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Abstract – Filtering algorithms using matrices such as 

the Kalman filter and the H∞ filter are powerful state 

estimators in discrete-time systems and have been 

applied and studied in a wide range of fields, including 

the space engineering field. Covariance analysis and 

norm analysis of transfer functions have been used to 

analytically predict the performance of these filters. 

However, to use these methods for feasibility 

verification of high-precision estimation in complex 

systems such as formation flights, some assumptions are 

the barrier; the time invariance system (both methods), 

only including Gaussian noise (covariance analysis), 

only applicable to single-rate sensors (transfer function 

norm analysis). Because of assumptions, it is difficult to 

evaluate the performance of the estimating system until 

conducting Monte Carlo simulations. In this study, we 

describe a method for analysing the error which 

processed in state estimation for a periodic time-varying 

linear system with multi-rate sensors, without using 

Monte Carlo simulations. Note that it is assumed that the 

filters and the system and the filter gains will converge 

to a steady state after a sufficient lapse of time, The 

system is subjected to uncertain disturbance during state 

transitions and observations.  Disturbances are bounded 

and following a normal distribution. We introduce 

augmented state which the true state and estimation 

error are augmented together. Our method analyses both 

mean and covariance of augmented state. Mean analysis 

is expressed in the form of a transfer function. Analytical 

evaluation allows quantitative assessment of the impact 

on the control system when the estimation system is 

designed independently of the control system. The effect 

of periodic behaviour can be formulated as a time-delay 

system, and we show how to use this method to 

formulate the observed noise for a generalized plant in 

H∞ control theory. As a simple numerical example to 

demonstrate the practical applicability of the theory, we 

analysed the relative position estimation of two satellite 

formation flights and evaluate the effects of alignment 

error, attitude estimation error, and noise modelling 

error. Numerical simulations were also performed to 

validate the analytical results, showing that the 

evaluation method presented theoretically approximates 

the errors of the estimation system well. 

. 

 

I. INTRODUCTION 

In spacecraft operations, state estimation plays a 

crucial role in achieving mission objectives. For the 

required control precision of a mission, sufficient 

estimation accuracy is necessary [1]. Therefore, during 

the design phase of a spacecraft system, determining the 

requirements for the state estimation system and 

verifying their feasibility is essential. This includes the 

selection of components and the design of filters. By 

iterating the design of filters and selection of sensors, 

and forecasting the performance of the estimation 

system, a feasible system solution that meets the 

requirements can be explored. 

One of the mainstream methods for predicting the 

performance of estimation systems in recent years is 

Monte Carlo simulation. [2-5] This method evaluates 

the system's performance by statistically conducting 

enough numerical simulations to account for variations 

in conditions and noise. The ability to perform 

numerical calculations allows for the analysis of 

complex systems and non-Gaussian noise, which is a 

significant advantage. 

On the other hand, covariance analysis, a method 

adopted even before the widespread use of computers, 

does not involve propagating state quantities but 

analytically determines the converging value of the 

filter's error covariance. [6,7] Since analytical 

calculations can be performed, it is possible to evaluate 

the performance of the estimation system with minimal 

computation. In the initial stages of consideration, it is 

also common to simply add up the expected error 

sources without using covariance analysis. In any case, 

from the perspective of computation time, this method 

is well-suited for iterations during the design stage. 

Between Monte Carlo simulation and covariance 

analysis, there exists a trade-off between computational 

speed and accuracy. Monte Carlo simulation takes a 

considerable amount of time as it statistically evaluates 

performance through time-direction numerical 

simulations. In contrast, covariance analysis involves 

many constraints to solve analytically, making it 

challenging to model real-world problems. Furthermore, 

as spacecraft systems become more complex, such as in 

high-precision satellite formation flying systems, the 

importance of this trade-off increases due to the 

increased number of iterations required. Additionally, as 

the number of components and conditions handled in 

Monte Carlo simulations increases, the number of trials 

must also increase, while covariance analysis becomes 

more challenging to model. 

In this paper, we propose an evaluation method that 
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possesses characteristics intermediate between Monte 

Carlo simulation and covariance analysis. The proposed 

method first calculates the filter gain and error 

covariance according to an assumed ideal operational 

scenario through simulation. It then evaluates the entire 

system incorporating the filter for the effects of 

disturbances and modelling errors using analytical 

methods such as the norm of the transfer function and 

covariance analysis. This method allows for determining 

the impact of factors such as sensor observation periods, 

alignment errors, and control inputs on estimation 

accuracy and requires only one time-direction 

simulation, thus reducing computational time. 

Chapter 2 presents the mathematical derivation of the 

proposed method. In Section 1, we demonstrate under 

certain assumptions that filter gain and error covariance 

can be computed. Section 2 documents the derivation of 

a complete system representation, including the filter, 

using transfer function notation. In Section 3, utilizing 

the properties of the 𝐻∞ norm, we derive Equation (37), 

which is the most crucial formula in this paper. This 

equation demonstrates how the drift component of the 

error can be calculated from power of the state, control 

inputs and disturbance, and 𝐻∞  norms of modelling 

errors. Chapter 3 sets up a simple relative orbit 

estimation system and formulates both the proposed 

method and Monte Carlo simulations. Chapter 4 

conducts analyses using both Monte Carlo simulations 

and the proposed method, demonstrating the validity of 

the proposed approach. 

 

II. MATHEMATICAL DERIVATION OF THE 

PROPOSED METHOD 

Section 1.  

Calculation of Filter Gain and Error Covariance 

 

In this study, we consider a discrete-time nonlinear 

system where the state at time 𝑘 is denoted as 𝑥𝑘 ∈ ℝ
𝑛 , 

the control input as 𝑢𝑘 ∈ ℝ
𝑚  , and disturbances as 

𝜔𝑘 ∈ ℝ
𝑞  This system can be described using 

nonlinear functions as follows: 
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘)+ 𝑔(𝑥𝑘)𝜔𝑘 (1) 

The observation equation, including observation noise 

𝑣𝑘 ∈ ℝ
𝑟  and denoting the sensor index by 𝑖 (0 ≤ 𝑖 ≤

𝑁𝑖), is given by: 

𝑧𝑘 = ℎ𝑖(𝑥𝑘)+ 𝑣𝑘 (2) 

Note that 𝜔𝑘 and 𝑣𝑘 are Gaussian noise with zero mean.  

Furthermore, we denote the series of state and control 

inputs in an ideal scenario as 𝑥𝑘
∗  and 𝑢𝑘

∗   respectively. 

We place the following assumption: 
 

Assumption 1: 

 𝑥𝑘  is sufficiently close to 𝑥𝑘
∗ , and in the 

neighbourhood of 𝑥𝑘
∗ , the variations of 

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑢
,
𝜕𝑔

𝜕𝑥
,
𝜕ℎ𝑖

𝜕𝑥
 are small. 

 

Under this assumption, by neglecting higher-order terms, 

Equations (1) and (2) can be approximated by a linear 

system as follows: 

𝑥𝑘+1 ≅
𝜕𝑓

𝜕𝑥
|
𝑥𝑘
∗ ,𝑢𝑘

∗
𝑥𝑘 +

𝜕𝑓

𝜕𝑢
|
𝑥𝑘
∗ ,𝑢𝑘

∗
𝑢𝑘 +

𝜕𝑔

𝜕𝑥
|
𝑥𝑘
∗
𝜔𝑘 (3) 

𝑧𝑘 =
𝜕ℎ𝑖
𝜕𝑥
|
𝑥𝑘
∗
𝑥𝑘 + 𝑣𝑘 (4) 

For simplicity, let us define: 

𝐴𝑘 =
𝜕𝑓

𝜕𝑥
|
𝑥𝑘
∗ ,𝑢𝑘

∗
, 𝐵𝑘 =

𝜕𝑓

𝜕𝑢
|
𝑥𝑘
∗ ,𝑢𝑘

∗
 

𝐺𝑘 =
𝜕𝑔

𝜕𝑥
|
𝑥𝑘
∗
, 𝐻𝑘,𝑖 =

𝜕ℎ𝑖

𝜕𝑥
|
𝑥𝑘
∗
 

When applying a Kalman filter to the system 

described by Equations (3) and (4), the filter gain 𝐾𝑘,𝑖, 
and the propagation and update of the estimation error 

covariance 𝑃𝑘 are as follows: 

𝑄𝑘 = 𝔼[𝜔𝑘𝜔𝑘
𝑇], 𝑅𝑘,𝑖 = 𝔼[𝑣𝑘,𝑖𝑣𝑘,𝑖

𝑇 ] 

𝑃𝑘+1
− = 𝐴𝑘𝑃𝑘,𝑁𝑖

+ 𝐴𝑘
𝑇 + 𝐺𝑘𝑄𝑘𝐺𝑘

𝑇 (5) 

𝑃𝑘,0
+ = 𝑃𝑘

− (6) 

𝐾𝑘,𝑖 = 𝑆𝑘,𝑖𝑃𝑘,𝑖−1
+ 𝐻𝑘,𝑖

𝑇 (𝑅𝑘,𝑖 +𝐻𝑘,𝑖𝑃𝑘,𝑖−1
+ 𝐻𝑘,𝑖

𝑇 )
−1

(7) 

𝑃𝑘,𝑖
+ = (𝐼 − 𝐾𝑘,𝑖𝐻𝑘,𝑖)𝑃𝑘,𝑖−1

+ (𝐼 − 𝐾𝑘,𝑖𝐻𝑘,𝑖)
𝑇
+ 𝐾𝑘,𝑖𝑅𝑘,𝑖𝐾𝑘,𝑖

𝑇 (8) 

Where 𝐼  is the identity matrix, 𝑃𝑘
−  is the propagated 

estimation error covariance matrix after the disturbance, 

𝑃𝑘,𝑖
+  is the updated estimation error covariance matrix 

after observation by the 𝑖-th sensor, and 𝐾𝑘,𝑖 is the filter 

gain for the 𝑖-th sensor. 𝑆𝑘,𝑖 is a matrix that is an identity 

matrix when the 𝑖-th sensor can observe at time 𝑘 and a 

zero matrix otherwise. 

 

Assumption 2:  

The system is a periodic time-varying system with 

a period N. 

 

Under this assumption, we start with a sufficiently large 

positive definite matrix as the initial value for 𝑃0
− and 

evolve 𝑃𝑘 through Equations (5), (6), (7), and (8) until  

𝑃𝑁×𝑙
− = 𝐴𝑘𝑃𝑁×𝑙+𝑁−1,𝑁𝑖

+ 𝐴𝑘
𝑇 + 𝐺𝑘𝑄𝑘𝐺𝑘

𝑇 (9) 

 holds. At convergence, the filter gain 𝐾𝑘,𝑖
∗  (𝑘 =

0,1, …𝑁 − 1)  and the estimated error covariance 

𝑃𝑘
∗ (𝑘 = 0,1, …𝑁 − 1)  are established. As long as 

Assumptions 1 and 2 are valid, this estimation system 

will converge to a steady state where the filter gain and 

estimated error covariance remain constant at 𝐾𝑘,𝑖
∗  (𝑘 =

0,1, …𝑁 − 1) and 𝑃𝑘
∗(𝑘 = 0,1, …𝑁 − 1) respectively. 

Hereinafter, for simplicity, let 𝑘 ≔ 𝑘 mod 𝑁.  

Section 2. 

Derivation of Transfer Function Representation for 

the System Including Filter 

 

In the previous section, we derived a system formulation 

incorporating a Kalman filter. We define the system's 

coefficient matrix as 𝑋̃ = 𝑋 + Δ𝑋 , where 𝑋  is the 

original matrix and Δ𝑋 represents modelling errors. We 
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denote the estimated state as 𝑥̂, and the error between 

the true state 𝑥 and the estimate 𝑥̂ as 𝑒. Additionally, we 

account for unknown disturbances 𝜔̃𝑘  and unknown 

observation noise 𝑣̃𝑘 , both assumed to be energy-

bounded signals. Under these conditions, the system 

with modeling errors and unknown disturbances, and the 

estimator in steady state, can be described as follows: 

 

Propagation equation: 

𝑥𝑘+1 = 𝐴̃𝑥𝑘 + 𝐵̃𝑢𝑘+1 + 𝐺𝜔𝑘+1 + 𝐺̃𝜔̃𝑘+1 (10) 
𝑥̂𝑘+1
− = 𝐴𝑥̂𝑘,𝑁𝑖

+ + 𝐵𝑢𝑘+1 (11) 
𝑒𝑘+1
− = 𝐴𝑒𝑘,𝑁𝑖

+ + ∆𝐴𝑥𝑘 + ∆𝐵𝑢𝑘+1 + 𝐺𝜔𝑘+1 + 𝐺̃𝜔̃𝑘+1(12) 

 

Observation equation: 

𝑧𝑘,𝑖 = 𝐻𝑘,𝑖𝑥𝑘 + 𝑣𝑘,𝑖 + 𝑣̃𝑘,𝑖 (13) 

𝑧𝑘,𝑖 ≅ 𝐻𝑘,𝑖𝑥̂𝑘,𝑖−1
+ (14) 

𝑥̂𝑘,0
+ = 𝑥̂𝑘

− (15) 

𝑥̂𝑘,𝑖
+ = 𝑥̂𝑘,𝑖−1

+ + 𝐾𝑘,𝑖
∗ (𝑧𝑘,𝑖 − 𝐻𝑘,𝑖𝑥̂𝑘,𝑖−1

+ ) (16) 

𝑒𝑘,𝑖
+ = (𝐼 − 𝐾𝑘,𝑖

∗ 𝐻𝑘,𝑖)𝑒𝑘,𝑖−1
+  

−𝐾𝑘,𝑖
∗ ∆𝐻𝑘,𝑖𝑥𝑘 − 𝐾𝑘,𝑖

∗ 𝑣𝑘,𝑖 − 𝐾𝑘,𝑖
∗ 𝑣̃𝑘,𝑖 (17) 

 
To describe the evolution of the estimation error 𝑒𝑘,𝑁𝑖

+  

over one cycle, the equations (12) and (17) can be 

written down to form the following linear difference 

equation: 

𝑒𝑘+𝑁,𝑁𝑖
+ = 𝑌𝑘,0𝑒𝑘,𝑁𝑖

+  

+∑{

𝛷𝑘,𝑛𝛥𝐴𝑘+𝑛

+𝑌𝑘,𝑛+1∑𝛹𝑘+𝑛,𝑖𝛥𝐻𝑘+𝑛,𝑖

𝑁𝑖

𝑖=0

}𝑥𝑘+𝑛

𝑁

𝑛=0

 

+∑𝛷𝑘,𝑛𝛥𝐵𝑘+𝑛𝑢𝑘+𝑛

𝑁

𝑛

 

+∑𝛷𝑘,𝑛𝐺𝑘+𝑛𝜔𝑘+𝑛

𝑁

𝑛

 

+∑𝛷𝑘,𝑛𝐺̃𝑘+𝑛𝜔̃𝑘+𝑛

𝑁

𝑛

 

−∑∑𝑌𝑘,𝑛+1𝛹𝑘+𝑛,𝑖𝑣𝑘+𝑛,𝑖

𝑁𝑖

𝑖=0

𝑁

𝑛

 

−∑∑𝑌𝑘,𝑛+1𝛹𝑘+𝑛,𝑖𝑣̃𝑘+𝑛,𝑖

𝑁𝑖

𝑖=0

𝑁

𝑛

(18) 

Here, 𝑋𝑘,𝑖0𝑌𝑘,𝑛0𝛷𝑘,𝑛, and 𝛹𝑘,𝑖  are defined as follows: 
 

𝑋𝑘,𝑖0 =∏(𝐼 − 𝐾𝑘,𝑖
∗ 𝐻𝑘,𝑖)

𝑁𝑖

𝑖=𝑖0

(19) 

𝑌𝑘,𝑛0 = ∏ 𝑋𝑘+𝑛,0𝐴𝑘+𝑛

𝑁

𝑛=𝑛0

(20) 

𝛷𝑘,𝑛 = 𝑌𝑘,𝑛+1𝑋𝑘+𝑛,0 (21) 
𝛹𝑘,𝑖 = 𝑋𝑘,𝑖+1𝐾𝑘,𝑖

∗ (22) 
Equation (18) can be transformed into a transfer 

function representation using the Z-transform, by 

separating 𝑥𝑘  and 𝑢𝑘  into their nominal values 𝑥𝑘
∗ , 𝑢𝑘

∗ , 

and perturbation terms 𝑥̃𝑘 , 𝑢̃𝑘 , followed by converting 

from the discrete to the continuous frequency domain. 

The resulting expression is: 

(𝐼 − 𝑌𝑘,0𝑧
−𝑁)𝑒𝑘(𝑧) 

=∑{

𝛷𝑘,𝑛𝛥𝐴𝑘+𝑛

+𝑌𝑘,𝑛+1∑𝛹𝑘+𝑛,𝑖𝛥𝐻𝑖,𝑘+𝑛

𝑁𝑖

𝑖=0

}(
𝑧−𝑁+𝑛𝑥̃(𝑧)

+𝑥𝑘+𝑛
∗ )

𝑁

𝑛=0

 

+∑𝛷𝑘,𝑛𝛥𝐵𝑘+𝑛 (
𝑧−𝑁+𝑛𝑢̃(𝑧)

+𝑢𝑘+𝑛
∗ )

𝑁

𝑛

 

+∑𝛷𝑘,𝑛𝐺𝑘+𝑛𝑧
−𝑁+𝑛𝜔(𝑧)

𝑁

𝑛

 

+∑𝛷𝑘,𝑛𝐺̃𝑘+𝑛𝑧
−𝑁+𝑛

𝑁

𝑛

𝜔̃(𝑧) 

−∑(∑𝑌𝑘,𝑛+1𝛹𝑘+𝑛,𝑖𝑧
−𝑁+𝑛

𝑁

𝑛

)

𝑁𝑖

𝑖=0

𝑣𝑖(𝑧) 

−∑(∑𝑌𝑘,𝑛+1𝛹𝑘+𝑛,𝑖𝑧
−𝑁+𝑛

𝑁

𝑛

)

𝑁𝑖

𝑖=0

𝑣̃𝑖(𝑧) (23) 

Furthermore, by converting from the discrete frequency 

domain to the continuous frequency domain, we can 

rewrite Equation (23) as follows: 

(𝐼 − 𝑌𝑘,0e
−𝑠𝑁𝑇)

−1
𝑒𝑘(𝑠)

=

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 ∑𝑈𝑥 (

e−𝑠(𝑁−𝑛)𝑇𝑥̃(𝑠)

+𝑥𝑘+𝑛
∗ )

𝑁

𝑛=0

+∑𝑈𝑢 (
e−𝑠(𝑁−𝑛)𝑇𝑢̃(𝑠)

+𝑢𝑘+𝑛
∗ )

𝑁

𝑛

+∑𝑈𝜔𝜔𝑘+𝑛

𝑁

𝑛

+∑𝑈𝜔̃e
−𝑠(𝑁−𝑛)𝑇

𝑁

𝑛

𝜔̃(𝑠)

−∑∑𝑈𝑣𝑖

𝑁

𝑛

𝑁𝑖

𝑖=0

𝑣𝑖

−∑(∑𝑈𝑣̃𝑖e
−𝑠(𝑁−𝑛)𝑇

𝑁

𝑛

)

𝑁𝑖

𝑖=0

𝑣̃𝑖(𝑠)
}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

(24) 

Here, 𝑈𝑥 , 𝑈𝑢𝑈𝜔𝑈𝜔̃𝑈𝑣𝑖 and 𝑈𝑣̃𝑖  are defined as follows: 

{
 
 
 
 

 
 
 
 
𝑈𝑥 = 𝛷𝑘,𝑛𝛥𝐴𝑘+𝑛 + 𝑌𝑘,𝑛+1∑𝛹𝑘+𝑛,𝑖𝛥𝐻𝑖,𝑘+𝑛

𝑁𝑖

𝑖=0

𝑈𝑢 = 𝛷𝑘,𝑛𝛥𝐵𝑘+𝑛
𝑈𝜔 = 𝛷𝑘,𝑛𝐺𝑘+𝑛

𝑈𝜔̃ = 𝛷𝑘,𝑛𝐺̃𝑘+𝑛
𝑈𝑣𝑖 = 𝑌𝑘,𝑛+1𝛹𝑘+𝑛,𝑖
𝑈𝑣̃𝑖 = 𝑌𝑘,𝑛+1𝛹𝑘+𝑛,𝑖

(25) 
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Section 3. 

Derivation of Error Power Norm  

 

The input-output relationship of a system using the 

transfer function is denoted as: 

𝑍(𝑠) = 𝐺(𝑠)𝑊(𝑠) (26) 

where 𝐺(𝑠) is the transfer function, and 𝑊(𝑠) and 𝑍(𝑠) 
represent the Laplace transforms of the input 𝑤(𝑡),  and 

output 𝑧(𝑡) respectively. The 𝐻2 and 𝐻∞ norms of 𝐺(𝑠) 
are defined as follows [8]: 

‖𝐺‖2 = (lim
𝛼→0

∫ tr(𝐺(𝛼 − 𝑗𝜔)𝑇𝐺(𝛼 + 𝑗𝜔))
∞

−∞

𝑑𝜔)

1
2

(27) 

‖𝐺‖∞ = lim
𝛼→0

sup
𝜔
𝜎(𝐺(𝛼 + 𝑗𝜔)) (28) 

Here, 𝜎(𝑈) denotes the largest singular value of matrix 

𝑈 . The 𝐻∞  norm, characterized by its subadditive 

property, is expressed as [8]: 
‖𝐹1𝐹2‖∞ ≤ ‖𝐹1‖∞ + ‖𝐹2‖∞ (29) 

It is known that the 𝐻∞ norm of 𝐺(𝑠) is equivalent to 

the 𝐺(𝑠) norm mapping from 𝑊(𝑠) to 𝑍(𝑠), leading to 

the following relationship [8]: 

‖𝐺‖∞ = sup
𝑊∈𝐻2\{0}

‖𝑍‖2
‖𝑊‖2

= sup
𝑊∈𝐻2\{0}

‖𝐺𝑊‖2
‖𝑊‖2

(30) 

Thus, we have: 
‖𝑍‖2 ≤ ‖𝐺‖∞‖𝑊‖2 (31) 

Equation (30) further leads to the derivation of the 

submultiplicative property of the 𝐻∞ norm: 
‖𝐹1𝐹2‖∞ ≤ ‖𝐹1‖∞‖𝐹2‖∞ (32) 

Moreover, since 𝑊(𝑠)  and 𝑍(𝑠)  are the Laplace 

transforms of 𝑤(𝑡) and 𝑤(𝑡), by Parseval's theorem [9]: 
‖𝑊(𝑠)‖2 = ‖𝑤(𝑡)‖ℒ2 (33) 

This implies: 
‖𝑧(𝑡)‖ℒ2 ≤ ‖𝐺‖∞‖𝑤(𝑡)‖ℒ2 (34) 

Taking the time average of both sides in equation (34): 

power(𝑧) ≤ ‖𝐺‖∞ ∙ power(𝑤) (35) 
Where: 

power(𝑤) ≔ lim
𝑇→∞

(
1

𝑇
∫ |𝑤(𝑡)|2𝑑𝑡
𝑇

0

)

1
2

(36) 

From equations (29), (32), and (35), equation (24) 
can be rewritten to estimate the magnitude of drift 
errors based on the power (mean values) of 
𝑥𝑘 , 𝑢𝑘, 𝜔̃𝑘, 𝑣̃𝑘,𝑖  as follows: 

power(𝑒) ≤ ‖(𝐼 − 𝑌𝑘,0𝑒
−𝑠𝑁𝑇)

−1
‖
∞

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 ∑‖𝑈𝑥‖∞𝑥𝑘+𝑛

∗

𝑁

𝑛=0

+∑‖𝑈𝑥𝑒
−𝑠(𝑁−𝑛)𝑇‖

∞

𝑁

𝑛=0

power(𝑥̃)

+∑‖𝑈𝑢‖∞𝑢𝑘+𝑛
∗

𝑁

𝑛

+∑‖𝑈𝑢𝑒
−𝑠(𝑁−𝑛)𝑇‖

∞

𝑁

𝑛

power(𝑢̃)

+∑‖𝑈𝜔̃𝑒
−𝑠(𝑁−𝑛)𝑇‖

∞

𝑁

𝑛

power(𝜔̃)

−∑(∑‖𝑈𝑣̃𝑖𝑒
−𝑠(𝑁−𝑛)𝑇‖

∞

𝑁

𝑛

)

𝑁𝑖

𝑖=0

power(𝑣̃𝑖)
}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

(37)
 

Additionally, using the power spectral density (PSD) to 

describe the frequency domain of equation (36): 

∫ PSD𝑧 (
𝜔

2𝜋
)𝑑𝜔

∞

−∞

≤ ‖𝐺‖∞∫ PSD𝑤 (
𝜔

2𝜋
) 𝑑𝜔

∞

−∞

(38) 

Thus, the error can also be estimated from the PSD, 

providing a comprehensive analysis of system stability 

and control. 

 

III. FORMULATION OF THE EXAMPLE PROBLEM 

Section 1. Proposed Method 

 

To demonstrate the effectiveness of the proposed 

method, we established a simplified system for 

estimating the relative orbital motion of two satellites 

without actuators and conducted an analysis. The Local 

Vertical Local Horizontal (LVLH) coordinate system 

was employed to describe the relative orbital motion of 

the two satellites. The LVLH coordinate system is a non-

inertial frame defined with the center of mass of a 

satellite on a certain orbit as the origin. It aligns the 𝑥-

axis toward the center of the gravitational body from the 

satellite's center of mass, the 𝑧-axis in the direction of 

the satellite's orbital angular momentum vector, and the 

𝑦-axis to form a right-hand system with the previously 

defined axes. Figure 1 illustrates the basis directions of 

the LVLH coordinate system. 
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Figure 1: LVLH Coordinate System 

 

The linearized equations for relative circular orbital 

motion, known as the HCW (Hill-Clohessy-Wiltshire) 

equations, were used to model the dynamics relative to 

the Chief satellite as follows[10]: 

{

𝑟̈𝑥 = 3𝜔𝑧
2𝑟𝑥 + 2𝜔𝑧𝑟̇𝑦 + 𝑎𝑥

𝑟̈𝑦 = 2𝑛𝑟̇𝑥 + 𝑎𝑦

𝑟̈𝑧 = −𝜔𝑧
2𝑟𝑧 + 𝑎𝑧

(39) 

The initial position of the Deputy satellite was set as 

𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 = {0,10,0} . At this position, no acceleration 

due to dynamics occurs, so the nominal relative position 

remains constantly at 𝑟𝑥
∗, 𝑟𝑦

∗, 𝑟𝑧
∗ = {0,10,0} 

The state variables are defined in the LVLH frame as the 

relative positions 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧  and relative velocities 

𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧  The values from the relative acceleration 

sensors 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 are used as inputs to the propagation 

equation, and the relative position and velocity are 

measured using position and velocity sensors. The 

propagation and observation equations can be expressed 

as follows: 

 

Propagation Equation: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘+1 + 𝐺𝜔𝑘+1 

⇔

[
 
 
 
 
 
𝑟𝑥
𝑟𝑦
𝑟𝑧
𝑟̇𝑥
𝑟̇𝑦
𝑟̇𝑧]
 
 
 
 
 

𝑘+1

=

[
 
 
 
 
 
1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

𝑑𝑡
0
0
1
0
0

0
𝑑𝑡
0
0
1
0

0
0
𝑑𝑡
0
0
1 ]
 
 
 
 
 

[
 
 
 
 
 
𝑟𝑥
𝑟𝑦
𝑟𝑧
𝑟̇𝑥
𝑟̇𝑦
𝑟̇𝑧]
 
 
 
 
 

𝑘

 

+

[
 
 
 
 
 
 
 
 
 
𝑑𝑡2

2
0 0

0
𝑑𝑡2

2
0

0 0
𝑑𝑡2

2
𝑑𝑡 0 0
0 𝑑𝑡 0
0 0 𝑑𝑡 ]

 
 
 
 
 
 
 
 
 

[

𝑎𝑥
𝑎𝑦
𝑎𝑧
]

𝑘+1

 

+

[
 
 
 
 
 
 
 
 
 
𝑑𝑡2

2
0 0

0
𝑑𝑡2

2
0

0 0
𝑑𝑡2

2
𝑑𝑡 0 0
0 𝑑𝑡 0
0 0 𝑑𝑡 ]

 
 
 
 
 
 
 
 
 

[

𝜔𝑥
𝜔𝑦
𝜔𝑧
]

𝑘+1

(40) 

 

Observation Equation: 

𝑧𝑟̇ = 𝐻𝑟̇𝑥𝑘 + 𝑣𝑘,𝑟̇  

⇔ [

𝑟̇𝑚,𝑥
𝑟̇𝑚,𝑦
𝑟̇𝑚,𝑧

]

𝑘

= [
0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

]

[
 
 
 
 
 
𝑟𝑥
𝑟𝑦
𝑟𝑧
𝑟̇𝑥
𝑟̇𝑦
𝑟̇𝑧]
 
 
 
 
 

𝑘

+ [

𝑣𝑥̇
𝑣𝑦̇
𝑣𝑧̇
]

𝑘

(41) 

𝑧𝑟 = 𝐻𝑟𝑥𝑘 + 𝑣𝑘,𝑟 

⇔ [

𝑟𝑚,𝑥
𝑟𝑚,𝑦
𝑟𝑚,𝑧

]

𝑘

= [
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

]

[
 
 
 
 
 
𝑟𝑥
𝑟𝑦
𝑟𝑧
𝑟̇𝑥
𝑟̇𝑦
𝑟̇𝑧]
 
 
 
 
 

𝑘

+ [

𝑣𝑥
𝑣𝑦
𝑣𝑧
]

𝑘

(42) 

𝑑𝑡  is the time step, 𝑟̇𝑚,𝑥 , 𝑟̇𝑚,𝑦 , 𝑟̇𝑚,𝑧  are the measured 

velocities, 𝑟𝑚,𝑥 , 𝑟𝑚,𝑦 , 𝑟𝑚.𝑧  are the measured positions, 

𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧  represent the white noise in the 

accelerometer, 𝑣𝑥̇ , 𝑣𝑦̇ , 𝑣𝑧̇  are the white noise in the 

velocity sensors, and 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 are the white noise in the 

position sensors. It is assumed that the velocity and 

position sensors have misalignment errors. Therefore, 

the nominal observation equations mentioned earlier 

actually contain model errors as follows: 

𝑧𝑟̇ = 𝐻𝑟̇𝑥𝑘 + 𝑣𝑘,𝑟̇ 
= [𝑅𝑛𝑟̇(𝜃𝑟̇) 𝟎]𝑥𝑘 + 𝑣𝑘,𝑟̇ 
= (𝐻𝑟̇ + [𝑅𝑛𝑟̇(𝜃𝑟̇) − 𝑰 𝟎])𝑥𝑘 + 𝑣𝑘,𝑟̇ (43) 

𝑧𝑟 = 𝐻𝑟𝑥𝑘 + 𝑣𝑘,𝑟 
= [𝑅𝑛𝑟(𝜃𝑟) 𝟎]𝑥𝑘 + 𝑣𝑘,𝑟 
= (𝐻𝑟 + [𝑅𝑛𝑟(𝜃𝑟) − 𝑰 𝟎])𝑥𝑘 + 𝑣𝑘,𝑟 (44) 

Here, 𝑅𝑛(𝜃) is a 3D rotation matrix that rotates around 

axis 𝑛 by angle 𝜃. 

When substituting equations (43) and (44) into equation 

(24) and taking the norm, the power of the error 𝑒 can 

be estimated as follows: 

power(𝑒) ≤ ‖(𝐼 − 𝑌𝑘,0𝑒
−𝑠𝑁𝑇)

−1
‖
∞

 

×∑‖𝑌𝑘,𝑛+1∑𝛹𝑘+𝑛,𝑖

𝑁𝑖

𝑖=0

‖

∞

𝛥𝐻𝑖,𝑘+𝑛𝑥𝑘+𝑛
∗

𝑁

𝑛=0

 

= ‖(𝐼 − 𝑌𝑘,0𝑒
−𝑠𝑁𝑇)

−1
‖
∞

 

×∑‖𝑌𝑘,𝑛+1∑𝛹𝑘+𝑛,𝑖

𝑁𝑖

𝑖=0

‖

∞

[𝑅𝑛𝑟(𝜃𝑟) − 𝑰 𝟎]𝑥𝑘+𝑛
∗

𝑁

𝑛=0
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= ‖(𝐼 − 𝑌𝑘,0𝑒
−𝑠𝑁𝑇)

−1
‖
∞

×∑∑(
‖𝑌𝑘,𝑛+1𝛹𝑘+𝑛,𝑖‖∞
× ‖𝑅𝑛𝑟(𝜃𝑟)‖∞

)

𝑁𝑖

𝑖=0

power ([

𝑟𝑥
∗

𝑟𝑦
∗

𝑟𝑧
∗

])

𝑁

𝑛=0

(45)
 

 

The settings for each value are summarized in Table 1: 

 

Table 1: Computational Parameters 

 symbol value 

Time step 𝑑𝑡 0.1 [𝑠] 
Accelerometer Noise 𝜔𝑥

2, 𝜔𝑦
2, 𝜔𝑧

2 0.3 
[(𝑚/𝑠2)2] 

Velocity Sensor Noise 𝑣𝑥̇
2, 𝑣𝑦̇

2, 𝑣𝑧̇
2 0.2 

[(𝑚/𝑠)2] 
Velocity Measurement 
Interval 

− 0.3 [𝑠] 

Velocity Sensor 
misalignment 

𝜃𝑟̇ 1 [𝑑𝑒𝑔] 

Position Sensor Noise 𝑣𝑥
2, 𝑣𝑦

2, 𝑣𝑧
2 0.1 [𝑚2] 

Position Measurement 
Interval 

− 1 [𝑠] 

Position Sensor 
misalignment 

𝜃𝑟 1 [𝑑𝑒𝑔] 

 

Section 2. Monte Carlo simulation 

 

At the start of each trial, the alignment tilt 
directions of the position and velocity sensors are 
determined randomly. Subsequently, numerical 
simulations are conducted over enough time steps. 
Statistics are collected per orbital period to calculate 
the mean and variance of the errors. The number of 
trials was set to 60, with each trial running for 1000 
steps. 

 

IV. RESULTS 

We compare the estimates of error mean and variance 

obtained through the proposed method with the results 

from Monte Carlo simulations. Figure 2 displays a graph 

with the x-axis showing the intra-orbital period time and 

the y-axis showing the standard deviation of the position 

estimation error in the x-axis direction. The black line 

indicates the results from each trial of the Monte Carlo 

simulation, while the red line represents the outcomes 

derived from the covariance analysis within the 

proposed method. Figure 3 illustrates the results of the 

analysis using the 𝐻∞  norm, with the y-axis 

representing the power of the position estimation error 

and the x-axis showing the intra-orbital period time. 

Figure 4 shows the standard deviation of the position 

estimation error in the x-axis direction for the case 

without misalignment, formatted similarly. In both 

Figures 3 and 4, the black line represents the Monte 

Carlo simulations, and the red line shows the power of 

the position estimation error determined through the 

norm analysis of the proposed method.  

 

As indicated in Figures 2, 3, and 4, the results of the 

proposed method effectively capture the graphical shape 

of the results obtained from the simulations. This 

capability to analytically determine the behaviour when 

combining sensors operating at multiple rates is a 

strength of this method. 

 

In Figure 2, the results of the covariance analysis, which 

show the variation of the estimates, are observed to 

estimate lower errors compared to the simulation. This 

lower estimation is due to the covariance analysis not 

accounting for the impact of unknown disturbances or 

modelling errors. Indeed, by examining Figure 4, which 

compares the simulation results without misalignment, 

the estimation of error variance has been successful. 

 

In Figure 3, the fact that the calculated results of the 

error mean by the proposed method cover almost all 

trials of the simulation aligns well with the outcome 

expected from Equation (36), where the inequality is 

used to calculate the worst-case scenario. This 

consistency suggests that evaluating the system with the 

𝐻∞ norm is beneficial and indicative of the utility of the 

𝐻∞ norm for system evaluation. 

 
Figure 2: std of x-axis position estimate error. 

(black: Monte Carlo, red: Proposed method) 
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Figure 3: mean of position estimate error. 

(black: Monte Carlo, red: Proposed method) 

 

 

 
Figure 4: std of x-axis position estimate error without 

misalignment. 

(black: Monte Carlo, red: Proposed method) 

 

V. CONCLUSION 

In this paper, we proposed a novel method for evaluating 

estimation systems. The method we introduced can 

perform analyses faster than Monte Carlo simulations 

and more faithfully to the model than covariance 

analysis. This mathematically derived approach has 

been applied to settings involving multi-rate sensors and 

sensor misalignment, providing estimates of estimation 

accuracy. Particularly for the power of estimation errors, 

this method, which calculates worst-case values using 

the 𝐻∞  norm, demonstrated remarkable predictive 

accuracy. 
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