̇ =
K − Ī2z Φ̇Ph

Iz
(5)

B. MMX motion

For what concerns the probe’s dynamics, only gravitational
accelerations are considered acting on MMX, therefore its
motion can be described in the rotating frame centred on
Phobos as described in [3]:

ṙ = v

v̇ = gPh + gM − Ω̇× r − 2(Ω× v)−Ω× (Ω× r)
(6)

with gPh and gM being the gravitational accelerations due to
Phobos and Mars, respectively, and Ω being the angular ve-
locity of the system causing the Euler, Coriolis and centrifugal
accelerations.

The acceleration due to Phobos is modelled as a fourth-
degree and order spherical harmonics expansion of the moon’s
gravitational potential, as reported in [4]:

U(x, y, z) =
µPh

r

[
1 +

∞∑
n=2

n∑
m=0

(
R

r

)n

Pn,m(sinϕgc)

(Cn,m cos (mλ) + Sn,m sin (mλ))

]
, (7)

where Pn,m are the associated Legendre polynomials, ϕgc is
the latitude of the satellite, λ is the longitude of the satellite,
and Cn,m and Sn,m are the n-degree and m-order Stokes’
coefficients. Finally, R = 11.107 km is the Phobos’s reference
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sphere radius and the distance of the spacecraft from its centre
is simply r.

For what concerns the acceleration caused by Mars, the red
planet is instead modelled as an oblate spheroid [5]:

gM = −µM

r3M

(
1+J2
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rM

)2
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)
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(8)
where in this case µM is the gravitational parameter of Mars,
RM is the planet’s equatorial radius, J2 is the second zonal
harmonic of the planet’s gravitational field and rM is the
position vector of the spacecraft with respect to Mars.

For what concerns the reference frame’s angular velocity,
we have to consider that while the moon librates, it also rotates
around Mars, therefore the angular velocity of the system can
be written as:

Ω = [0, 0, θ̇ + Φ̇Ph] (9)

Ω is not constant and its time derivative Ω̇ is consecutively
not null, causing the spacecraft to experience the whole set of
Euler, Coriolis and centrifugal accelerations.

C. Reference trajecotries definition

QSOs, 3DQSOs and SwingQSOs, designed in the years
as reference science trajectories for MMX, were initially
designed in the Hill problem’s dynamics by Baresi et al. [6].
As in [7], an optimization procedure was performed to find the
best initial conditions that in this new dynamical model would
allow the spacecraft to move along the same orbits. Once these
initial conditions were found, the spacecraft’s motion was
propagated in the Mars-Phobos system’s dynamics, and the
results were saved as SPICE’s .bsp files to be used as ground
truth trajectory for the covariance analysis. Observables data
were simulated along these trajectories, using the models
described in the following sections, to be then processed by
a UKF-based covariance analysis tool, equivalent to the one
described in [7], that quantifies the state vector components
and the moon’s spherical harmonics coefficients’ uncertainties.

III. OBSERVABLES

Six data types were considered for this numerical anal-
ysis and are processed to navigate: radiometric data from
Earth-based ground stations, lidar measurements spanning the
moon’s surface, surface’s landmarks position in the collected
pictures, the Mars’s limb apparent dimension and the line
of sight direction vector towards Deimos. The mathematical
model and acquisition frequency for each are described in the
following paragraphs.

A. DSN-based observables: Range & Range Rate

The covariance analyses carried out in this study used an
idealized range and range-rate measurement between MMX
and Earth, thereby delegating clock errors, atmospheric effects,

Fig. 2: The five altitude MMX candidate QSO orbits around
Phobos [6].

and time delays to the bias ϵρ [8]. Following these assump-
tions, the range measurements are defined as

ρ = G(X) + ϵ =
√
(rE − rSti)

T (rE − rSti) + ϵρ (10)

where rE and rSti are the MMX’s and ith ground station’s
position vectors as seen from the Earth-centered J2000 inertial
frame, respectively, and ϵρ is a bias affecting this range
measurements, which is also part of the state vector.

Similarly,

ρ̇ =
(rE − rSti)

T

ρ
(ṙE − ṙSti) + ϵρ̇ (11)

where ṙE and ṙSti are the velocity vectors of the spacecraft
and ground station, respectively, and ϵρ̇ is the bias affecting
the range rate data.

Note that occultation checks were performed throughout
these numerical simulations, thereby preventing measurements
from being collected whenever MMX was below the stations’
local horizons or eclipsed by Mars or Phobos. The DSN anten-
nas in Madrid, Canberra, and Goldstone have been considered,
and measurements are collected at intervals of once per hour
for the range and once per ten minutes for the range rate [9].

B. Lidar

A lidar device typically emits an electromagnetic signal and
listens for the echo of the same signal once it bounces off the
surface of a celestial body. As an electromagnetic signal, it
travels at the speed of light; therefore, measuring the time
distance between the emission and the reception of the echo
provides information on the relative distance between Phobos
and MMX. Considering the ellipsoidal shape of Phobos as a
first-order approximation yields a state-observation relation-
ship of the form [10]:

ρLidar =
√
rT r −RPh(λ, ϕ) + ϵLidar (12)
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where RPh is the radius of the ellipsoidal Phobos as a
function of the spacecraft’s latitude (λ) and longitude (ϕ),
defined in the moon-fixed reference frame, and ϵLidar is a
bias affecting the lidar. As per [11], MMX’s lidar has an
acquisition frequency ranging between 1 and 4 Hz. An analysis
was performed regarding the effects of this frequency on
estimation performance, and it was found that the envelopes
have a plateau for frequencies higher than one measurement
every 2 minutes, identifying this value as the lidar acquisition
frequency for the analysis. Furthermore, MMX’s onboard lidar
has an operational range of 100 m-100 km; therefore, no
measurements outside this range are collected.

C. Features

To be able to perform landmark-based navigation, the
spacecraft needs a map of the moon’s surface to be able to
recognise different points of interest, and then match them with
the features extracted from the pictures that it collects while
in orbit and orient itself against them. This poses the need
for a surface mapping strategy, to be implemented at different
altitudes from the moon’s surface, to be able to collect an
iteratively more detailed map of the moon’s surface.

1) Phobos’s surface mapping strategy: This process must
be performed considering the spacecraft’s orbit around the
moon that will observe illumination changes caused by both
the moon’s rotation around Mars and the spacecraft’s motion
around Phobos.

As reported by Baresi et al. [6], the revolution period of the
spacecraft around Phobos is expected to range between 4 and 8
hours, depending on the specific orbit the spacecraft is in. This
revolution period is, especially for the lower altitudes, shorter
than the time it takes for the spacecraft to move from the day
side to the night side of the moon (which spans from almost
14 days for the QSO-H to around 5 hours for the QSO-La,
QSO-Lb and QSO-Lc orbits). This means that the spacecraft
can observe the complete moon’s surface and collect pictures
of it which can be used to build such a map. Figure 3 shows
the situation for the QSO-La orbit, whose revolution period is
5.76 hours, making of it the borderline case for completing
the observation of the moon’s surface in one orbit.

Fig. 3: Coverage of the moon’s surface orbiting the QSO-La
orbit while taking a picture every ten minutes.

Once such a database of pictures is available there are sev-
eral strategies which could be performed, also autonomously

Fig. 4: Some examples of the synthetic pictures generated with
Blender from the point of view of MMX during the QSOLa
(bottom) orbits. The 3D models of Phobos were downloaded
from NASA’s repository, while Mars and its atmosphere were
generated from scratch, as well as the Sun and its effects on
the camera when in the field of view.

by the spacecraft, to build a map of points of interest. The
spacecraft could collect pictures while on the Sun-lit side of
the moon to process them with a Bundle Adjustment algorithm
during the passage through the night side. These operations
can be performed onboard if enough data storage and compu-
tational power are available, or on the ground if the spacecraft
can transmit this picture database to Earth. Alternatively,
Simultaneous Localization and Mapping (SLAM) algorithms
are an iterative way to autonomously build a catalogue of
landmarks, while estimating the spacecraft’s position at the
pictures’ epoch. Synthetic images have been generated to
simulate the in-orbit spacecraft’s point of view and they have
been fed to a monocular SLAM algorithm to quantify the
amount of landmarks that can be mapped from the pictures.
The resulting point cloud of the moon’s surface’s features was
then used as a map to perform landmark-based navigation.

2) Observable modelisation: The principles of perspective
projection can be used to describe the relationship between
the position of surface features on the Phobos surface with
their position in the camera’s field of view and the spacecraft’s
position. The main hypothesis here is based on the availability
of the previously described map of Phobos’s surface’s features,
and that the features within are properly differentiable from
each other. The optical properties of the OROCHI camera are
reported in Table I [1], [12]: Therefore, assuming a pinhole

TABLE I: Optical properties of the OROCHI camera.

Parameter Value
Focal length 15 mm
Sensor size 36 × 24 mm

Camera resolution 3296 × 2472 pixel

camera model, the camera’s intrinsic matrix is:

K =

fx 0 cx
0 fy cy
0 0 1

 =

1373.3 0 1648
0 1545 1236
0 0 1

 (13)

The camera extrinsic matrix can be reconstructed as:

M ext =

[
R r

0(1×3) 1

]
(14)

with R being the rotation matrix from the moon-fixed to the
camera reference frame and r being the camera’s position from
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the moon’s centre of mass, which we assume to be the same
as the spacecraft’s position vector. The projection matrix for
the OROCHI camera is then defined as:

P = K[R|r] (15)

where R and t are the rotation matrix and translation vector
that describes the camera’s position with respect to the moon-
fixed reference frame. The projection of a feature in the
camera’s field of view is then defined as:

p =

[
u+ ϵu
v + ϵv

]
= PXf +

[
ϵu
ϵv

]
(16)

where Xf is the position of the feature in the moon-fixed
reference frame and ϵu and ϵv are the camera’s biases in
the sensor’s x and y directions. In this analysis, the nadir-

Fig. 5: Visualization of the features’ identification and extrac-
tion processes within the camera’s field of view.

pointing spacecraft’s camera takes a picture every ten minutes,
and the features are extracted from the pictures and matched
with the map of the moon’s surface whenever they are in light
conditions and the camera can observe them.

D. Limb

Celestial bodies’ limbs and their size in the field of view
of a camera can be used to estimate the distance between the
spacecraft and the body itself. This technique has been used
in the past to navigate in the cislunar space, in the Martian,
Jupiter’s and Saturn’s system, and several studies have been
published on the topic [13]–[15]. The idea relies on the fact
that the apparent size of different bodies, inside of a picture, is
inversely proportional to the distance between the spacecraft
and the body. Therefore, if the actual size of the body is
known, this apparent size can be used to estimate the distance
between the spacecraft and the body.

The relationship between the apparent size of the body in
the picture and the distance between the spacecraft and the
body was modelled as:

D = f

(
DT

r

)
(17)

where D is the target body’s diameter, f is the focal length of
the camera, DT is the apparent size of the body in the picture,
and r is the distance between the camera and the celestial body
of interest.

Information about the Mars limb’s apparent size is extracted
from the same pictures used to perform the landmark-based
navigation, which are taken every ten minutes. This observable
is used only if the planet’s disk is not hidden by Phobos’s
silhouette.

E. Observing Deimos

Similarly to Mars, Deimos can also be used to extract
useful information about the spacecraft’s state. Since it is
orbiting Mars further away than Phobos, it should appear in
the opposite direction of the red planet with respect to the
spacecraft. Due to the moon’s small size, the apparent motion
of Deimos in the sky is expected to appear as a slowly drifting
bright spot in the camera’s field of view. However, when
properly in opposition, it may occupy more than one pixel in
the pictures. The same biases affecting the camera’s sensor are
considered, and knowledge of the true position of Deimos is
considered to be available onboard the spacecraft. Its position,
defined at any time in the Phobos-fixed reference frame, is
rotated and translated in the camera reference frame and
projected in the camera’s sensor with the OROCHI’s pinhole
camera model (Eq.13) and perspective projection fundamentals
described in the previous section (Eq.16).

A picture of Deimos is collected every ten minutes if the
moon is expected to be in the field of view; not hidden by
the silhouette of Phobos and only if Mars is not expected
to appear in the same picture. This was decided as the red
planet is expected to be much brighter than Deimos, and
its presence in the same picture would make the moon’s
observation impossible.

IV. ANALYSIS SETUP

Observations between MMX and the DSN ground stations
are generated together with Lidar measurements of the MMX-
Phobos distance and synthetic pictures, while the spacecraft
moves along the orbits. All of the measurements are cor-
rupted with zero-mean Gaussian white noise, whose standard
deviations are reported in Table II. The white noise values
for the ground station data were obtained from [9], and the
noise added to the lidar measurements was recovered from
technical data on MMX’s onboard instrumentation [11]. The
pixel noise was instead assumed to be 0.2 pixel, as reported
in [16]. A stochastic acceleration of 10−10km/s2 was used as
the process noise in the covariance analysis tool to account for
unmodelled dynamics such as solar radiation pressure (SRP)
and non-gravitational accelerations (NGA) affecting MMX’s
motion.

TABLE II: Standard deviation of the white noise added to the
observations [17].

Measurement Frequency Noise standard deviation
Range 1 hour σρ=2 m
Range rate 10 min σρ̇=3× 10−4 m/s
Lidar range 2 min σlidar=10 m
Pictures 10 min σcamera=0.2 pixel

The a priori uncertainties for the states at the beginning of
the covariance analysis are listed in Table III. MMX’s initial
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uncertainties were assumed [17], to have 3σ ≃ 1 km for the
position vector components and 3σ ≃ 1 m/s for the velocity
vector components.

TABLE III: A priori uncertainties for the problem state vector
components.

Object Estimated parameter σ a priori uncertainty
MMX Position components 300 m

Velocity components 0.3 m/s
Phobos Radial distance 100 m

Radial velocity 0.1 m/s
Libration angle 0.3 rad
Libration velocity 1× 10−3 rad/s
Harmonics coefficients 1× 10−2

Bias Range 1 km
Range rate 1 m/s
Lidar 1 km
uCamera 1 pixel
vCamera 1 pixel

Data acquisition campaigns are simulated for each orbit, and
the data are fed into the covariance analysis tool described in
[7] to study the behaviour of the state vector components’ 3σ
covariance envelopes.

V. RESULTS

Our analysis was focused on two main objectives: the
first was the assessment of the spacecraft’s capability to au-
tonomously navigate around Phobos without ground support.
This could be certified by observing the behaviour of the
state vector components’ uncertainties once only spaceborne
data are processed and comparing the results with the ones
obtained when DSN data are used. The second objective was
the assessment of the spacecraft’s capability to observe the
moon’s gravity field and the quality of information that can
be extracted from the data collected during the proximity phase
around Phobos. The results of this covariance analysis are re-
ported in the following sections, where these two objectives are
addressed with different setups and lengths of data collection
campaigns.

A. Relative navigation performance

Figure 6 shows the 3σ covariance envelopes for MMX’s
position and velocity vector components, and the RMS of the
state vector components’ uncertainties, for one day of data
collected while orbiting the QSO-Lb orbit, the second lowest
represented in Figure 2.

The first thing to note is the entity of the position vector
uncertainties, which are in the order of a few meters, and of the
velocity vector uncertainties, which span in the order of a few
millimetres per second. The position uncertainties show a clear
periodic behaviour, with time windows in which the spacecraft
can take and process pictures of the moon’s surface and its
features, and others in which it is on the night side of the
moon and the only available data are the radiometric and lidar
measurements. The optical data’s contribution to shrinking
the state vector’s uncertainties is evident, as the position
uncertainties are at their minimum when the spacecraft is on
the day side of the moon. The amount of landmarks that can

Fig. 6: MMX’s 3σ state vector components’ covariance en-
velopes, and RMS, for one day of data processing the full set
of observables, radiometric data included. The shaded areas
represent the intervals in which the spacecraft can take and
process pictures of the moon’s surface.

Fig. 7: Position and velocity vectors’ components’ RMS as a
function of the number of features extracted from the pictures
from the QSO-Lb orbit.

be extracted from the pictures is expected to be a key factor
in the quality of the navigation performance.

For this analysis, the landmarks’ database was assumed to
be the same as the one extracted from the data collected
in a revolution around Phobos processed by a monocular
SLAM algorithm, one of the techniques suggested in the
previous section to autonomously build the moon’s surface
map. Nevertheless, Figure 7 shows the decay of the state vector
components’ uncertainties’ RMS as a function of the average
number of the surface’s recognised landmarks for the QSO-Lb
orbit. The mean value of these uncertainties’ RMS is reported
here, in one of the orbit’s branches in which the spacecraft can
observe surface landmarks, with error bars representing the
maximum and minimum oscillations of the envelopes around
it. The RMS of the position vector components’ uncertainties
is seen to be inversely proportional to the number of features
extracted from the pictures, and the relationship to be retained
also when DSN radiometric data are not available.

For what concerns the remaining state vector components,
the liberation angle’s uncertainty is seen to be in the order of
a few millidegrees, and its rate’s uncertainty is in the order
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Fig. 8: Phobos’s 3σ state vector components’ covariance
envelopes for one week of data processing the full set of
observables.

Fig. 9: Phobos’s 3σ state vector components’ covariance
envelopes for one week of data without DSN data.

of a few micro degrees per second. Again, the optical data’s
contribution to the state vector’s uncertainties is evident, as
the libration angle’s uncertainties are way smaller than what
was reported in [7] where optical data were not processed.
Clearly, excluding the radiometric data from the estimation
chain has a strong impact this time as Phobos’s true anomaly
cannot be observed anymore and therefore its absolute position
in space is not known anymore. As Figure 9 shows though,
Mars’s limb still allows us to gather some knowledge about
the relative position between Phobos and the red planet since,
albeit slowly, the radial distance’s uncertainties are seen to
shrink over time. The moon’s libration motion amplitude,
which has effects on the spacecraft’s dynamics and in the
apparent motion of Mars and Deimos in Phobos’s sky, can
still be observed with high accuracy instead.

B. Phobos gravity field estimation

The spacecraft’s capability to observe the moon’s gravity
field while orbiting orbits with different geometries charac-
terized by the same average altitude was also assessed. The
a priori covariance for the moon’s normalized gravity field’s
harmonics coefficients, as reported in table III, was assumed
to be 1×10−2, and the spacecraft’s capability to reduce these
uncertainties was assessed by comparing the 3σ covariance
envelopes at the end of a three-week long analysis with the

magnitude of the true values of the coefficients. To draw these
conclusions, the results obtained processing the full set of
observables are compared with the ones for which radiometric
data are excluded and the results are reported in Figure 10 and
Figure 11.

Fig. 10: Cn,m coefficients’ 3σ covariance envelopes at the end
of a two-week long data collection campaign as a fraction of
their true value.

Spanning across the results, it can be seen that for many of
the gravitational field’s harmonics coefficients’ uncertainties
can be accurately reduced by tracking the Probes’ motion in
any of the orbit geometries, as the 3σ covariance envelopes
decay to a fraction of the true value. However, the uncertain-
ties are seen to decrease further when the spacecraft moves
out of the moon’s equatorial plane and orbits 3-dimensional
trajectories. SwingQSO orbits, despite being still planar, offer
an improvement with respect to the QSOs orbits, but the
difference is not as marked as the one between the QSOs
and the 3DQSOs orbits. Furthermore, the choice between
processing or not the radiometric data has a limited impact
on the results, as it happened for the spacecraft’s state vector
components’ uncertainties. There is a small improvement in
the results when the radiometric data are processed, but the
difference is not marked as, with this setup, the observables
that have more impact on the whole problem’s observability
are those directly related to the probe-moon relative position
and velocity.

Interestingly the uncertainties on the C2,0 and C2,2 coeffi-
cients, which have direct relations with the moon’s moments of
inertia, as per [7], can be reduced to almost a 1% of their true
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Fig. 11: Sn,m coefficients’ 3σ covariance envelopes at the end
of a two-week long data collection campaign as a fraction of
their true value.

value tracking the MMX’s motion on the 3DQSO-Lb orbit.
Similarly, the fourth degree and order coefficients’ uncertain-
ties are seen to be reduced to a 10% of their true value,
while, for some of them, planar periodic seem completely
unable to observe them. These are important considerations
that need to be taken into account being the moon’s gravity
field and the distribution of its moments of inertia a key factor
in the understanding of the moon’s internal structure and its
formation history.

These results are consistent with the ones reported in [4],
[7], where the out-of-plane motion of the spacecraft was seen
to be the most effective in reconstructing the moon’s gravity
field. They also show that the spacecraft’s capability to prop-
erly observe the moon’s gravity field is slightly affected by the
elimination of the radiometric data from the estimation chain
once the analysis is set up in a relative navigation scenario.
Being able to quantify the harmonics gravity coefficients up to
this level of detail would be a significant improvement against
the results published so far in literature [18]–[20].

VI. CONCLUSION

A covariance analysis was performed to assess the relative
navigation performance of MMX around Phobos during the
mission’s proximity phase, and the spacecraft’s capability
to observe Phobos’s state and gravity field. To do so, the
spacecraft’s reference trajectories were redesigned in the roto-
translational Mars-Phobos system’s dynamics described with

respect to the Phobos’s principal body-fixed reference frame,
incorporating a fourth-order harmonic expansion of the moon’s
gravitational potential. These trajectories were then used to
simulate the spacecraft’s motion and the observables’ collec-
tion campaigns. The data were finally processed by a UKF-
based covariance analysis tool to quantify the state vector
components and the moon’s spherical harmonics coefficients’
uncertainties and their evolution over time.

The analysis focused on highlighting the differences in the
spacecraft’s navigation performance when the radiometric data
were processed or not, comparing the rate of convergence of
the state vector components’ uncertainties. In this scenario,
the observables that are expected to have more impact on
the whole problem’s observability are those directly related
to the probe-moon relative position and velocity. Within this
latter group, landmark-based navigation was expected to be
fundamental.

As expected, the exclusion of DSN data causes the space-
craft to lose track of the moon’s absolute position in space,
losing the capability to observe the moon’s true anomaly.
Nevertheless, the spacecraft is still capable of safely navigating
around Phobos, with the optical data being the main source of
information. Mars’s limb allows us to gather some knowledge
about the relative position between Phobos and the red planet,
while the moon’s libration motion amplitude, which has effects
on the spacecraft dynamics and in the apparent motion of
Mars and Deimos in Phobos’s sky, can still be observed with
high accuracy even without the radiometric data. Since the
probe’s motion is described in the moon’s principal body-
fixed reference frame, landmarks-based navigation and lidar
measurements give enough information to the spacecraft to
navigate around the moon with high accuracy. Similarly, the
spacecraft’s capability to observe the moon’s gravity field is
slightly worsened by the elimination of the radiometric data
from the estimation chain once the analysis is set up in a
relative navigation scenario. At the same time, the spacecraft’s
capability to properly observe the moon’s gravity field is seen
to be rather affected by the geometry of the orbits, with
the 3DQSO orbits being the most effective in reconstructing
the moon’s gravity field. These results are consistent with
the ones reported in [4], [7], underlining the importance of
the spacecraft’s out-of-plane motion in the observation of the
moon’s gravity field. These considerations are important for
the mission design for the proximity operations as the moon’s
gravity field and the distribution of its moments of inertia
are key factors in the understanding of the moon’s internal
structure and its formation history [21].
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