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Abstract – Precise satellite formation flying is a 

promising technology to enable unprecedented as-

tronomical observations in space. To pave pathways 

to comprehensive astronomical missions, prelimi-

nary missions involving small satellites in low Earth 

orbit (LEO) have been proposed. However, there ex-

ist various perturbation sources in LEO, and their 

compensation is essential to keep the rigid and pre-

cise formation. This study proposes the feedforward 

control method to compensate gravitational pertur-

bations, which can be predicted accurately from 

spacecraft’s absolute position. The numerical analy-

sis shows that the feedforward control could reduce 

the load of the feedback controller significantly, 

which potentially makes precise formation flying in 

LEO much easier.  

 

I. INTRODUCTION 

Spacecraft formation flying enables the construction of 

large virtual structures in space. Precise formation flying 

missions have been proposed and ongoing in the world. 

For example, PROBA-3 [1] will demonstrate several 

formation activities including coarse-to-fine control, au-

tonomy, safety management, and solar coronagraph ob-

servation in a highly elliptical orbit (HEO). PROBA-3 

can resize its baseline length between 25 m and 250 m 

while maintaining sub-milli-meter- and arc-second-or-

der relative displacement and pointing accuracy.  

Some formation-flying astronomical missions using 

interferometric techniques require further control accu-

racy of less than 1 μm between science instruments. To 

provide a pathway towards future comprehensive mis-

sions, smaller-class space missions have been proposed 

by using a near-circular low Earth orbit (LEO). One rep-

resentative is a linear astronomical interferometer (cf., 

[2, 3]), which comprises one beam combiner spacecraft 

and two collector spacecraft. Their formation size is kept 

about tens to hundreds of meters, and it typically re-

quires the μm-level control accuracy of the optical path 

difference from stellar light. To attain this control accu-

racy between the science instruments, the relaxed but 

still challenging (e.g., mm-level) control accuracy be-

tween the satellites would be necessary by rigid and con-

tinuous formation control.  

It was sufficient for the typical formation flying mis-

sions being operational in LEO to compensate long-pe-

riod and secular perturbations, and control the mean rel-

ative orbital elements. However, formation flying inter-

ferometry typically requires the rigid and continuous 

formation keeping for intended observations. Therefore, 

it is essential for formation flying interferometry in LEO 

to mitigate short-period perturbations, and control oscu-

lating relative motion precisely. In addition, different 

from precise formation flying at apogee in HEO, that in 

LEO involves various perturbation sources. These per-

turbations include, for example, the Earth J2 gravita-

tional potential, long-period drift of eccentricity vector, 

third-body gravity, nonlinear terms of linearized relative 

motion, atmospheric drag, and solar radiation pressure. 

Atmospheric drag and solar radiation pressure have en-

vironmental and systematic uncertainties. On the other 

hand, the other perturbations are caused by Earth or 

third-body gravity, so that their effects tend to be deter-

ministic. Thus, they are potentially compensated in a 

feedforward manner.  

This study proposes a feedforward control method to 

attain precise formation flying in a near-circular LEO. 

The proposed method can compensate the relative short-

period perturbations derived from gravity in addition to 

the long-period and secular ones, which could contribute 

to attaining the precise formation flying in LEO much 

easier. The remainder of the paper is organized as fol-

lows. Section II reviews the perturbed orbital motion in 

Earth orbit. Section III proposes the feedforward control 

law to compensate gravitational perturbations. Section 

IV shows the validity of the proposed method by closed-

loop numerical simulations. Section V provides the con-

clusions and future work.  

 

II. RELATIVE ORBITAL MOTION 

For unperturbed orbital motion, the linearized relative 

dynamics in a circular orbit, known as Clohessy-Wilt-

shire (CW) equation [4], is 

 

 𝒓̈ = 𝐴𝑢1𝒓 + 𝐴𝑢2𝒓̇ + 𝒖𝑑  (1) 

 

where 𝒓 is the position vector of the deputy with respect 

to the chief in the local-vertical local-horizontal (LVLH) 

frame, 𝒖𝑑 is the control acceleration of the deputy in the 

LVLH frame, and 𝐴𝑢1and 𝐴𝑢2 are defined as 

 

𝐴𝑢1 = [
3𝑛2 0 0

0 0 0
0 0 −𝑛2

] , 𝐴𝑢2 = [
0 2𝑛 0

−2𝑛 0 0
0 0 0

]  (2) 

 

where 𝑛 is the mean motion of the chief. By applying 

the initial condition to avoid the along-track drift, the 

closed-form solution 𝒓𝑟 is 
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Fig. 1: Schematic of a formation-flying linear astronom-

ical interferometer.  
 

𝒓𝑟 = [𝜌𝑦 +

𝜌𝑥 sin(𝜃 + 𝛼𝑥)

2𝜌𝑥 cos(𝜃 + 𝛼𝑥)

𝜌𝑧 sin(𝜃 + 𝛼𝑧)
]      (3) 

 

where 𝜌𝑥, 𝜌𝑦, 𝜌𝑧, 𝛼𝑥, 𝛼𝑧 are the design parameters and 𝜃 

is the argument of latitude. This study assumes a linear 

astronomical interferometer as the benchmark of for-

mation-flying interferometry. Figure 1 shows the sche-

matic of a formation-flying linear astronomical interfer-

ometer. The essential requirement on the interferometric 

observation is to maintain the optical path difference 

(OPD; 𝛬) being sufficiently small [2].  By using the 

symbols in Fig. 1, this requirement is expressed as  

 

𝛬 = (‖𝒓1‖ − ‖𝒓2‖ − 𝒔̂ ∙ 𝒓1 + 𝒔̂ ∙ 𝒓2) ≈ 0     (4) 
 

The reference is set for 𝒔̂ to be perpendicular to 𝒓1 and 

𝒓2 , and ‖𝒓1‖ = ‖𝒓2‖. The linear formation under or-

thogonal pointing to the star can be configured by setting 

the design parameters in (3) as follows: one beam com-

biner spacecraft at the origin and the two collector space-

craft at 𝜌𝑥 = 0 , 𝜌𝑦 = ±𝐿 , 𝜌𝑧 = 𝜌𝑦 tan 𝑝 sin(𝜃 + 𝑞)  [2]. 

The angles 𝑝 and 𝑞 are defined as 
 

{

cos 𝑝          = sin 𝛥𝛺𝛼 sin 𝐼 cos 𝛿 + cos 𝐼 sin 𝛿
sin 𝑝 sin 𝑞 = sin 𝛥𝛺𝛼 cos 𝐼 cos 𝛿 − sin 𝐼 sin 𝛿
sin 𝑝 cos 𝑞 = cos 𝛥𝛺𝛼 cos 𝛿                                 

          (5) 

 

where 𝛥𝛺𝛼 = (𝛺 − 𝛼), 𝛺 is the right ascension of the 

ascending node of the chief, 𝐼 is the inclination, 𝛼 and 𝛿 

are the right ascension and declination of the target ob-

servation direction, respectively. Figure 1 shows the lin-

ear formation in Earth orbit to observe the target star.  

Next, the perturbed relative motion is [5]  

 

𝒓̈ = −2𝝎 × 𝒓̇ − 𝝎 × (𝝎 × 𝒓) − 𝝎̇ × 𝒓 

+𝒇𝑔2𝐵 + 𝒇𝑝 + 𝒖𝑑 − 𝒖𝑐      (6) 

 

where 𝒇𝑔2𝐵 is the linearized gravity gradient accelera-

tion owing to the two-body gravitational field, 𝒇𝑝 is the 

relative physical perturbing acceleration, 𝒖𝑐 is the abso-

lute control acceleration applied to the chief, and 𝝎 is 

the orbital angular velocity vector. By defining the posi-

tional deviation as  𝜺 = (𝒓 − 𝒓𝑟), (6) becomes 

𝜺̈ = 𝐴𝑡1𝜺 + 𝐴𝑡2𝜺̇ + 𝒇𝑝 + 𝒇𝑜 + 𝒇𝑓 + 𝒖𝑑 − 𝒖𝑐     (7) 

 

where 𝒇𝑜 is the relative fictitious acceleration owing to 

the perturbed motion of the chief, 𝒇𝑓 is the relative fic-

titious acceleration owing to the perturbed motion of the 

reference formation, and 𝐴𝑡1and 𝐴𝑡2  are the matrix in 

which 𝑛 in (2) is replaced by 𝑛 → 𝜔𝑡 , where 𝜔𝑡  is the 

target angular velocity. The form of 𝒇𝑝 is determined by 

each perturbation source, which will be given in [6]. The 

exact forms of 𝒇𝑜 and 𝒇𝑓 are [6] 

 

𝒇𝑜 = (𝐴𝑝1 − 𝐴𝑡1)𝒓 + (𝐴𝑝2 − 𝐴𝑡2)𝒓̇              (8) 

𝒇𝑓 = 𝐴𝑡1𝒓𝑟 + 𝐴𝑡2𝒓̇𝑟 − 𝒓̈𝑟                               (9) 

 

where  

 

𝐴𝑝1 = [

𝜔𝑧
2 + 2(𝜇 𝑅3⁄ ) 𝜔̇𝑧 −𝜔𝑥𝜔𝑧

−𝜔̇𝑧 𝜔𝑥
2 + 𝜔𝑧

2 − (𝜇 𝑅3⁄ ) 𝜔̇𝑥

−𝜔𝑥𝜔𝑧 −𝜔̇𝑥 𝜔𝑥
2 − (𝜇 𝑅3⁄ )

]  (10) 

 

𝐴𝑝2 = [

0 2𝜔𝑧 0
−2𝜔𝑧 0 2𝜔𝑥

0 −2𝜔𝑥 0
]                       (11) 

 

and 

 

{
𝜔𝑥 = 𝛺̇ sin 𝐼 sin 𝜃 + 𝐼̇ cos 𝜃

𝜔𝑧 = 𝛺̇ cos 𝐼 + 𝜃̇                   
                   (12) 

 

In general, the absolute perturbations 𝑭𝑐 applied to the 

chief tend to be larger than the relative ones, so that com-

pensating the absolute perturbations by control is an in-

efficient way. When the absolute perturbations 𝑭𝑐  are 

not compensated (such that 𝒖𝑐 = 𝟎), the three types of 

relative perturbations (𝒇𝑝, 𝒇𝑜, 𝒇𝑓) have to be compen-

sated by the control acceleration 𝒖𝑑 to keep the position 

and velocity on the reference formation in (3).  

 

III. DISTURBANCE COMPENSATION 

Figure 2 shows the state feedback control diagram to 

track the reference formation. The feedback control ac-

celeration is expressed as 

 

 
Fig. 2: State feedback control diagram.  

 

 
Fig. 3: Proposed control diagram. 



 

 

29th  International Symposium on Space Flight Dynamics (ISSFD) 

22 - 26 April 2024 at ESOC in Darmstadt, Germany. 

 
Figure 4: Relative perturbing acceleration in LEO. The 

calculation condition corresponds to those in Table 2.  

 

𝒖𝑓𝑏 = −𝑲𝒙                           (13) 

 

where 𝑲 is the constant gain matrix and 𝒙 is the state er-

ror vector (𝒙 = [𝜺𝑇 𝜺̇
𝑇]

𝑇
). If the disturbance vector (𝒅) 

in Fig. 2 is non-zero, the control deviation does not reach 

zero. One possible approach to reduce the deviation is to 

increase the feedback gain, but the large gain might in-

crease the instability of the control. Another idea is to 

compensate a large part of 𝒅 via feedforward control. 

Figure 3 shows the proposed control diagram. If the 

feedforward control (𝒖𝑓𝑓) can predict the imposed dis-

turbance accurately, 𝒖𝑓𝑓  gets close to 𝒖𝑓𝑓 → −𝒅 . By 

combining the feedforward and feedback controls, the 

control deviation potentially reaches close to zero much 

easier. The feasibility of this control strategy hinges on 

whether the disturbance can be known accurately.  

The previous study [6] identifies the various pertur-

bation sources existing in Earth orbits for precise for-

mation flying: CW nonlinearity (the non-linear terms 

which are neglected in the linearization process to attain 

(1)), Earth 𝐽2  gravity, small eccentricity (caused by 

long-period perturbation via Earth 𝐽2 𝐽3⁄  gravity), luni-

solar gravity, atmospheric drag, and solar radiation pres-

sure. Figure 4 shows an example of mean relative per-

turbing accelerations per revolution in LEO. In Fig. 4, 

the major gravitational perturbations in LEO are Earth 

𝐽2  gravity, small eccentricity, and CW nonlinearity. 

These gravitational perturbations tend to be determinis-

tic. The other gravitational perturbations such as luniso-

lar gravity and Earth gravity potential higher than 𝐽3 

term are less than 10-9 m/s2. On the other hand, the at-

mospheric drag and solar radiation pressure have envi-

ronmental or systematic uncertainty, so that it is more 

challenging to predict these non-gravitational perturba-

tions. However, their magnitudes tend to be smaller than 

those of the major gravitational perturbations; therefore, 

they may be potentially neglected or mitigated by the 

simple gain tuning of the feedback controller.  

 

Table 1: Proposed control strategy to compensate the 

various perturbations in LEO.  

Perturbations 𝒇𝑝 𝒇𝑜 𝒇𝑓 

CW nonlinearity FF N/A N/A 

Earth 𝐽2 gravity FF FF FF 

Earth 𝐽𝑛 gravity (𝑛 ≥ 3) FB FB FB 

Small eccentricity  

(by Earth 𝐽2 𝐽3⁄  gravity) 

N/A FF FF 

Lunisolar gravity FB FB FB 

Atmospheric drag FB FB FB 

Solar radiation pressure FB FB FB 

 

 
Fig. 5: Flow chart to calculate the feedforward control 

acceleration.  

 

Table 1 shows the proposed control strategy to com-

pensate various perturbations in LEO. Note that “FF” in 

Table 1 indicates the disturbances compensated by feed-

forward control, “FB” indicates those by feedback con-

trol, and “N/A” indicates that there is no corresponding 

disturbance. Figure 5 shows the flow chart to calculate 

the feedforward control acceleration (𝒖𝑓𝑓). The detailed 

calculation steps are summarized as follows.  

 

1. Calculate the osculating orbital elements: œ =
[𝑎 𝑒𝑥 𝑒𝑦 𝐼 𝛺 𝜃] from the present position 

and velocity (𝑹, 𝑽) of the chief.  

2. Calculate 𝐴𝑝1, 𝐴𝑝2  in (10)-(11) and 𝒓𝑟 , 𝒓̇𝑟 , 𝒓̈𝑟  in 

(3) from the analytical models by the input œ.  

3. Calculate 𝒇𝑝, 𝒇𝑜, 𝒇𝑓 from the analytical models 

by the inputs: œ, 𝐴𝑝1, 𝐴𝑝2, 𝒓𝑟, 𝒓̇𝑟, 𝒓̈𝑟.  

In the step 2, it is necessary to compute the first- and 

second-time derivatives of [𝐼 𝛺 𝜃]𝑇 . They can be 

computed both numerically and analytically, but this 

study calculates them from the analytical model of the 

𝐽2-perturbed osculating orbital elements which is given 

in Appendix A in [6].   
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Table 2: Major numerical conditions.  

Item Value 

Initial time 2023 December 21st, 0:00:00 UT 

Chief initial orbital elements 𝑎0 = 6978 km, 𝒆0 = [0 0.0011]𝑇, 𝐼0 = 98°, 𝛺0 = 90°, 𝜃0 = 0° 

Area-to-mass ratio (𝑆 𝑚⁄ )1 = 3.6 × 10−3 m2kg-1 for SC1, (𝑆 𝑚⁄ )2 = 1.1(𝑆 𝑚⁄ )1, (𝑆 𝑚⁄ )3 = 0.9(𝑆 𝑚⁄ )1  

Atmospheric drag Density: modified Harris-Priester model, 𝐶𝑑 = 2.2 (drag coefficient) 

Solar radiation pressure 𝑃𝑠 = 4.56 × 10−6 Pa, 𝐶𝑠 = 0.3 (specular), 𝐶𝑎 = 0.5 (absorption)  

Reference formation 𝛼 =20h00m00s,  𝛿 = 40°, 𝜌𝑦 = 0 m (SC1), 50 m (SC2), −50 m (SC3) 

Gravity model Earth spherical harmonic gravity (up to 20 degrees), lunisolar gravity 

Disturbance setting Case 1: With gravitational perturbations only.  

Case 2: With gravitational and non-gravitational perturbations. 

Simulation time Four revolutions of the chief orbit  

(the first two revolutions: the feedforward control disabled, then enabled)  

IV. CLOSED-LOOP SIMULATIONS 

This section shows the performance of the feedforward 

control presented in Section III for a linear astronomical 

interferometer. For simplicity, the simulation considers 

the three-dimensional dynamics (attitude dynamics are 

not considered) and assumes that both navigation and 

actuation are perfect.  

Table 2 summarizes the numerical conditions. The 

chief orbit was selected as a sun-synchronous orbit at an 

altitude of 600 km. The mean eccentricity vector for the 

chief was selected at the equilibrium for Earth J2 and J3 

long-period perturbations. For the area-to-mass ratio 

was assumed to have an 10% error between spacecraft 1 

(SC1) and SC2/SC3. The simple atmospheric model 

(modified Harris-Priester model [7]) was used for the air 

drag, and solar radiation pressure (flat plate model) was 

assumed to be constant. The target observing star was 

selected to understand the representative control perfor-

mance; no scientific objectives are intended for this se-

lection. The Earth spherical harmonic gravity up to 20 

degrees was considered in addition to lunisolar gravity.  

The two scenarios were tested in the simulation. The 

first one (case 1) in Table 2 was set to understand the 

pure compensation performance of the major gravita-

tional perturbations under the gravitational effects. The 

second one (case 2) was set to understand the more real-

istic performance when the non-gravitational perturba-

tions were applied to orbital dynamics. During the total 

simulation time of four revolutions of the chief orbit, the 

feedforward control was disabled for the first two revo-

lutions of the chief orbit (method in Fig. 2), then enabled 

for the latter two revolutions (method in Fig. 3). For the 

further numerical setting, the initial position error in the 

order of 10-1 m was imposed to each spacecraft. The con-

trol frequency was set at 5 Hz. The linear quadratic reg-

ulator (LQR) was adopted as the feedback controller, 

whose feedback gain was selected to minimize the ob-

jective function:  

 

𝐽 = ∫ (𝒙𝑇𝑄𝒙 + 𝒖𝑇𝑅𝒖)
∞

0

𝑑𝑡                   (14) 

 
Fig. 6: Tracking error (top) and feedback control accel-

eration (bottom) for SC2.  

 

where 𝑄 and 𝑅 are the weighting matrix. The diagonal 

elements of 𝑄 and 𝑅 were non-zero values, and the oth-

ers were zero. The optimal feedback gain was  

 

𝐾 = [
14 −2.4 0 1.1 × 104 46 0
2.5 9.7 0 46 1.0 × 104 0
0 0 8.9 0 0 1.1 × 104

] × 10−6 

(15) 

 

Figure 6 shows the time histories of the tracking er-

rors (norm) and feedback control accelerations (norm). 

Figures 7 and 8 shows the time histories of the control 

accelerations for each case. Note that the results on SC2 

were presented only, because SC2 and SC3 were placed 

asymmetrically so that their characteristics were basi-

cally the same. As seen in Fig. 6, the position tracking 

error under disabled feedforward control was main-

tained in the order of 10-2 m for both cases, and the feed-

back controller output the control accelerations in the or-

der of 10-7 m/s2. After the feedforward control was acti-

vated (after the two revolutions), the tracking error fur-

ther reduced to the order of 10-4 m, and the feedback 

control commands also reduced to the order of 10-9 m/s2 

in most durations for each case. Instead, the feedforward 
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Fig. 7: Control acceleration in the LVLH frame applied 

to SC2 (Case 1).  

 

 
Fig. 8: Control acceleration in the LVLH frame applied 

to SC2 (Case 2).  

 

control compensated the gravitational perturbations ac-

curately, accounting for the order of 10-7 m/s2. In Fig. 6, 

the position control error with feedforward controller for 

case 2 was larger than that for case 1, but both were 

maintained with less than 10-3 m. As seen in these cases, 

the feedforward compensation of the gravitational per-

turbations in LEO could reduce the control deviation 

significantly, by two orders of magnitude even if there 

exist non-gravitational perturbations.  

 

 

 

V. CONCLUSIONS 

This study demonstrated the advantage of the feedfor-

ward controller to compensate the gravitational pertur-

bations continuously, showing the reduced control devi-

ation by two orders of magnitudes. This technique po-

tentially makes precise formation flying in low Earth or-

bit much easier. In future work, the performance will be 

compared when a real-time disturbance estimation is 

adopted. In addition, the more realistic noise models on 

sensors/actuators, as well as the modelling errors on at-

mospheric density and solar radiation pressure, will be 

adopted to investigate how much robustness the pro-

posed methods have against the systematic and environ-

mental uncertainties.  
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